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ABSTRACT

We consider the problem of identifying the optimal point of
an objective in simulation experiments where the objective
is measured with error. The best stochastic approxima-
tion algorithms exhibit a convergence rate of n−1/6 which
is somewhat different from the n−1/2 rate more usually
encountered in statistical estimation. We describe some
simple simulation experimental designs that emphasize the
statistical aspects of the process. When the objective can be
represented by a Taylor series near the optimum, we show
that the best rate of convergence of the mean square error is
when the variance and bias components balance each other.
More specifically, when the objective can be approximated
by a quadratic with a cubic bias, then the fastest decline in
the mean square error achievable is n−2/3. Some elmentary
theory as well as numerical examples will be presented.

1 INTRODUCTION

We consider the problem of identifying the optimal point of
a non-linear objective function in simulation experiments
where the objective is measured with error. This prob-
lem may arise in a number of settings, in particular when
determining the best set up for a stochastic system, such
as that described in a previous paper (Cheng and Currie
2004). In order to demonstrate the principles and investigate
some of the theoretical issues, we consider only a simple
one-dimensional example,

y(x) = η(x) + ε,

where η(x) is the underlying objective function, and ε ∼
N(0, σ 2) is a random error term, which we assume to
be normally distributed. We assume that it is possible to
expand the objective function as a Taylor series near the
optimum and so consider the convergence of the mean square
error when the objective can be estimated as a quadratic
with a higher-powered bias. We further assume that in the
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range under consideration, the objective function is strongly
convex (has only one minimum), i.e. dη/dx < 0 for x < x∗
and dη/dx > 0 for x > x∗.

Two experimental designs are considered, both involv-
ing making observations either side of the optimum, at a
distance that decreases with the order of the observation.
The difference between the two designs is in the estimate
of the optimal point. In the first design, we consider the
distribution of points around a known optimum. Although
unrealistic, this serves to demonstrate some of the statistical
properties of these designs. In the second design, we use
our current maximum likelihood estimate of the optimum
to set the design point for the next iteration. The bias
and variance both depend on the number of observations
made, with the dependence being determined by the rate
at which the design points converge on the optimum. We
show that, under the optimal settings for the first design,
the contribution of the bias and the variance to the mean
square error are balanced.

Although concerned with experimental design, the
methodology we propose for choosing design points has
close links with the technique of stochastic approximation.
Robbins and Monro (1951) were the first to give a formal
mathematical treatment of stochastic approximation, apply-
ing it to finding the solution to the equation y(θ) = M ,
where the output of the process, y(θ), is a noisy function of
its inputs. Kiefer and Wolfowitz (1952) adapted their work,
and used the techniques of stochastic approximation to find
the maximum or minimum of a noisy function. Stochastic
approximation is a sequential method in which the point
chosen for the next experiment is dependent on the point of
the previous experiment and the most recent observations.
For example, the approach used by Kiefer and Wolfowitz is
based on making a finite-difference approximation at each
iteration, such that the estimate of the minimum after the
nth iteration is

x∗
n = x∗

n−1 − αn

f (x∗
n−1 + βn) − f (x∗

n−1 − βn)

2βn

,
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and x∗
n is also the nth design point.

The convergence rate of the methodology will depend
on the properties of the objective function f (x). We assume
that f (x) is continuous and show that the convergence rate
of the algorithm depends on the order of its differentiability.
In most situations of interest, the cubic term will dominate
the Taylor series near the optimum, and the function can
be regarded as being thrice differentiable. In this case we
find that the design points should converge on the optimum
at a rate of n−1/6, with the mean square error decaying
as n−2/3. This convergence rate matches the optimum
convergence rate for stochastic approximation algorithms
for a function which is thrice differentiable, given by Dupač
(1957). Convergence rates for stochastic approximation are
also discussed in Wasan’s book (Wasan 1969).

We apply the two designs to a numerical example of a
noisy quadratic function with a cubic perturbation in Sec-
tion 3, demonstrating the performance of the algorithms
at a number of different settings for the convergence of
the design points. The numerical results from the second,
more practical, design suggest that this has a similar conver-
gence rate to the first design. The theoretical convergence
properties of the first design are also considered in Section
2.

2 METHODOLOGY

We consider perturbations to the function y = x2 of the
form axq , where q is an integer, i.e. the function

η(x) = x2 + axq.

This has a local minimum at x = 0. We assume that
observations are subject to an additive noise term,
ε ∼ N(0, σ 2), such that an observation

y(x) = x2 + axq + ε. (1)

In the methodology that we propose, the ith design

point will be at hi = (−1)iK
ip

. We show initially that this is
equivalent to having n/2 observations at each of h and −h.

The mean value of the positive observations is

2

n

n/2∑
i=1

1

(2i)p
, (2)

and the mean value of the negative observations is

−2

n

n/2∑
i=1

1

(2i − 1)p
. (3)
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To evaluate these sums, we make use of the Maclaurin-
Cauchy formula,

lim
n→∞

{
n∑

i=1

1

ip
−

∫ n

1

1

xp
dx

}
→ L,

where 0 ≤ L ≤ 1. The sum in (2) can therefore be rewritten
as

n/2∑
i=1

1

(2i)p
= 1

2p

n/2∑
i=1

1

ip
,

and so, in the limit that n → ∞, the mean value of the
positive observations,

2

n

n/2∑
i=1

1

(2i)p
→ 2

n2p
L + 2

n2p(p − 1)

(
1 − (n/2)1−p

)

= 1

n2p−1

(
L − 1

(1 − p)

)
+ n−p

(1 − p)
.

As n is large, this behaves as if all of the positive observations
were taken at

h = n−p

1 − p
≡ Kn−p

for p < 1.
Similarly, rewriting the sum in (3),

2

n

n/2∑
i=1

1

(2i − 1)p
=

n∑
i=1

1

ip
−

n/2∑
j=1

1

(2j)p
,

and in the limit of n → ∞, we can write the mean value
of the negative observations as

2

n

n/2∑
i=1

−1

(2i − 1)p
→ −2

n

[
L + 1

1 − p

(
n1−p − 1

)]

−
[

1

n2p−1

(
L − 1

1 − p

)

+ n−p

(1 − p)

]

= −n−p

1 − p
+ (2p − 1)

n2p−1

(
L − 1

1 − p

)
.

As with the positive observations, this shows that, in the
limit that n → ∞, this methodology is equivalent to all of
the negative observations being taken at

−h = − 1

1 − p
n−p ≡ −Kn−p.
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From the above analysis, we can therefore assume that
we make n/2 observations at each of x = −h and h,
such that the total number of observations made is n. The
observed sample means at −h and h will be

y1 = h2 − ahq + ε1

y2 = h2 + ahq + ε2,

where the εi will depend on n.
We consider fitting the function

g(x) = θ1f1(x) + θ2f2(x) (4)

to η(x), where the fi(x) are orthonormal basis functions.
These must be orthogonal, i.e.

∑n
j=1 fk(xj )fl(xj ) = 0 and

be normalized, i.e.
∑n

j=1 fk(xj )fk(xj ) = 1 for k = 1, 2
and l = 1, 2. We assume that the basis functions are of the
form

f1(x) = bx + c,

f2(x) = dx2,

where b, c, d are constants to be determined. Different
results are obtained for q odd and q even. The case where
q is assumed to be odd is more interesting, and we consider
that first.

Substituting the fi into the orthonormality conditions,
we find that b = 1

h
√

n
, c = 0 and d = 1

h2√n
, so that

f1(x) = x

h
√

n

f2(x) = x2

h2
√

n
. (5)

We can therefore rewrite g(x) as

g(x) = θ̂1
x

h
√

n
+ θ̂2

x2

h2
√

n
.

Using the orthonormal properties of the basis functions, and
referring back to (4), the least squares estimates of the θi

are

θ̂i =
n∑

j=1

fi(xj )yj ,

and for the set of n observations made,

θ̂1 =
√

n

2

(
2ahq + ε2 − ε1

)
θ̂2 =

√
n

2

(
2h2 + ε1 + ε2

)
.
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We wish to determine x∗, the value of x at the minimum.
Differentiating,

dg

dx
= θ̂1

h
√

n
+ 2θ̂2x

h2
√

n
,

and is zero at x∗, where

x∗ = −hθ̂1

2θ̂2

= −ahq−1

2

(
1 + ε2 − ε1

2ahq

) (
1 + ε1 + ε2

2h2

)−1

.

If ε1+ε3−2ε2
2h2 is neglible as n → ∞, the third term in the

equation will tend to one. Assuming that εi = Op(n−1/2)

and remembering that h = O(n−p), this means that

−1

2
+ 2p < 0,

and so p < 1
4 . Assuming this is true, then in the limit of

large n,

x∗ = −ahq−1

2

(
1 + ε2 − ε1

2ahq

)
.

We define the optimal experimental design as one that
minimizes the mean square error (MSE), which is defined
to be

MSE = bias2 + variance.

The bias in x∗ is B = −ahq−1

2 and the variance is V = σ 2

nh2 .

If h = Kn−p then V = σ 2n2p−1

K2 and

B = − 1
2aKq−1n−p(q−1). The MSE can then be written as

MSE = a2K2(q−1)n−2p(q−1)

4
+ 3σ 2n2p−1

K2

= αn−2p(q−1) + βn2p−1,

where

α = a2K2(q−1)

4

β = σ 2

K2 ,

which are both independent of n and p.
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We wish to find the p that minimizes the MSE and
so differentiate with respect to p,

dMSE

dp
= α

(
−2(q − 1)n−2p(q−1) ln(n)

)
+β

(
2n2p−1 ln(n)

)
= 2 ln(n)

(
βn2p−1 − α(q − 1)n−2p(q−1)

)
.

At the minimum, this is equal to zero and p∗, the optimal
value of p, obeys

βn2p∗−1 = α(q − 1)n−2p∗(q−1)

β

α(q − 1)
= n1−2p∗q . (6)

Taking logs of both sides,

p∗ = 1

2q

⎛
⎝1 −

ln
(

β
α(q−1)

)
ln(n)

⎞
⎠ . (7)

Therefore, as n → ∞, p∗ → 1/2q.
With p equal to 1/2q, the variance declines as V ∼

n
− q−1

q and the square of the bias decays at the same rate,

B2 ∼ n
− q−1

q . The bias has a negative dependence on p

and the variance a positive dependence. Therefore, with
p = 1/2q, we have a balance between the two.

With q even, the bias term in the mean square error is
zero and the design is chosen simply to reduce the variance.
The variance decreases with decreasing p, and so the best
design with an even powered deviation from the quadratic
(q even) is to choose points further away from the optimum,
as n increases.

If we are sufficiently close to the minimum, the dominant
term in the Taylor series would be the cubic term, i.e.
q = 3, suggesting an optimal value for p of 1/6, and a

mean squared error that decays as n− 2
3 . This reproduces the

results obtained for the optimal convergence of stochastic
approximation algorithms, as put forward by Dupač (1957).

3 NUMERICAL EXAMPLES

In this section, we describe the implementation of two
designs for finding the position of the minimum of (1),
where q = 3, a = 0.2 and σ = 0.1. The simple algorithm
discussed in Section 2 is considered initially, where we
observe the objective function at points around its known
minimum value of zero. Table 3 gives estimates of the
optimum after 1000 iterations, averaged over 10 runs of the
algorithm. This shows that convergence to the optimum
is fastest with p = 1/6. However, the results are very
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Table 1: Estimates of the
Minimum Value with Dif-
ferent Values of the Power
p for the First Method. Es-
timates are the Average of
10 Runs, each of 1000 It-
erations

p Estimate of xmin

1/8 0.0223
1/6 0.0112
1/4 0.0245

variable, and could not be used as proof that the theory
holds in practice.

If we now instead assume that the minimum is unknown
to us before the start of the experiment, which is a more
realistic case, we can choose design points xi such that

xi = x∗
i + (−1)i

ip
,

where x∗
i is our best estimate of the minimum after i iterations

of the algorithm. The estimate of the minimum is obtained
by fitting a quadratic model to the data using maximum
likelihood methods. The position of the minimum can then
be easily deduced from the parameter values of the quadratic
function.

Finding new estimates of the maximum likelihood pa-
rameters at each step does not involve a complete refit as
we can take advantage of the updating routines described in
Kendall and Stewart (1991) and Bartlett (1951). We write
the design matrix after n iterations as

Xn =

⎛
⎜⎜⎜⎝

1 x1 x2
1

1 x2 x2
2

...
...

1 xn x2
n

⎞
⎟⎟⎟⎠ ,

and write the parameters of the quadratic model that we are
fitting as θ̂n = (θ̂1n θ̂2n)

′, such that the our estimate of the
objective funcion after i iterations is

ŷi = θ̂1i + θ̂2ixi + θ̂3ix
2
i .

Using this notation, the maximum likelihood estimate of θ

after n iterations is

θ̂n = (X′
nXn)−1Xn

′yn = An
−1Xn

′yn.

We now make an additional observation yn+1 at x. Writing
x = (1 x x2)′, we can see that the new design matrix can

be written as

(
Xn
x′

)
. We can therefore make use of the
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Table 2: Estimates of the
Minimum Value with Dif-
ferent Values of the Power
p for the Second Method.
Estimates are the Average
of 10 Runs, each of 1000
Iterations

p Estimate of xmin

1/8 0.0115
1/6 0.0808
1/4 0.217

matrix theorem stated in Bartlett (1951) to update A−1
n ,

A−1
n+1 = A−1

n − A−1
n xx′A−1

n

(1 + x′A−1
n x)

,

and use this to update the maximum likelihood estimate of
θ given the additional observation, such that

θ̂n+1 = θ̂n + A−1
n x

(yn+1 − x′θ̂n)

(1 + x′A−1
n x)

.

Updating A−1
n and θ̂n involves no new matrix inversion,

therefore using these formulae it is only necessary to perform
one matrix inversion at the start of the procedure, speeding
up the process considerably.

Table 3 gives estimates of the optimum after 1000
iterations, averaged over 10 runs of the algorithm. These
suggest that the best estimate of the optimum after 1000
runs is obtained for p = 1/8.

These experiments suggest that the theoretical results
which we have proved for the initial design, where the
minimum is assumed to be known, hold in practice, but that
p = 1/6 will not necessarily be the optimal convergence
rate for the second, more practical design. Further work is
needed to investigate what the optimal convergence rate is
for the second design.

4 CONCLUSION

We have demonstrated the use of a simple experimental
design for finding the optimum of a stochastic objective
function. The theoretical treatment of the problem showed
that, for the optimal experimental design, the contributions
of the variance and the bias to the mean square error are
balanced. Under the optimal design we have shown that the
optimal convergence rate for the design points is p = 1/6
for a quadratic objective function perturbed by a cubic term,
and that at this rate the mean square error declines as n−2/3,
matching the convergence results recorded by Dupač (1952)
for stochastic approximation algorithms. The numerical
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results agree with this result, but suggest that the optimal
convergence rate for the second design may not be p = 1/6.
Investigating the different convergence properties of the two
designs will be the focus of further work on this problem.

This experimental design has many similarities with
stochastic approximation. The treatment of the problem
in this paper will hopefully highlight some of the interest-
ing statistical properties of the problem of maximising a
stochastic objective function.

REFERENCES

Bartlett, M.S. 1951. An inverse matrix adjustment arising
in discriminant analysis. The Annals of Mathematical
Statistics 22 (1): 107–111.

Cheng, R.C.H. and C.S.M. Currie. 2004. Optimization
by simulation metamodelling methods. In Proceedings
of the 2004 Winter Simulation Conference, ed. R.G.
Ingalls, M.D. Rossetti, J.S. Smith, and B.A. Peters, 485–
490. Piscataway, New Jersey: Institute of Electrical
and Electronics Engineers.
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