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ABSTRACT

Rare event simulation for stochastic models of complex
systems is still a great challenge even for Markovian models.
We review results in importance sampling for Markov chains,
provide new viewpoints and insights, and we pose some
future research directions.

1 INTRODUCTION

Model-based performance evaluation is an important tool
in a variety of application areas. In particular, when some
uncertainty in system behavior is involved, stochastic mod-
els are adequate and have shown to be useful. Dynamical
systems evolve over time, and very often stochastic pro-
cesses are used to model and analyze them. Although a
lot of analytical and numerical techniques are known for
the analysis of stochastic processes, due to the increasing
complexity of today’s real–world systems, these techniques
are often not applicable. They may be computationally too
costly or space complexity may be intractable. Even in the
relatively simple case of Markov chains, state space explo-
sion causes serious problems. In such cases simulation can
provide an alternative.

A further difficulty is introduced when rare events are
involved. In many systems rare events must not be neglected.
Typical examples are data packet losses in communication
networks, bit errors in digital communications, or ruins in
finance and insurance risk. Such rare but important events
substantially determine system performance and reliability.
As a matter of fact, direct rare event simulation is impossi-
ble, since rare events occur with such an extremely small
probability, that they occur too infrequently in simulations
to provide reliable estimates in reasonable time. Hence,
to estimate rare events, efficient simulation modeling and
analysis is required. Simulation speed-up in the sense of
reducing the computer time necessary to obtain estimates
with a pre-defined accuracy can be achieved by reducing the
variance of the estimator. One of the most promising vari-
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ance reduction methods for efficient rare event simulation
is importance sampling.

Importance sampling is already known for a long time,
originally developed in the early 1940s in the context of
Monte Carlo integration arising from problems in nuclear
physics, see (Hammersley and Handscomb 1964) for a
classical treatment, and (Halton 1970) for a comprehensive
survey. Since around two decades it has been recognized
that importance sampling is also a potentially powerful
technique for simulating systems governed by stochastic
processes, including Markov processes, generalized semi–
Markov processes (GSMP), queueing or reliability models.
Importance sampling is particularly useful for such models
in the presence of rare events, see for example Glynn and
Iglehart (1989) and Heidelberger (1995).

The basic idea of importance sampling is to transform
the original model into a modified model, which should
behave better with regard to the simulation goals. The
probability measure underlying the model under considera-
tion, for instance the density of random variables or the law
driving a stochastic process, is changed in such a way that
the variance of the resulting estimators is significantly re-
duced. The systematically biased estimator is then weighted
by a correcting factor, the so-called likelihood ratio, which
is simply the ratio of the original probability density or
measure and the changed importance sampling probability
density or measure. This yields an unbiased estimator for
the property of interest, and it is known that there always
exists an optimal zero variance estimator, which unfortu-
nately depends on the unknown quantity to be estimated. In
the particular context of rare event simulation importance
sampling is often called a rare event provoking technique,
since it then aims in generating more of the rare events of
interest to obtain accurate confidence intervals in reasonable
time.

The crucial point in a successful application of im-
portance sampling is to find a change of measure provid-
ing accurate estimates, which means estimators with much
smaller variance than the direct simulation estimators. When
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importance sampling is applied properly, the variance of
the resulting estimator can be many orders of magnitude
less than that of the direct simulation estimator, but on the
other hand, importance sampling can also lead to variance
increase, even to infinite variance, if the chosen estimator
is too far from optimal. Therefore, success and efficiency
heavily depend on the change of measure determining the
estimator, and consequently, the main difficulty and the art of
importance sampling is to find such changes of measure that
considerably decrease the estimator’s variance. Thereby, it
is by no means obvious whether or not a specific change
of measure is a good one. The main part of the importance
sampling literature is concerned with the change of measure
and the development of estimators with certain accuracy and
efficiency criteria.

In applications of importance sampling, such as in the
already mentioned literature and also in more recent publica-
tions, as for example in Juneja (2004) or Sandmann (2004),
the focus is most often on estimators providing bounded rel-
ative error or asymptotic optimality. Moreover, most often
importance sampling methods are developed for higher-
level model descriptions, usually for Markovian queueing
networks. There are significantly less direct applications
to Markov chains than to queueing models. Sometimes,
in direct applications to Markov chains a specific structure
is assumed, such as small transition probabilities (Juneja
and Shahabuddin 2000, 2001). Many available techniques
appear to be very efficient even if they are not close to
the optimum. But, of course, exploiting knowledge of the
optimal estimator to derive a change of measure should be
a good approach. Investigating the optimal zero variance
importance sampling estimator for Markov chains has been
neglected.

The remainder of the paper is organized as follows. In
section 2, we review importance sampling for discrete-time
Markov chains. Sections 3 and 4 deal with the form of the
optimal importance sampling distribution for finite horizon
and steady state probabilities, respectively. Section 5 recalls
a result for absorbing Markov chains, which is then used
in section 6 to demonstrate that zero variance estimation
of probabilities related to sequences of Bernoulli trials can
be performed by simulating a discrete-time Markov chain.
Finally, section 7 concludes the paper and discusses some
directions for further research.

2 IMPORTANCE SAMPLING FOR DISCRETE-
TIME MARKOV CHAINS

We review the mathematical basis of importance sam-
pling for discrete-time Markov chains. Thereby we start
and comprehensively describe the basics for discrete-time
Markov chains, and then we present analogous formulae
for continuous-time ones. Additional details and general-
izations can be found in (Glynn and Iglehart 1989). For a
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comprehensive survey on importance sampling for queueing
and reliability models see (Heidelberger 1995), for Marko-
vian reliability models also see (Goyal et al 1992).

Let (Xn) be a homogeneous discrete–time Markov chain
with state space S, transition probability matrix P = (pij )

and initial distribution μ. Denote by p(x0, . . . , xK) the path
probability determined by P and μ, that is p(x0, . . . , xK) =
μ(x0)px0,x1 · · · pxK−1,xK

, where K is in general a random
stopping time, which particularly includes the deterministic
case of a constant path length. Let g : SK+1 → IR be a
real-valued function, and define γ := IEP[g(X0, . . . , XK)],
where IEP denotes the expectation taken with respect to P
(and μ) on the space of sample paths of (Xn). Then for
states x0, . . . , xK ∈ S

γ =
∑

x0,...,xK

g(x0, . . . , xK)p(x0, . . . , xK).

Note, that we distinguish random variables from their real-
izations by using upper case and lower case letters, re-
spectively. The goal is to estimate γ via simulation.
This would be usually done by the sample mean of
g(X0, . . . , XK), but if γ is related to a rare event such
a direct simulation is impossible. Think for example
of g as the indicator function of an infrequently visited
state or set of states. Now, let p∗ : SK+1 → [0, 1]
denote a probability distribution on SK+1, which means
p∗(x0, . . . , xK) = P {X0 = x0, . . . , XK = xK}. Assume,
the implication

g(x0, . . . , xK) · p(x0, . . . , xK) > 0

⇒ p∗(x0, . . . , xK) > 0 (1)

holds for all (x0, . . . , xK) ∈ SK+1, and consider
the likelihood ratio given by L(X0, . . . , XK) =
p(X0, . . . , XK)/p∗(X0, . . . , XK). Then

γ = IEP[g(X0, . . . , XK)]

=
∑

x0,...,xK

(
g(x0, . . . , xK)

p(x0, . . . , xK)

p∗(x0, . . . , xK)

× p∗(x0, . . . , xK)

)

= IEp∗ [g(X0, . . . , XK)L(X0, . . . , XK)] ,

where IEp∗ denotes the expectation on paths with proba-
bility distribution p∗. This expectation can be estimated
by repeated generations of (X0, . . . , XK), denoted by
(X

(1)
0 , . . . , X

(1)
K ), . . . , (X

(N)
0 , . . . , X

(N)
K ), according to p∗,

building the sample mean and weighting by the likelihood
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ratio. Thus, the importance sampling estimator

γ̂
IS

= 1

N

N∑
i=1

g(X
(i)
0 , . . . X

(i)
K )L(X

(i)
0 , . . . X

(i)
K ) (2)

is an unbiased estimator of γ. Note, that if K is a ran-
dom stopping time, realizations of sample paths may have
different lengths. We particularly emphasize that arbitrary
probability distributions on SK+1 with (1) are allowed for
p∗. There are no explicit conditions on single transition
probabilities, but only on path probabilities. The importance
sampling distributions may even be inhomogeneous or non–
Markovian´, but the generation of paths then can become
much more complicated than for homogeneous discrete-
time Markov chains. Using a discrete-time Markov chain
as importance sampling distribution follows as a special
case of the general formulae. For inhomogeneous discrete-
time Markov chains as importance sampling distributions
we have with initial distribution ν and transition probability
matrices P∗(0), . . . P∗(K − 1)

p∗(x0, . . . , xK) = ν(x0)

K−1∏
i=0

p∗
xi ,xi+1

(i).

For the special case of homogeneous discrete–time Markov
chains with initial distribution ν and transition probability
matrix P∗ = (p∗

ij ) as importance sampling distribution we
get the same expression except for the dependence on i in
the transition probabilities p∗

xi ,xi+1
. This corresponds to the

so–called exponential change of measure for Markov chains
(Bucklew 1990). The advantage of performing importance
sampling using a fixed alternative Markov chain is that the
effort for generating paths remains approximately the same
as for the original Markov chain. Then the likelihood ratio
is given by

L(x0, . . . , xK) = μ(x0)

ν(x0)

K−1∏
i=0

pxi,xi+1

p∗
xi ,xi+1

for the homogeneous case, and for the inhomogeneous case
we have an additional dependence on i similar as in the
corresponding formula for path probabilities above. This
specific form renders successive computation by actualizing
the likelihood ratio after each simulated state transition
possible. A serious problem is caused when simulation runs
become very long, when the time horizon becomes very large
or even potentially infinite, as it is typically necessary for
estimating steady–state performance measures. Indeed, it
can be shown that the likelihood ratio almost surely vanishes
when simulation run length tends to infinity (Glynn and
Iglehart 1989). Thus, in the case of very long simulation
runs, which are usual in simulating realistic network models,
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simply taking one fixed alternative Markovian transition
probability matrix may not be satisfactory, and advanced
techniques must be applied. In particular, regenerative
simulation has proven useful, but although each Markov
chain state is regenerative, the choice of suitable – in the
sense that they are reached sufficiently often – regeneration
points is by no means trivial.

2.1 Optimal Importance Sampling

The variance of the importance sampling estimator (2) is
given by

σ 2(γIS) = IEp∗ [g(X0, . . . , XK)2L(X0, . . . , XK)2] − γ 2

N
.

From that, one can easily determine the uniquely defined
optimal importance sampling distribution

p∗
opt (x0, . . . , xK) = g(x0, . . . , xK)p(x0, . . . , xK)

γ
,

which unfortunately explicitly depends on the unknown
quantity to be estimated. Nevertheless, from its form given
above valuable insights can be gained. Hence, although
there are also a lot of applications of importance sampling
for Markov chains, where the used importance sampling
distribution is not very close to the optimal one, we should be
interested in investigating the optimal importance sampling
distribution more detailed. For this purpose, it is not only
useful but necessary to have some guidelines about how
to derive it without using a priori (in practice not given)
knowledge on the exact solution.

2.2 Likelihood Ratio Conditions

The optimal importance sampling distribution depends on
the quantity of interest. If the quantity is known, the op-
timal importance sampling distribution can be computed.
Of course, this is not helpful in practice, since we need
not estimate a known quantity. Therefore, one should aim
at being able to derive optimal importance sampling dis-
tributions without this knowledge. It has proven useful
(Sandmann 2005) to exploit a special property of the like-
lihood ratio. Note that under optimal importance sampling
it is guaranteed that only such samples are possible, where
g(x0, . . . , xK) �= 0. In the following, for ease of notation
x := (x0, . . . , xK), and x′ = (x′

0, . . . , x
′
K), respectively.

For optimal importance sampling it can be readily seen that
the likelihood ratio is given by

∀x ∈ {x : g(x) �= 0} : L(x) = p(x)

p∗
opt (x)

= γ

g(x)
.
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Although this cannot be directly used as it again contains
γ, we get the information, that for equal values of g the
values of the likelihood ratio are equal, too. That means
for all x, x′ ∈ {x : g(x) �= 0} :

g(x) = g(x′) ⇒ L(x) = L(x′) = γ

g(x)
.

For the important case of estimating the probability of an
event A putting the above equations together yields

∀x, x′ ∈ A : L(x) = L(x′) = p(x)

p∗
opt (x)

= γ.

We call these equations the likelihood ratio conditions.
What is useful in applying them is of course not that the
likelihood ratio depends on γ, but that likelihood ratios are
equal. In particular note for estimating probabilities that
the likelihood ratios are constant.

3 OPTIMAL IMPORTANCE SAMPLING FOR
FINITE HORIZON PROBABILITIES

Consider the probability of a rare state r ∈ S over a finite
horizon K ∈ IN+, starting in an arbitrary state x0 ∈ S. This
probability can be estimated via the relative frequency of
visits in state r and is given by

IE

[
1

K

K∑
i=1

I{Xi=r}

]
.

That means as a special case of the general term the estimate
for the probability under consideration is

g(X0, . . . , XK) = 1

K

K∑
i=1

I{Xi=r}.

For the optimal importance sampling estimator it follows
(Sandmann 2005)

p∗
opt (x0, . . . , xK) =

(
K∑

i=1
I{xi=r}

)
p(x0, . . . , xK)

IE

[
K∑

i=1
I{Xi=r}

]

for all paths (x0, . . . , xK) ∈ SK+1, that include state r

at least once, and p∗
opt (x0, . . . , xK) = 0 for all paths that

do not include state r. It is readily seen that the optimal
estimator for the probability of interest equals the optimal
estimator for the number of visits in state r. Thus, we can
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restrict to the estimation of this frequency of visits by

g(X0, . . . , XK) =
K∑

i=1

I{Xi=r}

γ (K) = IE[g(X0, . . . , XK)] =
K∑

i=1

IE
[
I{Xi=r}

]
.

Now, assume the optimal importance sampling estimator
for the frequency of visits over horizon K − 1 is known.
In particular, the likelihood ratio condition must hold. In
the following, we consider one further transition, thereby
distinguishing if this leads to a visit of the rare state or
not. Let the probability of a path of length K under
optimal importance sampling be p(K−1)(x0, . . . , xK−1) ·
p

(K)
xK−1xK

, where p(K−1)(x0, . . . , xK−1) denotes the optimal

importance sampling measure for horizon K−1 and p
(K)
xK−1xK

denotes the probability of a transition from a state xK−1 to
state xK in step K under optimal importance sampling for
horizon K. Then it can be shown (Sandmann 2005) that for
xk �= r

p(K)
xK−1xK

= γ (K−1)

γ (K)
· pxK−1xK

and for xK = r

p(K)
xK−1xK

= γ (K−1)

γ (K)
·
(

1 + 1

g(x0, . . . , xK−1)

)

× pxK−1xK
.

As a major problem in optimal importance sampling we
discover the unknown factor γ (K−1)/γ (K). Therefore, the
practical application and implementation is difficult. In
particular, the transition probabilities under optimal impor-
tance sampling in general depend on the number of visits to
the rare state r already observed in the current simulation
run. Thus, we can easily see that the optimal importance
sampling measure for estimating finite horizon probabilities
in Markov chains is generally not a Markov chain. In other
words, for estimating γ (K) optimal importance sampling
can generally not be realized by a Markov chain.

4 OPTIMAL IMPORTANCE SAMPLING FOR
STEADY STATE PROBABILITIES

Now, consider optimal importance sampling for steady-state
probabilities of rare states. For that, the first decision has
to be made on the simulation method, that means which
method should be applied to determine estimators. The
method of independent replications of finite horizon was
the natural method to apply in case of probabilities over
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a finite horizon. It can be similarly applied to steady-
state probabilities, where the horizon or in other words the
simulation run length must be sufficiently long. Additionally
a warm up period has to be taken into account to delete the
initial transient period. Alternatively, the warm up period
may be canceled for very long runs due to decreasing
influence of initial conditions when simulation runs evolve.
Regarding the optimal importance sampling measure there
is no significant difference to performance measures defined
on a finite horizon except for the fact that typically after the
warm up period the initial state for the main simulation and
data collection is different for all runs. Since under optimal
importance sampling each run yields a perfect estimate of
the property of interest, the form of the optimal importance
sampling measure is independent of the particular initial
state and corresponds to the finite horizon case. Similarly
we can argue for the batch means method, where under
optimal importance sampling each batch yields a perfect
estimate.

Therefore, we consider here the regenerative method,
where contradictory to the just mentioned methods, regen-
erative cycles (simulation runs of different lengths) occur.
First of all the choice of a regeneration point is required.
In Markov chains each state is regenerative and from the
probabilistic point of view it does not matter which state is
chosen. Only the simulation effort is influenced depending
on the frequency of visits to the regeneration state or in
other words on the mean length of regenerative cycles. The
choice of the regeneration state does not influence the op-
timal importance sampling measure. Note that the change
of measure also changes the probability of any regeneration
state. In particular, a rare state can be chosen as regenera-
tion state. Although this may seem quite strange at a first
glance it has advantages. When chosing a rare state as the
regeneration state the steady-state probability we are inter-
ested in is identical to the reciprocal of the mean recurrence
time. We do choose the rare state of interest as regeneration
state. Hence, we are interested in the expectation of the
recurrence time to a rare state r chosen as regeneration
state. For a path (x0, . . . , xt ) ∈ S t+1 where x0 = xt = r
and xi �= r, 0 < i < t we have g(x0, . . . , xt ) = t and

p∗
opt (x0, . . . , xt ) = g(x0, . . . , xt )p(x0, . . . , xt )

γ

= tpx0x1px1x2 · · · pxt−1xt

γ
.

Under optimal importance sampling each regenerative
cycle yields a perfect estimate of the mean recurrence time.
In particular, for two cycles of lengths t1 and t2, and with
likelihood ratios L1 and L2, respectively, t1 ·L1 = t2 ·L2 =
γ. Consider a cycle of length t1 containing at least one
state in which a self-loop is possible. Then there is a cycle
of length t2 = t1 + 1 such that compared to the cycle of
length t1 it has been additionally occured one such self-loop.
Without loss of generality assume the self-loop has occured
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in state xi. Then the likelihood ratio of the second cycle is

L2 = L1 · pxixi

p∗
xixi

,

and it follows

t1 = (t1 + 1) · pxixi

p∗
xixi

,

p∗
xixi

= t1 + 1

t1
· pxixi

=
(

1 + 1

t1

)
· pxixi

.

Note that even in this simple case the optimal importance
sampling measure depends on the cycle length, which is
neither known in advance nor during the simulation run.
Hence, the recurrence time cannot be perfectly estimated
by a Markov chain simulation.

Consider now an arbitrary regeneration state different
from r. Then under optimal importance sampling the rare
state r must be reached in each cycle. All regenerative cycles
containing r must be possible under optimal importance
sampling, and each regenerative cycle must yield a perfect
estimate of the steady-state probability of r. Denote by v

t1
and v

t2
the estimates for two regenerative cycles of length

t1 and t2, respectively, where both cycles contain the rare
set equally often, say v times. As before, denote by L1
and L2 the cycles’ likelihood ratios. Then under optimal
importance sampling

v

t1
· L1 = v

t2
· L2, t1 · L2 = t2 · L1.

Now, consider again two cycles of lengths t1 and t2 = t1+1,

which only differ in one self-loop, that is

L2 = L1 · pxixi

p∗
xixi

.

Then it follows

t1 + 1 = pxixi

p∗
xixi

· t1,

p∗
xixi

= t1

t1 + 1
· pxixi

.

Hence, for each regeneration state different from the rare
state r the optimal importance sampling measure depends
on the cycle length, too. Thus, the optimal importance
sampling measure for estimating steady-state probabilities
in Markov chains is generally not a Markov chain. In other
words, for estimating steady-state probabilities in Markov
chains optimal importance sampling can generally not be
realized by a Markov chain.
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5 ABSORBING MARKOV CHAINS

As we have seen, in general, optimal importance sampling
for Markov chains cannot be performed by a Markov chain,
even not by an inhomogeneous one. Although this is a neg-
ative result the form of the optimal importance sampling
distribution gives insights and provide guidelines on how
to choose a good importance sampling distribution (Sand-
mann 2005). Besides, we can note that optimal importance
sampling leads out of the class of the original distribution.
A generalized class has to be considered. The question
arises if it is generally hopeless to simulate with a Markov
chain as an importance sampling distribution. The answer
is definitely no. In many cases of practical interest we are
not concerned with totally general finite horizon or steady
state probabilities of general Markov chains, but with some
specific probabilities or with some specifically structured
Markov chains. One of the most important special cases are
absorbing Markov chains, where several specialized results
on importance sampling exist.

In the following we will demonstrate 1) for simplified
types of Markov chains optimal importance sampling often
leads to a more generalized class of distributions, too; 2)
this class may belong to the class of Markov chains. In
particular, we will show that we can optimally simulate
probabilities in sequences of independent Bernoulli trials
(which can be viewed as Markov chains) by Markov chains,
but the property of being independent Bernoulli trials is lost.
When deriving the optimal importance sampling distribution
for our Bernoulli example we will use the following result
for absorbing Markov chains from (Kuruganti and Strickland
1997). For homogeneous discrete-time Markov chains with
a set F of absorbing states and a non-absorbing initial
state x0 the optimal importance sampling distribution for
estimating the probability P {TF < Tx0} of reaching set F

before returning to x0 is given by a homogeneous discrete-
time Markov chain. Here TF and Tx0 denote hitting times of
F and x0, respectively. This is all we need in this paper, for
a detailed treatment see (Kuruganti and Strickland 1997). In
particular, it it not surprising that the transition probabilities
under optimal importance sampling explicitly depend on the
just mentioned unknown probability.

6 SEQUENCES OF INDEPENDENT BERNOULLI
TRIALS

Consider n independent Bernoulli trials with success proba-
bility p ∈ (0, 1). We are interested in estimating the proba-
bility of at least k < n successes. For small p or large k this
is clearly a rare event probability. A simulation typically
performs independent simulation runs, each consisting of n

independent Bernoulli trials, in other words of generating
n random numbers. Since most of the runs do not generate
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k or more successes, a huge number of runs is needed to
achieve confidence intervals of reasonable accuracy.

Following the basic idea of importance sampling, we
would choose p∗ > p to provoke more successes and
therefore a larger number of simulation runs including the
rare event. Giving a special version of this example with
p = 0.5, Juneja (2004) states that the optimal importance
sampling distribution is typically not implementable, since
for each p ∈ (0, 1) the probability of observing less than k

successes is positive. He does not further investigate this
example but turns to large deviations theory to determine ef-
ficient, but not optimal, importance sampling distributions.
From the above it seems to be clear that the optimal change
of measure leads out of the class of independent Bernoulli
trials. Nevertheless, the existence of the optimal importance
sampling distribution is guaranteed. In what follows we
show how one could find this optimal distribution. We do
not compute it using the known exact solution of the prob-
ability we consider here, but we utilize the likelihood ratio
condition. Thereby, we additionally illustrate the way ideas
come and are rejected until finally the optimal importance
sampling distribution is found. This should give valuable
insights not only concerning the specific optimal importance
sampling distributions, but particularly in the way one can
successively improve models to get the optimal importance
sampling distribution. First, we ask, whether there exists a
p∗ �= p such that the likelihood ratio condition holds. The
answer is

Lemma 1 There exists no p∗ ∈ (0, 1), p∗ �= p such
that the likelihood ratio condition holds.

Proof Let x1, . . . , xn, xi ∈ {0, 1}, i = 1, . . . , n be a
realization of one sequence of independent Bernoulli trials,
building a Bernoulli path. The probability of each path of
length n is given by

p(x1, . . . , xn) = pm(1 − p)n−m, m ≤ n,

where m denotes the number of successes. For paths in-
cluding the rare event we have m ≥ k. Importance sampling
with success probability p∗ yields the likelihood ratio

L(x1, . . . , xn) = pm(1 − p)n−m

p∗m
(1 − p∗)n−m

,

which should be the same for all m ≥ k. Now, choose
m = k and m = k + 1, respectively. Then the likelihood
ratio condition implies

pk(1 − p)n−k

p∗k
(1 − p∗)n−k

= pk+1(1 − p)n−k−1

p∗k+1
(1 − p∗)n−k−1

,

from which we get p∗ = p. As the next step on our way to
the optimal importance sampling distribution, we consider a
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modification, where the success probability may vary in each
trial. This can be interpreted as time dependence. Again,
we ask for the likelihood condition to hold. Unfortunately,

Lemma 2 There exists no time dependent and state
independent modified Bernoulli experiment such that the
likelihood ratio condition holds.

Proof It suffices to consider only the special case n =
2, k = 1. Here, paths including the event of interest are
(0, 1), (1, 0) and (1, 1) where the path probabilities are
p(0, 1) = p(1, 0) = p(1 − p), p(1, 1) = p2.

Let p(1), p(2) denote the success probabilities in the
first and in the second trial, respectively, for the modified
model. Then the corresponding likelihood ratios are

L(0, 1) = p(1 − p)

(1 − p(1))p(2)
,

L(1, 0) = p(1 − p)

p(1)(1 − p(2))
,

L(1, 1) = p2

p(1)p(2)
.

For these must be identical, it follows

p(1 − p)

p(1)(1 − p(2))
= p2

p(1)p(2)

and

p(1 − p)

(1 − p(1))p(2)
= p(1 − p)

p(1)(1 − p(2))
,

which yields p(2) = p and p(1) = p, respectively.
Boths variants we have tried so far do not bring us to

the optimal importance sampling distribution, so we have
to experiment further. After trying independent identically
distributed Bernoulli trials and independent time dependent
Bernoulli trials we include dependence on the state, that is
on the number of already observed successes. Let p(i)(m)

denote the success probability for the i–th trial under the
condition that there were already m successes. Consider
again the case n = 2, k = 1. In the first trial the state
is always 0, since there could not be successes before
starting. The change of measure under consideration allows
to guarantee, that only such paths are generated, which
include the event of interest. We exclude (0,0) by defining
the success probability for the second trial to be equal to one,
if there was no success in the first trial. Hence, p(2)(0) := 1.
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For the other paths we have

L(0, 1) = (1 − p)p

(1 − p(1)(0))p(2)(0)
= (1 − p)p

1 − p(1)(0)
,

L(1, 0) = p(1 − p)

p(1)(0)(1 − p(2)(1))
,

L(1, 1) = p2

p(1)(0)p(2)(1)
.

To compute the optimal importance sampling distribution,
it remains to determine p(1)(0) and p(2)(1) such that the
likelihood ratio condition holds. We get

p(1 − p)

p(1)(0)(1 − p(2)(1))
= p2

p(1)(0)p(2)(1)

and

(1 − p)p

1 − p(1)(0)
= p2

p(1)(0)p(2)(1)
,

from which we obtain

p(2)(1) = p, p(1)(0) = 1

2 − p
.

We have seen, that in the optimal change of measure
for estimating the probability of at least a given number k of
successes, the optimal success probabilities depend both on
the current trial and on the number of the already observed
successes, even for this very special case of at least one
success in two trials. The optimal change of measure leads
out of the class of independent Bernoulli trials.

Now, the question arises if in general the optimal change
of measure leads to such state dependent and time dependent
success probabilities, or if it even depends on the complete
history of the sequence of trials. This can be checked for
small values of n by performing analogous computations as
we have done above and at for instance for n = 3 and n = 4 it
turns out that the optimal change of measure leads to success
probabilities for each trial which only depend on the number
of already observed successes, not on the complete history.
In the following, we examine this more systematically for
the general case. For this purpose, we consider the number
of success probabilities to be determined and the number
of equations resulting from the likelihood ratio condition.

We start with the latter. On principle, we have to
consider all Bernoulli paths of length n with at least n

successes, but since the simulation can be stopped after the
k–th success, it suffices to consider only such path segments
of length at most n where the k–th success occurs in the
last trial. The minimum length of such paths is k, and there
is exactly one path of length k with k successes. For paths
of length k + 1 it is fixed that the k–th success must occur
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in trial k + 1, and the remaining k − 1 successes can occur
in the first k trials. There exist

(
k

k−1

)
such paths. Similarly,

it can be argued for paths of lengths k + 2, k + 3, . . . until
finally for paths of length n where the k–th success must
occur in the n–th trial, and k − 1 successes occur in n − 1
trials before. Thus there are

(
n−1
k−1

)
paths of length n with

k–th success in trial n, and there are altogether

|Paths| =
n−1∑

m=k−1

(
m

k − 1

)
=

(
n

k

)

paths to consider. Hence, the likelihood ratio condition
yields

(
n
k

)− 1 equations. This is the same as the number of
paths of length n with exactly k successes, because paths
with more than k successes are up to the k–th success
identical to paths with exactly k successes.

Let us consider now, how many unknown probabili-
ties have to be determined. In the i–th trial these are the
probabilities p(i)(0), . . . , p(i)(i − 1). These are i probabil-
ities, and therefore, for n trials 1 + 2 + · · · n = n(n + 1)/2
probabilities. Since the simulation can be stopped after
k successes, probabilities for states representing at least k

successes are redundant. They have not to be determined.
Again, this is possible at the earliest after trial k. Then the
probability p(k+1)(k) is redundant, and also the probabilities
p(k+2)(k), p(k+2)(k +1) and so on until after trial n−1 the
probabilities p(n)(k), . . . , p(n)(n − 1) are redundant. Alto-
gether there are 1+2+· · ·+ (n−k) = (n−k)(n−k+1)/2
redundant probabilities.

Moreover, in optimal importance sampling the rare
event – at least k successes – must be observed in each
experiment. From this, it follows, that some probabilities
must be one, namely if and only if from the current state
k successes are only possible, if all remaining trials are
successes. This is the case for the last but k trial in
state 0, in the last but k − 1 trial in state 1, and so on.
Moreover, for the last but k − 1 trial, state 0 is infeasible
under optimal importance sampling, and therefore its success
probability becomes redundant, too. Similar arguments hold
until the last trial, for which in state k − 1 the success
probability must be one, and states 0, . . . , k − 2 become
infeasible under optimal importance sampling. Altogether
we have 1 + 2 + · · · + k = k(k + 1)/2 probabilities to
be one or, because of their infeasibility, redundant. The
remaining number of unknown probabilities to determine
is k(n − k). If we compare this with the number of

(
n
k

) − 1
equations, we state, that it is not yet guaranteed, that these
are solvable. We will show, that they are indeed solvable.
Hence, the optimal importance sampling distribution is given
by Bernoulli trials, that depend on time and state but not on
the complete history of all previously performed trials, and
this yields a perfect estimator for our probability of interest,
the probability of at least k successes in n independent
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Bernoulli trials with identical success probabilities. We will
show this by modelling sequences of independent Bernoulli
trials by discrete-time Markov chains with absorbing states
and applying results given by Kuruganti and Strickland
(1997).

6.1 Modeling as Absorbing Markov Chain

It may be surprising that we utilize results for recurrence
probabilities in absorbing Markov chains to investigate op-
timal importance sampling for Bernoulli trials. However, as
we have seen, the optimal importance sampling distribution
for estimating the probability of more than k successes in
n Bernoulli trials must at least depend on both the number
of the already performed trials and the already observed
successes. In other words, it depends on both time and
state. In particular, it leads out of the class of independent
Bernoulli trials. Our notion of time and state suggests an
interpretation as stochastic process. As we want to show
that the dependence on states is only on the current state
and not on the complete history of successive states, it
seems reasonable to interpret our experiment as a Markov
chain. A sequence of n independent Bernoulli trials can be
modelled as a homogeneous discrete-time Markov chain,
where a state is a pair consisting of the number of successes
and the number of trials. Hence, the state space is a subset
of {0, . . . , n}2, and the initial state is (0, 0). Since it is
not possible to have more successes than trials, for each
state (i, m) it follows i ≤ m, where the first component i

denotes the number of successes and the second component
m denotes the number of already performed trials. Here,
we are interested in at least k successes in n trials, not in
the exact number of successes. Therefore, we can stop the
sequence of trials after k successes. Thus the state space is

S := {(i, m) ∈ {0, . . . , k} × {0, . . . , n} : i ≤ m}.

The set of states in which k successes have been occured
can be modelled as an absorbing class defined by F :=
{(i, m) ∈ S : i = k}. There are states from which k successes
are not possible. That are such states, where the number
of remaining trials is less than the number of necessary
successes. In other words, states, where the number of
unsuccessful trials is greater than the maximum possible
number of unsuccessful trials. Formally, that means states
in

A := {(i, m) ∈ S : n − m < k − i}
= {(i, m) ∈ S : m − i > n − k},

which is exactly the set of states that must not be reached
under optimal importance sampling.

In (Kuruganti and Strickland 1997) the probability of
returning to the initial state before reaching an absorbing
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state is considered. In our actual model a return to the
initial state is obviously impossible. Therefore, we need
the modification that the initial state is reached iff k successes
in n trials are not any longer possible. In our actual model
this is the case exactly when a transition to the set A occurs.
Hence, instead of entering set A we make a transition to
the initial state. We do not need the states in A and we can
eliminate them from the state space. A natural interpretation
of our resulting Markov chain is a restart after the failure of
the overall experiment is sure. For simulation practice and
the optimal importance sampling estimator this does not
play any role since the simulation is stopped after reaching
the absorbing set F or the initial state. In particular, under
optimal importance sampling the overall experiment does
not fail and no return to the initial state or the formerly
used set A, respectively, is possible. The probability of at
least k successes in a sequence of n independent Bernoulli
trials is exactly the probability of reaching the absorbing
set F before returning to the initial state (0, 0) in our just
described Markov chain.

Altogether we have a homogeneous discrete-time
Markov chain (Xn) with state space

S := {(i, m) ∈ {0, . . . , k} × {0, . . . , n} : i ≤ m} \ A,

initial distribution π(0), where

π
(0)
(0,0) = 1, ∀s ∈ S \ {(0, 0)} : π(0)

s = 0

transition probability matrix P with transition probabilities

p(i,m),(i,m) = 1, if (i, m) ∈ F,

p(i,m),(i+1,m+1) = p, if (i, m) ∈ S \ F,

p(i,m),(i,m+1) = 1 − p, if (i, m) ∈ S \ F ∧ (i, m + 1) ∈ S,

p(i,m),(0,0) = 1 − p, if (i, m) ∈ S \ F ∧ (i, m + 1) /∈ S.

The probability of interest is P {TF < T(0,0)}. Hence, the
probability of interest is exactly of the form investigated
by Kuruganti and Strickland (1997). That implies that
the optimal change of measure leads to a homogeneous
discrete-time Markov chain. To retransfom our Markov
chain into Bernoulli trials we first note that the second
component of a Markov chain state represents the number
of already performed Bernoulli trials, which is the time
in the Bernoulli trials. As the state after some Bernoulli
trials we have the number of successes. In particular, it is
not necessary to consider the complete history. With the
formerly used notations we get the state and time dependent
success probabilities

p(m)(i) = p∗
(i,m−1)(i+1,m).

Since the results of Kuruganti and Strickland (1997) imply
that the transition probability matrix is uniquely defined, it
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follows that our system of equations derived in 6 is uniquely
solvable. Thus we have shown

Theorem 1 The optimal importance sampling es-
timator for the probability of at least k successes in n

independent Bernoulli trials is given by Bernoulli trials
with state dependent and time dependent success proba-
bilities, where a state represents the number of already
observed successes and time is represented by the number
of already performed trials.

It is remarkable that the form of such a time dependent
model has been derived by means of homogeneous, time
independent Markov chains. For that it was essential that the
investigated experiment was of finite horizon. This rendered
possible to represent the time in the investigated model as
state components in a Markov chain thereby keeping the
state space finite. The second essential point was to abstract
from the real meaning of the initial state in the Bernoulli
model to apply the results from (Kuruganti and Strickland
1997).

Finally, we will show that the probability of exactly k

successes in n independent Bernoulli trials can be perfectly
estimated by simulating Bernoulli trials with state and time
dependent success probabilities, too. Only a slight mod-
ification in our above Markov chain is necessary. Let
F = {(k, n)} be the set of states, whose probabilities are to
be estimated. Here, this is only one single state. Similarly
as before we get a homogeneous discrete-time Markov chain
with state space

S = {(i, m) ∈ {0, . . . , k} × {0, . . . , n} : i ≤ m} \ A,

initial distribution π(0), where

π
(0)
(0,0) = 1, ∀s ∈ S \ {(0, 0)} : π(0)

s = 0

and transition probability matrix P with transition proba-
bilities

p(i,m),(i,m) = 1, if (i, m) ∈ F,

p(i,m),(i+1,m+1) = p, if (i, m) ∈ S \ F ∧ i < k,

p(i,m),(0,0) = p, if (i, m) ∈ S \ F ∧ i = k,

p(i,m),(i,m+1) = 1 − p, if (i, m) ∈ S \ F ∧ (i, m + 1) ∈ S,

p(i,m),(0,0) = 1 − p, if (i, m) ∈ S \ F ∧ (i, m + 1) /∈ S.

As before a model for Bernoulli trials with state and time
dependent success probabilities can be constructed. Thus
we have shown

Theorem 2 The optimal importance sampling es-
timator for the probability of exactly k successes in n in-
dependent Bernoulli trials is given by Bernoulli trials with
state dependent and time dependent success probabilities,
where a state represents the number of already observed
successes and time is represented by the number of already
performed trials.
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7 CONCLUSIONS

We have described how importance sampling works for
Markov chains, thereby focusing on the discrete-time case.
The form of optimal importance sampling for general fi-
nite horizon and steady state probabilities has been given,
from which can be seen that in general optimal importance
sampling for Markov chains is not possible with alternative
Markov chains as importance sampling distributions. To
illustrate that a Markov chain can be useful as importance
sampling distribution we have exploited a result on absorb-
ing Markov chains and applied it to sequences of Bernoulli
trials resulting in optimal importance sampling estimators
given by Markov chains. Several conclusions can be drawn.
When simulating general Markovian models, more general
(than Markovian) importance sampling distributions should
be considered. The specific forms of the optimal estimator
suggest that approaches seem to be promising that do not
only optimize from one to another simulation run, but also
within each single run. Thus, combinations of so-called
dynamic and adaptive methods should be useful. For suffi-
ciently simple Markovian models alternative Markov chains
as importance sampling distributions are also useful, but
even in such cases a generalization of the original model
is necessary.

Finally, we want to draw attention to stiff Markov
chains, where not only the probability of one single state or
a specific set of target states is of interest, but the complete
distribution. In such a case, we are concerned with the
problem, that importance sampling "needs" some target
states to be applicable, whereas often in stiff Markov chains
all or at least very many state probabilities are of interest.
On the other hand it seems to be reasonable that importance
sampling may be useful to circumvent the difficulty in
simulating (and numerically solving) stiff Markov chains.
It should be a goal of future research to apply importance
sampling also to such types of problems.

REFERENCES

Bucklew, J. A. 1990. Large deviation techniques in decision,
simulation, and estimation. New York: Wiley & Sons.

Glynn, P. W., and D. L. Iglehart. 1989. Importance sampling
for stochastic simulations. Management Science 35
(11): 1367–1392.

Goyal, A., Shahabuddin, P., Heidelberger, P., Nicola, V. F.
and P. W. Glynn. 1992. A unified framework for sim-
ulating Markovian models of highly reliable systems.
IEEE Transactions on Computers, 41:36–51.

Hammersley, J. M. and D. C. Handscomb. 1964. Monte
Carlo Methods. London: Methuen.

Halton, J. H. 1970. A retrospective and prospective survey
of the Monte Carlo method. SIAM Review, 12:1–63.
508
Heidelberger, P. 1995. Fast simulation of rare events in
queueing and reliability models. ACM Transactions on
Modeling and Computer Simulation 5(1): 43–85.

Juneja, S. 2004. Efficient Rare Event Simulation Using
Importance Sampling: An Introduction. Computational
Mathematics Modelling and Algorithms, pp. 357–396,
New Delhi: Narosha Publishers.

Juneja, S., and P. Shahabuddin. 2000. A splitting based
importance sampling algorithm for the fast simulation
of Markov chains with small transition probabilities.
IEEE Transactions on Reliability, 50(3):235–245.

Juneja, S., and P. Shahabuddin, P. 2001. Efficient simulation
of Markov chains with small transition probabilities.
Management Science, 47(4): 547–562.

Kuruganti, I. and S. Strickland. 1997. Optimal importance
sampling for Markovian systems with applications to
tandem queues. Mathematics and Computers in Simu-
lation 44:61–79.

Sandmann, W. 2004. Relative Error and Asymptotic Opti-
mality in Estimating Rare Event Probabilities by Impor-
tance Sampling. Proceedings of the 2004 OR Society
Simulation Workshop in Cooperation with the ACM
SIGSIM, Birmingham, UK, March 23–24 2004, 49–57:
The Operational Research Society.

Sandmann, W. 2005. On optimal importance sampling
for discrete-time Markov chains. In Proceedings of
the 2nd International Conference on the Quantitative
Evaluation of Systems (QEST) 2005. Torino, Italy:
IEEE Computer Society Press.

AUTHOR BIOGRAPHY

WERNER SANDMANN studied Computer Science and
Mathematics at the University of Bonn, Germany, where
he received his diploma degree (Dipl.–Inform., 1998) and
his Ph.D. (Dr. rer. nat., 2004). Since 2004 he is an as-
sistant professor of Computer Science in the department
of Information Systems and Applied Computer Science at
the University of Bamberg, Germany. His e-mail address
is <werner.sandmann@wiai.uni-bamberg.de>,
and his web page is <www.uni-bamberg.de/wiai/
ktr/html/mitarbeiter/sandmann/>.


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print



