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ABSTRACT 

This paper proposes an application that consists in 
allocating services by managing waiting queues. The 
chosen example is the Jaspar bank described by Banks 
et al. The specification is based on the task type, 
named dynamic assignment, of the methodology 
CommonKADS. Then, the task type is transformed 
into an DEVS atomic model based on rules defined to 
facilitate this passage for the experts which are not 
familiarized with formal specifications. The 
operational model is verified and validated by 
simulation. 

1 INTRODUCTION 

The activity of knowledge modeling leads to build a 
model, usually named expertise model. This model is es-
sentially based on the task/method paradigm, where task 
identifies a problem to be solved, and method is the way to 
solve the problem. Various knowledge engineering ap-
proaches provide rules and/or tools to assist knowledge en-
gineers in developing knowledge based systems. They use 
to give methodological recommendations allowing the ex-
pertise model to be built by decomposing tasks into sub-
tasks until obtaining atomic tasks (top down design). How-
ever, more recent approaches advocate to build too the 
expertise model by reusing expertise components, particu-
larly in form of generic tasks like those provided in the 
CommonKADS methodology libraries (Breuker and Van 
de Velde, 1994; Schreiber et al., 1999). This allows exper-
tise models to be partially reused in new applications. The 
main guide for reuse in CommonKADS methodology con-
sists in identifying a suitable task template by recognizing 
the task type in the provided hierarchy.  

In this paper, we use a CommonKADS dynamic as-
signment template that plans resources (services) allocation 
by managing waiting queues. The behavior of service pro-
viding system is fundamentally event-driven and describ-
ing such a behavior needs the use of event notion and time 
constraints (Brazile and Swigger, 1988 ; Hovestadt et al., 
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2003; Motta et al, 2002). Describing the inferences behav-
ior in a task method does not consist in defining a sequen-
tial ordering of inferences, but must indicate what infer-
ences have to be run when external events happen (Garrido 
de Ceita et al., 2003). Transforming this semi-formal 
CommonKADS description into a DEVS (Zeigler et al., 
1976) model makes available for the knowledge engineers, 
an executable generic task model, adequate for dynamic 
assignment providing objective.  

We present our approach of event-driven behavior speci-
fication on the example of services providing. We define 
the dynamic assignment template and we transform it into 
an DEVS atomic model. The validation by simulation of 
the behavior model is finally discussed in the last section 
of this paper.  

2 THE EXPERTISE MODEL OF THE JASPAR 
BANK EXAMPLE 

2.1 The CommonKADS template for queuing system 

 
 
 
 
 
 
 

Figure 1. A generic queuing system 
 

We propose a dynamic assignment template which 
specifies the full assignment/de-assignment process of us-
ers to/from servers. The inference structure that we deduce 
to the dynamic assignment template is shown in Figure 2. 
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Figure 2. Inference structure for dynamic assignment 
method   

 
Four inferences are involved for handling the user: 
Select: this function selects a candidate user. 
Assign: in the assign function, a resource is selected that 
satisfies constraints connected to, according to the cur-
rent situation. 
Expect: the expect function identifies the next user-
resource to be de-assigned among the users currently in 
handling according to the time constraints. 
De-assign: at the end of handling the user, the function 
releases the seized resource and produces the output 
handled user. 
 

TASK dynamic assignment
ROLES: 

INPUT:
users:;
resources:;

OUTPUT:
handled-user:;

START-END-TIME: [date1, date2]
SPECIFICATION:;

END TASK dynamic assignment
TASK-METHOD: dynamic-assignment-event-driven-behavior

REALIZES: dynamic assignment 
DECOMPOSITION

INFERENCES: select, assign, de-assign, expect
TRANSFER-FUNCTION: receive;
ROLES:

INTERMEDIATE: 
user:;
resource:;
user-resource:;
users-resources:;

REACTIVE-BEHAVIOR:;
(receive(user), users:=users ADD user);
(,select(users candidate-user)
([ressource!=0], assign(candidate-user+users+users-resources);
(,users-resources:= users-resources ADD <candidate-user,resource>);
(/release, experct(users-resources user-resource);
(release, de-assign(user-resource);
(,users-resources:= users-resources DELETE user-resource);
([users!=0], select(users candidate-user);
(, assign(candidate-user+users+users-resources);
(/release, experct(users-resources user-resource);

END TASK-METHOD dynamic-assignment-event-driven-behavior

Figure 3. Dynamic assignment template 
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The Figure 3 illustrates the task specification and 
method of the dynamic assignment template. Input roles 
are users and resources. The role user-handled represents 
the output role of the dynamic assignment task type. The 
method is active during a time interval which starts by 
date1 and finishes by date2. The receive transfer function 
is invoked at each time a new user comes in or submits a 
request.  

 
Table 1. Features of the dynamic assignment template  

Goal:   handle or serve a set of users 
Typical:  handling passengers at airports, assignment run   
example  ways to planes, etc. 
Terminology 
users:   a set of users may be handled  
resources:  a set of resources to which a user can be assigned to  
release:  internal event indicates that a resource is released 
Input:   users arrivals 
Output:   departures of users served or handled 
 
An important difference between the dynamic assign-

ment task type and the other task types defined by Com-
monKADS methodology is that the dynamic assignment 
task type shows a reactive behavior through state changes: 
resource idle or busy, user waiting or served. The dynamic 
assignment task type can be used to analyze and/or to de-
sign system. In fact an execution of this task type allows us 
to obtain results about frequencies of resources utilizations, 
waiting times in queues, quality of facilities, etc. Those re-
sults can be used as input data to redesign systems for 
minimizing the development cost. 

2.2 The example details 

Let us suppose the example of Jaspar bank specified in 
(Banks et al., 2000). The different steps to build the exper-
tise model of the example using CommonKADS are as fol-
lows: 

1. First, we construct the domain knowledge associ-
ated to this problem, and 

2. Secondly, we execute the dynamic assignment 
template after transforming it into an operational 
description; to compute the average waiting time 
for the driver customers which is estimated by the 
expert manager to 4.3 minutes for only the drive-
in customers between 11:00 A.M. and 1:00 P.M 
(rush period). 

The teller serves the driver customers that allows trans-
actions. When there is no car (driver) waiting, the teller 
had other duties, mainly serving walk-in customers. The 
transactions between the teller and the walk-in customer 
are mostly commercial in nature taking a considerably 
longer time than the time required to serve a driver cus-
tomer. The walk-in customers are only present during a 
rush period. 

From this description, concepts defined for the Jaspar 
bank example are modeled. The teller concept and the 
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queue concept that is composite of the car concept. Car and 
walk-in are sub concepts of the customer concept. The cars 
arrive with a Poisson distribution function (λ=0.75). The 
arrivals distribution function is not expressed for walk-in 
customers, we suppose that they are present at any moment 
during a rush period, so we do not model the walk-in cus-
tomer queue. 

These concepts lead us to construct a knowledge base 
and the relation between the car queue and walk-in cus-
tomers with the teller are expressed with the rule type: 
serving constraints. 
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Figure 4. A graphical representation for the Jaspar bank 
concepts 
 

As we can see in the example, the service time is ex-
pressed by a probability function and not with a time inter-
val defined by min-max value. Thanks to the input data 
modeling phase which provides us to obtain probability 
distributions of data for the service time (Normal(1.1, 
0.04), Exponential(3) for drive-in and walk-in customer 
service time respectively). 

The rule type serving constraints is described as follows:  
 

Rule-Type serving constraints 

Description: “rule permits to link or to serve a cus-

tomer according to the current situation”; 

Argument-1: customer; 

Argument-2: teller; 

Connection-Symbol: Serves; 

End rule type serving constraints; 
 

From this rule type, we can derive the different assump-
tions of the bank example: 
 
 car waiting Serves queue // driver customers 

 No car waiting Serves walk-in customer 
 

 
 
 
 
 
 
 
 
 
 
Figure 5. How the select inference is related to domain 
knowledge via the knowledge roles 

inference

serving
constraints

inference domain
mapping

users

customers

select user

customer

constraints

concept conceptrule type

dynamic output roledynamic input role

static role

inference domain
mapping

inference domain
mapping

inference

serving
constraints

inference domain
mapping

users

customers

select user

customer

constraints

concept conceptrule type

dynamic output roledynamic input role

static role

inference domain
mapping

inference domain
mapping
458
3 TRANSLATING THE EXPERTISE MODEL 
INTO DEVS MODEL 

The specification of the CommonKADS templates is de-
fined with a semi formal language; it does not make possi-
ble simulations (Torres and Frydman, 2001). In fact, the 
specification of templates is based on analytical methods. 
Using the extended inference definition to specify tasks al-
lows to obtain models which can be simulated.  

To operationalize the expertise models of Common-
KADS, we adopt the DEVS formalism such as an opera-
tionalization language. Briefly, we recall this formalism: 

 
DEVS = <S, X, Y, λ, δint, δext, ∂> 

where: 
- S is the set of states (not necessarily finished), 
- X is the set of input events, 
- Y is the set of output events, 
- λ: S  Y is the output function, 
- δint: S  S is the internal transition function, 
- δext: Q x X  S is the external transition function, 
- ∂: S  R+ is the live time function. ∂ (s) is the lifetime 

during which the model will remain in the state s, if no ex-
ternal event occurs. The total state set of the system speci-
fied in DEVS is Q = {(s, e)/ s∈S, 0≤e≤∂(s)}. The classic 
function of transition is composed of two functions: 

- the internal function δint(s), representing autonomous 
evolutions. δint(s) is activated when the elapsed time e 
in the given state will be equal to its length of life  ∂(s), 
- the external function δext(s, e, x), owed to the external 
events. If x ∈X arrives, and the system is in state s for 
an elapsed time e, it transits immediately to δext(s, e, x). 
Simultaneously, the elapsed time e is reset to zero. 
To transform the expertise model of CommonKADS 

into an DEVS model, we propose the following rules: 
-  X: represents the set of external events, which can be 

noted using the transfer functions of Common-
KADS. 

-  Y: a set of output roles of the task. 
-  S: (∏input roles Ri x ∏intermediate roles Rj x σ) / Ri and 

Rj are roles of the task, σ is a real positive variable. 
The σ variable depends on the time constraint de-
fined to the inference triggered, and must be up-
dated when external events occur by subtracting the 
elapsed time e in the current state. 

-  δext(S, e, x): the sequence of inferences specified in 
the task that are triggered with the external event x 
and compute the new values of roles. 

-  λ(S): the last inference of the task that computes the 
output role. 

-  δint(S): the sequence of inferences that are triggered 
with an internal event and computes the new values 
of roles. Internal events represent output events of 
some inferences. 

-  ∂(S) =σ. If resources belong to input roles of the task 
to model, σ is n-tuples σ1,…,σi,…,σn where i is the 
resource identifier and 
∂(S)=Minimum(σ1,…,σi,...,σn). 
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Based on these rules, the expertise model specified 
above (figures 2, 3 and 4) is transformed into an DEVS 
atomic model, as follows: 
 

 
M =<X, Y, S, λ, δint, δext, ∂> 

X ={customeri / customeri ∈ users i =1..n} 
Y ={customeri / customeri =handled-user ∈ handled-users i 

=1..n } 
S =(usersxresourcesxuserxresourcexusers-resourcesxuser-

resourcexσ)/ σ =σ1,…, σi,…, σn are real variables} 
External transition function δext(S, e, receive(user)): 

users =users ADD user; 
select(users candidate-user); 
if (resources!=0) then assign(candidate-user + re-
sources + users-resources resource); 
users-resources =users-resources ADD <user, resource>; 
expect(users-resources user-resource); 

Output function λ(S): 
λ(S)=de-assign(user-resource handled-user); 

Internal transition function δint(S): 
users-resources = users-resources DELETE user-

resource; 
if (users!=0) then select(users candidate-user); 
assign(user + resources + users-resources resource); 
users-resources = users-resources ADD <user, re-

source>; 
expect(users-resources user-resource); 

The time advance function ∂(S): 
∂(S) =Minimum(σ) 
 

4 SIMULATION OF THE JASPAR BANK 
EXAMPLE 

To simulate the DEVS model corresponding to a formal 
description for the dynamic assignment template, the ex-
pert must define the initial number of users (customers) 
waiting or present in the system. By default it is supposed 
zero. The initial state of the different resources at the be-
ginning of the simulation can be deduced from the domain 
knowledge.  

Whenever a user arrives, the assign inference verifies if 
there is an available resource, if it is the case the customer 
is affected to the available resource, otherwise it is put in 
queue. An internal event will be expected at a date com-
puted by the DEVS simulator (t+∂(S)) to simulate the cli-
ent departure occupied the resource. This event leads to 
serve a new customer waiting if the resource is yet avail-
able. 

To verify the outputs model of the Jaspar bank example, 
let us suppose that we have three arrivals at dates 1, 1.5 
and 3 t.u and their service times are 1, 4 and 4 t.u. When 
simulation runs, we obtain the following behavior. 

To validate the model, we use a validation test (Banks et 
al., 2000) which consists of comparing the real system 
output, the average waiting time (delay) in car queue esti-
mated by the expert to 4.3 minutes, to the model output Y. 
Formally, a statistical test of the null hypothesis is con-
ducted: 

 
H0: Average delay in car queue E(Y) = 4.3 minutes 
H1: Average delay in car queue E(Y) ≠ 4.3 minutes 
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Figure 6. Trace of simulation of the example 

 
We compute the sample mean Y (average waiting time) 

and the sample standard deviation S over the n replications:  
 

Table 2. Results of six replications of the simulation model 

 
where Yi  i=1..6 are as shown in table 2. For a level of sig-
nificance α = 0.05 and a sample size n = 6, for validating 
the bank model, we get the critical value of t from the Chi-
Square table. Here tα/2,n-1= t0.025,5=2.571 for a two-sided 
test. 
 
 

 
We compute now the test statistic t0: 

 
 
where μ0 is the specified value of the null hypothesis H0 (μ0 
= 4.3 minutes). 

The model is valid to predict the outputs of the system if 
H0 is accepted, that means the value computed from the 
test static t0 is smaller than the value got from the Chi-
square table tα/2,n-1.We have |t0| < t0.025,5 (0.13 < 2.571), we 
accept the H0 null hypothesis and we conclude that the 
model is correct to predict the average customers bank de-
lay. Thus, we conclude that the DEVS atomic model is 

Replication n Arrivals number per hour Average waiting time 
(minutes) Y 
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6 
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valid to model a complex (waiting) system and to predict 
the system outputs. 

5 CONCLUSION 

From the CommonKADS specification of the Jaspar bank 
example, we obtained a computerized model based on 
rules of transformation proposed into DEVS models, to al-
low simulations. The operational model of the dynamic as-
signment template is made with DEVS formalism and the 
statistical test is used to validate the model. Before this 
test, data of the system must be approximated to define dis-
tribution functions to obtain more realistic simulations. In 
reality, these functions are not easy to define and errors 
may occur when data are collected or parameters of distri-
bution functions are estimated, so the results of the system 
are less realistic and less accurate (Robinson, 1999). We 
note also that the knowledge on time is expressed by ex-
perts with a min and a max values and not with a precise 
value. 

Our current works consist on using Min-Max DEVS 
(Giambiasi and Gosh, 2001) formalism to obtain more re-
alistic results of the real system when the classical ap-
proaches can not be applied. 
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