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ABSTRACT 

In the paper author show a new approach to the line bal-
ancing of security inspection lines. In this approach there is 
a particular combination of simulation of metaheuristics 
and modeling and simulation. Simulation is used directly 
during the metaheuristics process for evaluating the objec-
tive function. In this manner it is possible to obtain more 
effective objective function This process can be quite fast 
in many situations where simulation calculation can be 
done very effectively.  In particular simulation is used for 
the computation of the objective function. In particular in 
the paper a tabu search based algorithm is considered. The 
application concern a problem of line balancing. Same al-
gorithm is applied to a conventional objective function in 
order to show benefits of the new approach. 

1.0 INTRODUCTION 

Studies concerning security operations are becoming the 
more and more important especially in the transportation 
sector  because of  the necessity to guarantee a fast and 
simple traveling system while reaching the highest security 
level. One of must time consuming operation are inspec-
tions. Inspections times can have an high variability de-
pending on the product being checked. Considering, for in-
stance a baggage check procedure. The inspection 
procedure will depend on the type of the baggage and also 
on the things inside the baggage. In order to face such a 
kind of problems algorithms used for the line balancing 
problems can be used. They can include aspects such as the 
paralleling or the mixed products situation that are very 
similar to the baggage security screening problems. The 
efficiency of the baggage security screening, for instance,  
is a focal point in the security process in airports (Leone 
and Liu 2005).  In order to face balancing complex prob-
lems metaheuristics such simulated annealing, tabu search, 
genetic algorithm, etc. have been used. It is possible to in-
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crease the performance of such algorithm by using simula-
tion to generate results to be used in the objective function. 
This results can be more reliable than conventional per-
formance indicators achieved without simulation. 

In the paper a simple tabu search model for calculating 
the value of the objective function for a problem of balanc-
ing in a security inspection lines (such as, for instance, a 
checked baggage security screening service) is developed. 
Methods show could be applied with others methods and 
others security problems.  

The Security Inspections Operations (SIO) are very 
similar as problem to the Assembly line balancing (ALB) 
problem. In ALB as in SIO is the problem of assigning 
various tasks to work-centers (or stations), while optimiz-
ing one or more objective functions without violating any 
restrictions imposed on the line. LI  speed of the security 
line and length of each uniform station dictates time avail-
able per operator, known as cycle time. A first classifica-
tion of LI problem can be deducted  from  (Sholl and 
Becker 2003). It can be made according to two main dif-
ferent objectives. Therefore, we have: 

type 1 problems: to minimize the amount of workers 
required on the security line, given a specific cycle time. 

type 2 problems: to minimize the cycle time, given a 
specified number of workers. 

type G problems: a more general type is obtained by 
minimizing the sum of idle times subject to varying inspec-
tions rates and numbers of stations. 

The simple LI problem has been modified into more 
complex problems  GLI (generalized line inspection) as 
can be argued from (Becker and Sholl 2003). In the follow-
ing there is a description of the most important modeling 
options. 

1.1 Paralleling 

Paralleling is the possibility of allowing multiple workers 
to be assigned to a single station (i.e. to double the work 
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capability of a station or to have two identical parallel sta-
tions). The use of paralleling gives more flexibility to the 
problem and allows the existence of tasks with an execu-
tion time greater than cycle time, but it increases the prob-
lem complexity. 

1.2 Mixed model/Multi model 

If several product types are inspected on the same line then 
the problem is called mixed- or multi-model. The differ-
ence between these two problems is in the security se-
quence that is used. A mixed model line uses IS random 
sequence, i.e. the units of different models are sequenced 
in an arbitrarily way, while in multi-model line the units of 
the same type are checked in batches with intermediate 
setup operations. 

1.3 Incompletion handling 

Incomplete tasks can generate two main situation. In the 
first case, if some tasks are not completed, no blocking oc-
curs. The completion is realized off the line with a certain 
cost. Otherwise cycle time is extended, and a blocking of 
the previous and following stations occurs. 

1.4 Stochastic task times 

It is usual to consider the task times as stochastic variables. 
The most frequently assumed distribution is normal distri-
bution. It is also usual to give the standard deviation σ  as 
a fraction of the mean time, that is: 
 

μσ ⋅= cv  
 
where μ  is the mean task time and cv  is the coefficient 
of variation. It often assumes a value between 1.0  and 

35.0 . 
A lot of algorithms and methods for finding solution 

for the IL problem can be found in literature. Most of them 
find solutions for the GLI problem, but very few has faced 
the mixed-model problem with parallel stations and sto-
chastic task times. For example: the heuristic method pro-
posed by (Askin and Zhou 1997) that solves mixed-model 
problems with paralleling; the two-stage heuristic method 
proposed by (Vilarinho and Simaria 2002) that also in-
cludes zoning constraints; the algorithms proposed by 
McMullen, who solves the problem with a heuristic 
method (McMullen and Frazier 1997), with a simulated 
annealing approach (McMullen and Frazier 1998) and with 
ant techniques (McMullen and Tarasewich 2003). 

In this paper we propose a new approach: using the 
growing computational potential of personal computers, it 
is possible to quickly run a simulation of the layout that 
represents the current solution at each step of the algorithm 
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procedure. Results of simulation can be utilized to calcu-
late the objective function that includes “dynamic” pa-
rameters, i.e. calculated using simulation outputs (through-
put, actual utilization, flow time, etc.), rather than “static” 
parameters (design cost, smoothness index, etc.). We im-
plemented this procedure with a tabu-search algorithm and 
used it to solve IL mixed-model problems with parallel sta-
tions and stochastic task times. Then, we compare the solu-
tions obtained by the algorithm that uses the "dynamic" ob-
jective function with the one that uses the static objective 
function. 

2. NOTATION 

ct  cycle time; 
n  number of tasks of the problem; 
m  number of models; 
p  number of stations; 

ijt  time required by model j  in station i ; 

jα  demand proportion for model j ; 

∑
=

• =
p

i
ijj tt

1
 total time required by model j ; 

∑
=

••• =
m

j
jj tt

1
α  total weighed inspection time; 

iw  number of workers in station i ; 

∑
=

• =
p

i
iww

1
 total number of workers in the line; 

in  number of tasks assigned to station i ; 

iii nwe ⋅=  number of equipments in station i ; 

∑
=

• =
p

i
iee

1
 total number of equipment in the line; 

LC  labor cost; 
EC  equipment cost; 

•• ⋅+⋅= eECwLCDC  the design cost; 
 ts  tabu size; 
 ls  leash size; 
TP  actual throughput; 
Util  actual line utilization; 

'
wLB  theorist lower bound for workers; 

wLB  next integer to '
wLB ; 

LB  lower bound for design cost; 

pMV  model variability; 

sUtil  line utilization; 
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sOF  static objective function; 

dOF  dynamic objective function. 
 

3 METHODOLOGY 

In this section we describe the algorithm, the simulation 
model and the outputs used to calculate the objective func-
tion. 

3.1 The Algorithm 

The proposed methodology is based on a classical 
tabu-search technique (Chiang 1998), applied to assembly 
line balancing problem. It uses a set of rules that allows an 
intelligent exploration of the solution space of a certain 
problem. Glover] presented it in its current form in 1989 
(Glover 1989,a) (Glover 1989,b). It always starts from a 
random or a heuristic solution, and then it modifies that so-
lution, doing little changes. The solution is modified in two 
ways: by the shift of a task from a station to another one, or 
by the change of two tasks of different stations. The main 
idea is to prevent, at each step of the algorithm, to search 
solution in pathways yet explored, in order to avoid to be 
trapped in local optima. This is possible by implementing a 
flexible memory in the algorithm that remembers the pre-
vious solution changes. 

We implemented it with an integer matrix (called tabu-
matrix) that has a number of lines equal to the number of 
problem tasks and a number of columns equal to the num-
ber of stations in the previous solution. The value of an 
element indicates if a task can be put in a certain station. 
For example, if the matrix has a value equal to 0 in the 
element corresponding to task k and station i, then task k 
can shift form the current station to the station i; on the 
contrary if the value is 12, then it will be able to shift in 
station i only after the 12th iteration. When a shift occurs, 
the corresponding value into the tabu-matrix (that was 0) 
become equal to the number of the current iteration plus a 
constant (called tabu-size). This means that this task can 
not return to the previous station before that a number of 
iterations equal to the tabu-size have been performed. It is 
very important to assume the appropriated value for the 
tabu-size. In effect, if it is too small, then the algorithm 
will be often trapped in local optima, while if it is too 
large, then it is possible to lose a lot of good solutions. This 
problem is partially solved using the aspiration criterion. 
This means that, if a random shift gives the best solution 
found until that iteration, then the solution is accepted even 
if the shift is forbidden. Moreover the tabu-size must be 
chosen in relation to the problem size. In fact, a good tabu-
size for a 15 tasks problem is too small for a 75 tasks prob-
lem. 
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We remember that this algorithm solves GIL mixed-
model problem with stochastic tasks times and parallel sta-
tions. In particular, the use of paralleling generates some 
problem because the  space of solutions becomes very 
large and the algorithm loses its effectiveness; in effect the 
number of iterations is not unlimited, and the algorithm 
needs a criterion that prevents to search for too many itera-
tions towards worst solutions. Therefore we implemented 
another new criterion that we called the "leash" criterion. 
Suppose that the algorithm is at iteration i. If the algorithm, 
from iteration i to iteration i+ls, with ls positive integer, 
finds solutions that do not improve the objective function, 
then it comes back to the current solution of iteration i. We 
called ls the leash-size. In this way we can join random 
search to objective function without binding the algorithm. 

3.2 The Simulation Model 

In order to calculate a dynamic objective function, a dis-
crete event simulation model has been implemented. This 
model follows the process based approach, i.e. it is consti-
tuted by a set of process that represent the life cycle of the 
system entities. This type of approach is easy to implement 
with object-oriented program language, so we used the 
Java package javaSimulation (Helsgaun 2004). The model 
allows simulating an inspection line with no buffer be-
tween two different stations. Task times are considered 
stochastic, with cv=0.3. The line allows inspections vari-
ous kinds of models (mixed model line). If a delay occurs 
in a station the inspection is not completed out of the line, 
but the precedent and the following stations wait until the 
completion of the tasks. 

3.3 The Outputs and the Objective Function 

The outputs of a single simulation are the throughput (TP), 
i.e. the mean time between two consecutive completed in-
spections, and the actual utilization (Util), i.e. the ratio be-
tween the time in wich an operator is busy and the total 
available working time. At each iteration the current solu-
tion is simulated and the mean value of TP and Util is cal-
culated. The objective function OFd is a weighted mean of 
the design cost and these two outputs. Let  

ct
tLBw

••='  the non integer lower bound for the number 

of workers and 

wLB  the next integer to '
wLB . 

Then   
nECLBLCLB w ⋅+⋅=  

 
is a lower bound for the design cost.  
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The objective function to be maximized is: 

Utilc
TP
ctc

DC
LBcOFd ⋅+⋅+⋅= 321

 )1(  
 
where 1c , 2c , 3c  are three constants and 

1321 =++ ccc . In literature there are many examples 
that show how genetic algorithms often find better solu-
tions for the IL problem.  

4. DESIGN OF EXPERIMENT AND RESULTS 

We tested the proposed algorithm on some classical prob-
lems taken from Sholl data set (see table 1.) (Sholl 1993). 
However, with respect to the original problem that was de-
veloped for a single model line with no paralleling, the 
data set has been modified in order to consider 4 different 
models and paralleling allowed. 
 In table 1 it is possible to see the values of tabu-size 
and leash-size for each problem.  

 
Table 1 – Problem Data Set 

Problem Name n ct ts ls Number 
of models 

Roszieg 25 18 4 50 4 
Roszieg 25 14 4 50 4 
Roszieg 25 11 4 50 4 
Roszieg 25 9 4 50 4 
Gunther 35 54 5 70 4 
Gunther 35 41 5 70 4 
Gunther 35 36 5 70 4 
Gunther 35 30 5 70 4 
Wee-mag 75 34 12 150 4 
Wee-mag 75 28 12 150 4 
Wee-mag 75 24 12 150 4 
Wee-mag 75 21 12 150 4 

 
We used the same algorithm with a “static” objective func-
tion in order to show that we get better solution using the 
“dynamic” objective function. It is important to underline 
that the algorithm uses in both cases similar CPU time-
resources. The dynamic objective function is defined by 

)1( . TP  and Util  of the current solution are calculated 
via simulation. Each current solution is simulated once for 
120 hours of inspection time. Data collection starts only 
when steady state is achieved. As in the algorithm, also in 
the simulation the task times are considered stochastic 
variables normally distributed with 3.0=cv . The static 
objective function we used is the following: 

 
s

p

w
s Utilc
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c
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s  is the static line utilization. 

Model variability was introduced by Bukchin and is a 
measure of the smoothness in the line for each model, 
weighted by the model demand proportion. The formula-
tion here proposed has been modified for solution with 
paralleling. In (Bukchin 1998) it is showed that the model 
variability is one of the indexes with the highest correlation 
with simulated TP  in mixed model inspection line. In the 
same way static line utilization has the highest correlation 
with Util , so we used these two parameters in substitution 
of the simulation outputs. The results are showed in tables 
2, 3 and 4.  

Table 2 and 3 show respectively the final outputs of 
solutions found by algorithm that uses the static and the 
dynamic objective functions. The values are the mean of 
100 iterations. 

Table 4 shows the comparison between the values of 
the objective function simulated for both solutions, static 
and dynamic. 

It should be evident that for each problem considered 
the algorithm with dynamic objective functions provides a 
better solution than the other one (remember that the func-
tion has to be maximized)  

 
Table 2. Tabu-search with static objective function. 

Problem 
Name 

Iter. 
 

Design 
Cost MV Static 

Util TP Util 

Roszieg 2500 477 10,29 0,689 16,64 0,534
Roszieg 2500 573 12,16 0,655 13,97 0,525
Roszieg 2500 699 15,25 0,655 10,89 0,541
Roszieg 2500 810 18,29 0,669 9,13 0,534
Gunther 3500 627 10,62 0,658 48,83 0,526
Gunther 3500 879 12,08 0,706 35,86 0,512
Gunther 3500 846 17,05 0,666 34,61 0,497
Gunther 3500 1.107 17,20 0,654 26,02 0,474
Wee-mag 7500 2.718 46,66 0,614 38,80 0,604
Wee-mag 7500 3.417 45,70 0,626 30,21 0,564
Wee-mag 7500 3.648 59,68 0,619 27,19 0,589
Wee-mag 7500 4.017 66,99 0,632 24,80 0,611
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Table 3. Tabu-search with dynamic objective function 
Problem 
Name Iter. Design 

Cost MV Static 
Util TP Util 

Roszieg 250 447 9,86 0,648 16,76 0,496
Roszieg 250 567 12,81 0,613 12,75 0,496
Roszieg 250 738 14,67 0,603 9,69 0,494
Roszieg 250 888 18,78 0,604 8,05 0,579
Gunther 350 615 11,51 0,599 46,45 0,512
Gunther 350 870 13,63 0,609 32,87 0,471
Gunther 350 921 15,60 0,588 31,37 0,463
Gunther 350 1.065 16,44 0,639 27,16 0,531
Wee-mag 750 2.730 48,56 0,476 36,22 0,551
Wee-mag 750 3.423 46,29 0,497 26,72 0,491
Wee-mag 750 3.834 60,57 0,453 24,43 0,568
Wee-mag 750 4.137 67,33 0,641 21,33 0,532
 

Table 4. Comparison between solutions 
Problem 
Name 

Static 
O.F. 

Dynamic 
O.F. Difference 

Roszieg 0,724 0,726 0,002 
Roszieg 0,699 0,722 0,023 
Roszieg 0,716 0,726 0,010 
Roszieg 0,702 0,733 0,031 
Gunther 0,729 0,746 0,017 
Gunther 0,708 0,729 0,021 
Gunther 0,712 0,714 0,002 
Gunther 0,702 0,713 0,011 
Wee-mag 0,676 0,678 0,002 
Wee-mag 0,663 0,677 0,014 
Wee-mag 0,679 0,691 0,012 
Wee-mag 0,696 0,700 0,004 

 

CONCLUSIONS 

In this paper a simulation based approach for calculating 
objective functions in metaheuristics procedures has been 
proposed. The formulation of objective function can in this 
way include all those performance parameters that are ob-
tainable only as simulation outputs. This allows minimiz-
ing the difference between the target of the algorithm and 
the target that have to be reached in reality. 

The procedure has been used to solve a generalized in-
spection line balancing problem by the use of tabu-search 
algorithm, but is extendable to all those security problems 
that can be approached by a metaheuristic procedure. 

The experiment showed the effectiveness of the pro-
posed technique. 
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