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ABSTRACT

Simulation models of real world systems may have a com-
plex dynamic behavior that has an impact on measures of
interest but its causes are hard to detect by statistic measures
commonly computed in a simulation run. Most simulators
are able to document the details of a simulation run in a
trace file. We propose a trace-based analysis and visual-
ization method that allows us to identify reasons for large
confidence intervals, high variances in lead times and cor-
relations among delays. The technique is implemented in
a stand alone tool for trace analysis that has been evalu-
ated for the ProC/B modeling and simulation framework.
We illustrate the visualization technique with the help of a
ProC/B model of a warehouse.

1 INTRODUCTION

Simulation applies to a broad class of models and comes
with relatively few constraints. In this paper, we consider
discrete event simulation for stochastic models. We follow
a process approach to simulation modeling. As in Law
and Kelton (2000), a process is a time-ordered sequence of
interrelated events that are separated by time intervals and
that describe the entire experience of an entity that flows
through a system. A system consists of resources that are
used by entities. Resources can be of complex nature. We
allow for resources that hide their internal complexity by
the concept of services that are used by entities and whose
internal description gives rise to a hierarchical description
based on the refinement of actions and the inclusion of
(internal) resources. We distinguish among different types of
entities and denote them as process chains. A process chain
describes the potential behavior of all entities of a certain
type, while a process describes the events of a particular
entity. Process interaction models capture many real world
scenarios in a natural manner. For example, an entity can
be a software process in a computer system, a message in a
communication system, a part in a manufacturing system.
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A typical goal of simulation modeling is to quantify
how much resources are used by entities and how much
the progress of an entity is delayed due to sharing of re-
sources and dependencies among entities. Those goals are
formulated as performance measures (or with slight varia-
tions as performability, dependability measures if resources
may fail). We consider stochastic models, so if a simulator
performs a simulation run, it usually computes estimates
of mean and variance of measures. Those measures highly
aggregate the detailed behavior of entities to more abstract
terms like mean utilization of a resource or mean waiting
time for entities at a resource.

This leads to the following situation: given that results
of a simulation run are not acceptable, then there is a need
to investigate the reasons for those results in more detail
in order to either identify deficits in the model and/or the
simulation software or gain more insight in the behavior
of the system under study. This happens in the verification
and validation phase of a simulation study as well as in the
experimental phase.

Current simulation packages provide a number of fea-
tures to support a modeler in this situation. Among others,
Arena (Kelton et al. 2002) and Automod (Banks 2000)
support a visual inspection of what happens in a simulation
run by advanced 3D animations in particular for simulat-
ing manufacturing systems. A visualization can animate
the procurement of products by 3D icons of parts that are
moved by animated transportation means among animated
3D objects of machines. The visual inspection allows a
modeler to observe a simulation run in terms of the mod-
eled system. Another possibility is to animate a model
description, e.g., by highlighting elements of the descrip-
tion that correspond to states and events of the simulator.
A modeler observes a simulation run in terms of the model
specification. This can be in a monitoring mode (either
on the fly or from a precomputed run) or in an interactive
mode where the modeler can select events to be performed
(typically by ignoring the stochastic timing specification of
a given model). A step further towards the simulator code
is to consider the state of the simulator after each event.
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This is called tracing if a simulation run is considered step
by step, interactive debugging if in addition to monitoring
the state, the modeler is able to make manually changes
to the state of the simulator. Finally, a simulator can write
states and events to a file, a batch trace, that can be used
for subsequent analysis be it an animation or a step by step
walk through of the simulator code.

All these approaches are valuable. However, we see the
following difficulties. Any sequential observation requires
the modeler to memorize what events lead to the current
state in order to grasp the reasons for the current situation. It
would be helpful if a visualization allows to track back how a
simulation run evolved to the current state. Simulation runs
tend to be lengthy such that it is crucial to select relevant time
intervals that are worthwhile to be considered in detail in
order to find the causes of a phenomenon. Finally, selection
of an appropriate level of detail is a challenge, it ranges
from a high-level 3D animation in terms of the modeled
system to the most detailed technical view of a debugger
that controls a stepwise execution of the simulator code.

We propose a visualization aid based on Message Se-
quence Charts (MSCs). MSCs (Recommendation 1996)
and the much similar Sequence Diagrams known from the
Unified Modeling Language (UML) also have a notion of
process which we denote by MSC process for clarity. MSCs
have been used for the visualization of the behavior of par-
allel programs, for instance in XPVM (Geist et al. 1996),
and for the specification of software in UML and SDL (SDL
Forum Society). MSCs are a partial order concept that is
suitable to visualize a trace as a total order concept, if the
simulation model follows a process interaction approach
(Kemper and Tepper 2005). Since an MSC represents a
trace completely, it naturally allows a navigation backwards
from the current state to track down events that contributed
to that state. If an operation like grouping of processes is
supported, MSCs also allow a modeler to adjust the level
of detail. The open issue is how to identify interesting, rel-
evant or suspicious parts of a trace that have an impact on
performance measures. This requires to consider the timing
information contained in a trace. The contribution of this
paper is to enhance MSCs with operations that visualize
quantitative information, e.g., entities that contribute to a
high variance for lead times of entities and service times
of resources. We propose 3 operations and describe 5 sce-
narios where those operations help to identify the causes of
unexpected, obscure, or undesired behavior of a simulation
model as documented in a trace. The paper is structured
as follows. In Section 2, we briefly comment on suitable
modeling formalisms, consider the ProC/B formalism as a
particular example and discuss which pieces of information
a trace should contain for its analysis. In Section 3, we
recall MSCs, interpret a trace as an MSC and discuss how
MSCs are used for trouble shooting simulation models in
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Section 4. After some notes on implementation issues in
Section 5, we conclude in Section 6.

2 MODELING FORMALISMS

In this paper, we follow a process approach to simulation
modeling. We consider formalisms for open systems, where
entities are created dynamically during a simulation run.
Entities may communicate via shared memory or by syn-
chronization over common actions. Entities acquire and
release resources. Resources provide services that an entity
can employ to perform an action. The notion of resource
and service can be refined in a hierarchical manner such
that using a service is like calling a function in a computer
program.

The ProC/B formalism by Bause et al. (2002) is an
example in this family of formalisms. It is a graphical
modeling language where entities are created dynamically
during a simulation run at source nodes, they perform a
sequence of actions described by a process chain, and they
terminate at sink nodes. A process chain describes the
possible behavior for a whole class of entities. It is a
description that allows for parameters, local variables, and
a control flow description build upon common operators
of programming languages, i.e., sequence, if-then-else with
a state-dependent or probabilistic choice, a fork and join
operator for internal parallelism, a loop operator and fur-
thermore. Communication between entities is possible via
shared variables and by synchronization operations. For
each action of a process chain, it is possible to assign a
service of a resource if the resource shall perform that ac-
tion. Counter and server are two basic predefined resources.
A counter is used to model space allocation and release,
it is used to model a passive resource, a state variable of
finite domain. A server is used to model time consumption,
to model an active resource like a queue with a queuing
discipline and particular speed. For complex actions, there
is the notion of a Functional Unit (FU) that is a generic
resource which offers services to an entity and which may
internally have a process chain description for its detailed
behavior. FUs encapsulate resources of their own and in-
ternal descriptions how a service is performed. This gives
rise to a hierarchical model description based on action
refinement (like function calls, but without recursion) and
resource inclusion. We illustrate the ProC/B formalism by
a small example model of a warehouse as given in Figure 1,
see (Bause et al. 2002) for details on ProC/B. Trucks load
and unload goods at a warehouse with a storage area of
finite capacity and a number of staff and fork lifts. The
ProC/B model of the warehouse is hierarchical and Figure 2
presents the part of FU Store_WH. FU Store_WH models
the warehouse as a resource with two services, loading
(Store_out) and unloading (Store_in) trucks that arrive. It
contains FUs ForkLift and Staff each of which provides get
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Figure 1: Sketch of a Warehouse

and put operations for the 2 fork lifts, resp. 2 persons it
contains. A loading (unloading) service is a sequence of
actions in Figure 2 which reads as follows: upon service
call, e.g., for Store_in, it allocates 1 person from FU Staff
at Req_Staff1. Afterwards, a probabilistic choice describes
that the upper branch is taken with probability 0.9, the
lower with probability 0.1. In the upper branch, the service
allocates 1 fork lift from FU ForkLift, and finally it puts x

units of goods into FU Storage, before it releases the fork
lift and staff and returns. Loading goods into the store takes
time but the put service at FU Storage is immediate; hence
that duration is modeled by the delay node that has been
inserted after the put operation and before the release of
resource. The lower branch models a manual treatment of
particular cases. The semantics of service Store_out is simi-
lar but describes loading goods from the store into the truck.
The amount of goods and the time delays are described by
random variables whose details on the selected distributions
we omit. Given some additional specification on the arrival
streams of trucks that request loading or unloading services,
we can run a simulation.

The warehouse is used as a running example to illustrate
various concepts. The ProC/B formalism serves as an
example for a hierarchical formalism that is based on process
interaction, resource usage and refinement of resources based
on a call-semantics. Given such a model specification, a
set of measures to observe and a starting state and seed, a
simulator generates a sequence of events. The states that
are reached and the actions that are performed at certain
points in time give samples for the particular measures that
the simulator shall evaluate. Frequent measures of interest
are related to performance and measured by lead times of
entities, the time they spend at resources for queuing or
being blocked, and utilization of a resource. The aim is
to identify bottlenecks, causes for high variances etc. In
addition to this, performability, dependability, availability
considers measures that distinguish whether a resource is
up and running or down and not performing any service. In
the warehouse example, there is interest in the utilizations
of fork lifts and staff and the degree of filling for the storage
capacity. Furthermore, trucks should not be delayed too
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much, so the total time used for loading or unloading
operations gives rise to a performance measure as well. In
discrete event simulation of stochastic models, measures
are typically evaluated as estimates of mean and variance
of random variables. From a conceptual point of view,
a simulator generates a set of samples {X1, . . . , Xn} for a
random variable X that corresponds to a measure of interest.
Those samples give rise to an empirical distribution F(X).
More precisely, let X be a continuous variable, let the sample
values be ordered and X(k) denote the kth smallest of those
values, so that X(k) ≤ X(k+1) for k = 1, ..., n − 1. Then
the empirical distribution is F(x) = 0 if x < X(1),

F(x) = k − 1

n − 1
+ x − X(k)

(n − 1)(X(k+1) − X(k))

if X(k) ≤ x ≤ X(k+1) for k = 1, 2, . . . , n−1, and F(x) = 1
if X(n) ≤ x. In case of a discrete variable, an empirical
mass function is simply based on the proportion of the Xk’s
that are equal to x. Usually, a simulator estimates the mean
value of X on-the-fly based on the sample mean X̄(n). In
addition, X̄(n) ± c

√
S2(n)/n gives the confidence interval

for the estimated mean of random variable X based on the
sample variance S2(n) and c being either c = z1−α/2 or
c = tn−1,1−α/2 taken from a normal or t distribution for
confidence level α, for more details see (Law and Kelton
2000) pp. 254ff and Chapter 6.2.4. We make use of F(X)

to highlight particular elements of {X1, . . . , Xn} in a trace,
while a simulator usually only provides X̄(n) and its con-
fidence interval. Simulator code can be annotated in many
ways to reveal information on states and events for the gen-
eration of a trace. We make the following assumptions on
the information that is present in a trace. Every entity has a
unique identifier i taken from a finite set I and a class or type
c of some finite set C, so that I can be partitioned according
to types C. We choose I such that the corresponding value
of c for an i ∈ I (denoted by c(i)) can be deduced from
the value of i. Every FU has a unique identifier f taken
from a finite set F . Each state variable is either associated
with a particular entity i or FU f or it is a global variable
that is associated by definition with an additional (artificial)
entity. An action a = (ai, ac, w, O, i, ts, cr) is a 7-tuple
where ai is a unique identifier, ac is the type or class of the
action, e.g., the name of a service that is called. w ∈ F ∪ I

and O ∈ 2F∪I describe which entities and FUs are involved
in a. a is a local action in entity or FU w if O = ∅. a

is an action between w and elements of O if O �= ∅. If
appropriate according to the type ac, w is understood as
initiator of an event, O as other entities or FUs that are
involved, e.g., for a service call, w indicates the calling
entity, O = {f } indicates the FU f whose service is called.
i ∈ I denotes which entity is the cause for a, i.e., in case of
nested service calls among FUs, i shows which entity initi-
ated that cascade of service calls. This piece of information
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Figure 2: Functional Unit Store_WH in ProC/B Notation
allows us to associate every action with the entity it belongs
to. ts ∈ R is a time stamp that describes at which point of
time an action takes place. cr ∈ N is an identifier that can
occur at most twice, it matches pairs of service calls and
returns. It will be used to track the duration of service used
by entity i at an FU f . Let a = (ai, ac, w, {f }, i, ts, cr)
be a service call of type ac of an FU w on behalf of entity i

at time ts, then a′ = (ai′, ac′, f, {w}, i, ts′, cr) with same
id cr describes the return of that call at time ts′. We define
dai(ac) = ts′ − ts as service time of ai. The service time
of actions of type ac is a random variable D(ac) with a set
of samples given by dai(ac) for all actions ai of type ac

in a trace. D(ac) has an empirical distribution F(d(ac)).
Similarly, we can consider the life-span l(i) of an entity
i ∈ I by the difference between time stamps of the first
action (of a particular type ac for creation of an entity)
and the last action (of a particular type ac for termination
of an entity) that relate to i. Again, a trace yields a set
of samples for entities of type c, such that we obtain an
empirical distribution F(l(c)) for the life-span of entities of
type c. Entities that do not terminate and service calls that
do not return are excluded from considerations of F(d(ac)),
respectively F(l(c)) and treated specially. We will make use
of the empirical distributions to identify extremal behavior,
i.e., entities with a long life-span and services with extreme
service times in Section 4. Before we discuss which visu-
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alization is helpful for which type of question, we briefly
recall the definition of MSCs.

3 MESSAGE SEQUENCE CHARTS

To track down particularities of the dynamic behavior of a
complex model, we believe it is natural that one wants to see
how entities proceed and how they interact with each other
and available resources. MSCs set the focus on processes
and their interactions.

Definition 1 An MSC M is defined as a tuple M =
(V , <, P, M, K, T , N, m), where V is a finite set of events,
<⊆ V × V is an acyclic relation, P is a set of (MSC)
processes, M is a set of message names, L : V → P

is a mapping that associates each event with a process,
K : V → s, r, b, l is a mapping that describes the kind of
each event as send, receive, broadcast or local, N : V → M

maps every event to a name, m = msr ∪ mb is a relation
called matching with msr ⊆ V × V that pairs send and
receive events. Each send is paired with exactly one receive
and vice versa. Events v1 and v2 can be paired, only if
N(v1) = N(v2). Mb ⊆ 2V relates up to |P | broadcasting
events.

An MSC defines a labeled directed acyclic graph. Fig-
ure 3 visualizes part of a trace for the example of Figure 1
as an MSC. Each MSC process p is shown as a vertical
line where events v ∈ V with L(v) = p are ordered from
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top to bottom according to the ordering relation < defined
for events. Send, receive and broadcast events result in
horizontal lines that connect all MSC processes that are
involved. Sender and receivers are not distinguished for
a broadcasting event. Figure 3 shows that MSC process
PC_Deliver interacts with process FU_Store_in, which it-
self interacts with process FU_Staff and FU_Storage. Note
that events can be arranged in the MSC proportional to
a global clock based on the information of a time stamp
per event. However, in the figures given in this paper, we
switched to a representation that assumes a (virtual) grid
with horizontal lines and has a least one event per line.
This retains the order of events as given in the trace but
distances are not proportional with respect to time stamps.
More concise orderings are possible, we refer to (Kemper
and Tepper 2005). The mapping from the ProC/B model
that considers entities and services of FUs to MSCs needs
further clarification and is considered next.

Figure 3: MSC with One Entity Highlighted

3.1 Mapping ProC/B Traces to MSCs

A trace of a ProC/B model contains states and actions of
entities, their interactions and service calls to FUs. Among
the many possible mappings, we selected one where each
entity i and each service s of a functional unit gives an
individual MSC process p(i), resp. p(s). If an entity calls
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a service of a functional unit, this results in a send event
from process p(i) to p(s). If that service call terminates and
returns, there is a send event from p(s) to p(i). Synchro-
nization among entities (or services) results in broadcasting
events, where the last entity that reaches a synchroniza-
tion operator and releases other entities becomes the sender
while waiting entities become the receivers of that broad-
casting event. Actions other than those used for service
calls and synchronizing entities become local events in an
MSC process. The mapping results in a finite number of
MSC processes for any finite trace. We expect the number
of entities to be high and the lifetime of a single entity to
be rather short compared to the length of the overall trace.
Hence we seek to reduce the number of MSC processes
that are visualized by joining (merging) processes. As a
first step, we join all entities of same type into one MSC
process, i.e., we obtain one MSC process per process chain.
In order to be able to distinguish among entities, we attach
the identifiers (a numerical integer value) of each involved
entity to its corresponding events. Identifiers are optionally
visualized in the MSC with their corresponding events.

For the warehouse example, Figure 3 contains one
MSC process PC_Deliver that contains events of all entities
of the process chain for unloading in the ProC/B model;
same for PC_Pick_up and loading which is not visible
and more to the right in the canvas shown in Figure 3.
Each service of an FU results in a MSC process, which
yields 8 processes, one Store_in and one Store_out process
for FU Store_WH, one get and one put process per FU
FU_Staff, FU_ForkLift, FU_Storage. In Figure 3, Store_out
and processes of FU_ForkLift reside more to the right and
are not visible, get and put services of FU_Staff have been
merged for clarity, same for FU_Storage. The merging of
MSC processes to retain a reasonably clear visualization is
frequently used for non-trivial cases.

3.2 Visualizing Operations for MSCs

Traces tend to provide a lot of information and very detailed
information. Since there is no intelligent way to automati-
cally identify the most appropriate level of aggregation for
a human to understand the dynamic behavior, a tool must
provide a number of operations to dynamically aggregate or
refine the visualized amount of data shown from the trace.
In Kemper and Tepper (2005), we discussed the following
set of operations: zooming and scrolling, reduction of data
by projections, reduction of representation by merging pro-
cesses, highlighting and coloring, horizontal permutations,
switching between total and partial order. Merging MSC
processes, e.g., for all entities of a process chain, is a funda-
mental operation that we frequently use to adjust the number
of visualized MSC processes. All those operations neither
take any timing information into account nor the pairing of
MSC events for service call and return. In the following,
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we describe three additional visualization operations that
are particularly designed to track down what happens in
a trace for the considered modeling formalism and with
respect to time.

3.3 Highlighting Individual Entities or Process Chains

For the given mapping of ProC/B models to MSCs, the
information of which actions belong to an entity i gets
distributed over FUs and their services. By coloring all
actions a = (ai, ac, w, O, i, ts, cr) with a particular value
for entity i, we can inspect what actions belong to i over
the set of FUs and the lifeline of the MSC process p(i). For
a tool support, this implies that sets I of entities and C of
process chains of the ProC/B model are made available to a
user for selection of elements i ∈ I , or c ∈ C. Furthermore,
the natural generalization of this operation to subsets of I is
helpful to visualize sets of entities with interesting properties.

3.4 Highlighting Extremal Behavior and Unfinished
Activities

We use the empirical distributions of service times F(d(ac))

of type ac and life-spans F(l(c)) of entities of type c

to identify extremal behavior, i.e., let α1, α2 ∈]0, 1[ with
α1 ≤ α2 denote thresholds such that F(l(c)) < α1 gives the
fraction of entities with short life-span, α1 ≤ F(l(c)) ≤ α2
give entities with a medium life-span and α2 ≤ F(l(c))

indicate entities with a long life-span. For visualizing these
three classes of entities, we can use different colors, e.g.,
green, black and red. We can do the same for services. This
coloring scheme allows us by visual inspection to identify
a number of suspects that cause mean values of life-span or
service delays being high (or low) and correlations among
them, e.g., long service times at one FU correlate with long
service times at another. Service calls that do not return and
entities that do not terminate before the simulation run ends
obtain a different color. Figure 4 shows an MSC where
processes are highlighted in red, black and green according
to their life-spans.

3.5 Visualizing Congestion and Bottlenecks

By pairing actions for service calls with their returns, we
can identify and count unfinished service calls at a FU
f at any point of time and visualize its number x, for
example by increasing the line thickness of the lifeline
of f , respectively its service s proportional to x. This
illustrates usage of FUs and congestion. We found two
variants of this concept useful in practice. If an entity i

calls a service s at f , this increments the value of x at
p(s). However, if i calls another service in a nested manner
while residing at f , we can either retain the value of x at f

(variant A) or decrement x (variant B). We use variant A to
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Figure 4: Busy FUs and Extreme Lifespans

illustrate the amount of unfinished work per FU over time
(if we join all MSC processes of services that belong to FU
f ). This view is accurate to see which resources are busy.
It reflects that unfinished service calls are likely to make
a difference to state variables of f . If one considers the
service calls of i as a tree structure, then variant B focuses
on the leaves of that tree. This focuses on the most recent
and most deeply nested service calls and indicates which
actions are currently performed. So, variant B indicates,
where work is currently performed. Note that there are cases
where internal parallelism of entity i is not appropriately
visualized by variant B. For example, if i performs a fork
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operation at f , such that it is simultaneously active at f

and calls another service at f ′, the visualization of variant
B locates i being active either at f or f ′ but not at both.
Within their limitations, variants A and B reveal which FUs
are busy over time, which entities are involved and at which
point in time this happens. Figure 4 shows an MSC where
congestion is visualized according to variant A; obviously
FU_Store_in is busy.

For a particular FU f let, bj be the j -th period of
time where f is busy, i.e., x > 0 for at least one service s

of f following variant A and b′
j following variant B. The

corresponding set of samples {b1, . . . , bn} (similar for b′
j )

yields an empirical distribution again with mean b̄(n) and
variance. Note that identification of most busy resources is
the aim of traditional bottleneck analysis. In the literature,
different ways for identification of bottlenecks are proposed.
In Law and Kelton (2000), bottlenecks are identified either
by measuring the waiting time in front of a resource or the
percentage of time a resource is busy (

∑n
i=1 bj /T for a total

time of T in our case). Roser et al. (2001) propose b̄(n)

to measure bottlenecks, i.e., resources with highest average
periods of being busy give bottlenecks. In both cases,
highlighting those parts of the empirical distribution for bj

in an MSC that make
∑n

i=1 bj /T or b̄(n) = ∑n
i=1 bj /n

high in value gives guidance to a modeler why that FU is
so busy. It is straightforward to make both variants A and
B support the visualization of bottlenecks.

These operations are intended to support human per-
ception and understanding of the dynamic behavior of a
process oriented system that documents itself as a trace. In
the following we discuss how to make good use of these
operations.

4 TROUBLE SHOOTING BY TRACE
VISUALIZATION

In this section, we discuss how traces and their MSC visu-
alization can be used to understand more on what happens
in a simulation run. The main benefit of the MSC visual-
ization is that it allows to identify particular phases in a run
where relevant phenomena occur and for those phases to
give information on a very detailed level of state variables
and actions. The challenge for a visualization is to guide a
user to identify crucial situations in a simulation run. For
a given simulation run, we propose to check a number of
suspects.

4.1 Suspect 1: Non-terminating Activities

Service calls to FUs and entities that have not terminated
can do so for different reasons: a) the non-termination may
be intended by the modeler, b) termination is possible at
a point of time beyond the end of the simulation run, and
c) termination is not possible due to a permanent blocking
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or deadlocking situation that is not(!) intended by the
modeler. The last case is the one that needs to be checked.
Highlighting all non-terminated service calls and entities
by a particular color helps us to identify those activities in
the MSC. Clearly, a non-terminated activity has a duration
from its beginning to the time at the end of the trace. Let d

denote this duration. The larger the value of d is compared
to the maximum value observed in the empirical distribution
over values of same kind (life-span of entities or durations
of service calls), the more likely it is, that the activity
faces a deadlock or starvation. The MSC visualization has
the option to use particular and different colors to make
those activities getting more attention. We can track each
involved entity and FU and check state variable information
to make sure that no permanent blocking situation is present.
We consult the model description to compare requirements
for those actions that would yield termination and track if
those are fulfilled or can be fulfilled. The trace in Figure 5
visualizes non-terminating activities and congestion at FUs
following variant B. We observe immediately that service
calls to FU_Staff increase in numbers, while service calls to
FU_ForkLift and FU_Storage remain at a level of 2 till the
end. We track entities i and i′ from the calling events by
highlighting all actions of i and i′, we recognize that both are
of the type that fill the buffer. By checking state variables
at FU_Storage, we learn that the model reaches a partial
deadlock because 2 entities that deliver goods get blocked
due to a full storage area. The congestion at FU_Staff
indicates that no entities that pick up goods can access
the storage area because all staff at FU_Staff is allocated
by the 2 blocked entities. It is straightforward to identify
that situation in the MSC and to track its causes. There
are several ways to modify the model to avoid deadlock
situations: a) resource reservation or simultaneous allocation
of resources, b) giving up fork lifts and staff if blocking
occurs at FU_Storage, c) a scheduler reorders access to the
store such that no blocking occurs, among others. We focus
on the last variant since for a real system, trucks would
sign up and identify their task when entering the parking
lot of the facility. A controlling person would arrange for
an order that works or would refuse access otherwise.

4.2 Suspect 2: Extremely Slow Entities

At this point, let a simulation run produce estimates of
performance figures that are not satisfying. In particular,
let lead times of entities be too high or too low on average,
values show a variance that is considered too high, or
utilization of resources be too high or too low. So, a
modeler be interested in understanding what makes the
observed figures being as they are. Given that a simulation
model can incur variances in the delay of entities only by a)
blocking effects, b) queuing delays at shared resources, and
c) high variances of stochastic delays that allow for extreme
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Figure 5: Deadlock Detection
values of random numbers, we discuss how to track down
those cases with MSCs.

If the estimated mean life-span l(c) of entities of type
c is high in value or does have a large confidence interval
this is often caused by the extreme cases that occur in the
empirical distribution F(l(c)). In an MSC, we can highlight
all actions a = (..., i, ...) that correspond to an entity i

where l(c, i) is greater than a threshold x, or alternatively if
α ≤ F(l(c) = x). However, if i uses services with nested
services calls to other FUs, it is helpful if we can easily
identify those service calls that are served slowly. Served
slowly can be understood as a service delay with a high value
(absolute numbers) or as a service delay that is relatively
long compared to other service calls of same kind that are
present in the trace. We believe the latter is more likely to
incur a high variance. Let i make use of a service ai of type
ac provided by a FU f . Since the empirical distribution
F(d(ac)) is known for f , we can quantify whether the delay
d(ai) is fast or slow on the minimum and maximum range
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given by F(d(ac)). Coloring ai according to being fast or
slow wrt F(d(ac)) helps identifying the main contributors
to the life-span of i if it is in the FUs that are used by i. In
addition, we can visualize the number of unfinished service
calls at each FU at each point of time (following variant A
or B) to illustrate where that entity i relies on congested
resources.

4.3 Suspect 3: Extremely Fast Entities

As for the slow entities, extremely fast entities contribute to a
high variance and large confidence intervals for the estimated
mean life-span l(c). Clearly, fast usually is positive, e.g.,
in production systems, however, extremely fast may be due
to errors in a model specification. So for both reasons,
a high variance and functional deficiencies, fast entities
require attention as well. We make use of the same MSC
visualization techniques as for the extremely slow entities
(but with obvious adaptations).



Kemper and Tepper
4.4 Suspect 4: Heavily Utilized Resources and Blocking

Identification of bottlenecks is classic issue in simulation
based performance analysis. A bottleneck is a resource
that is insufficiently dimensioned to cope with its workload.
Bottleneck analysis aims at determining the location of the
constraining resource(s). They are throttling the throughput
and cause delays of entities that use them. Or in other words,
there are few occasions where it is idle. Resources are FUs,
counters and servers which are all mapped to individual MSC
processes and their service call and return actions give rise to
the notion of service delays and a visualization of congestion
as discussed in Section 2. We visualize congestion at
resources by the number of unfinished service calls over
time for the lifeline of each FU/counter/server. Both variants,
A and B, are useful; while A gives an impression how open
service calls build up per FU, variant B identifies where
processing takes place in a particular situation. Note that
the latter is only true for sequential entities or services.
If a service at FU f contains parallel activities a and a’
individually calls a service of another FU f ′, variant B does
not visualize activity a that is still processed at f .

We can make use of variant A (and variant B in case of
sequential entities) for bottleneck analysis. As mentioned in
Section 2, existing techniques for bottleneck identification
consider the busy periods of resources (FUs, server and
counter in our case). By highlighting busy periods bj or b′

j

that are located in the corresponding empirical distribution
F(b) with F(bj ) > 1 −α for some chosen α ∈ [0, 1] helps
to pinpoint which periods make a particular f so high in
value of b̄(n) or

∑n
j=1 bj /T to make f a bottleneck. In

addition, each FU can be checked for the type of workload
over time, e.g., if the work load is bursty, i.e., if few service
calls occur that last extremely long (by visualization of
extremely long service calls of F(d(ac)) or do services
occur in batches of rather short calls (by visualization of
the number of unfinished service calls).

In addition to bottlenecks, blocking may slow down en-
tities as well. If an entity, its process chain, is the bottleneck
due to synchronization, it can be identified as the one with
little blocking at synchronization points. Hence there must
be direct interaction among entities, and it is interesting
whether at a particular action (namely the synchronization)
always the same type of entities have to wait or not. In
the MSC visualization, actions of a particular type can be
highlighted and checked for which entities (resp. its process
chain) where waiting for that action according the the time
stamp of the preceding action. Coloring waiting phases
towards a synchronization in red guides a user. Similar, a
counter can be a bottleneck due to a limited value range and
blocking at one bound of that range. This can be identified
by a mean value close to that bound or again by highlighting
waiting times for entities that access the counter.
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4.5 Suspect 5: Transient Behavior, Identification of
Startup-phase

For simulation experiments that are conducted to investigate
in the long-term behavior of a model, the influence of
the initial state is unwanted and typically removed from
statistical evaluations by neglecting any measurements in
an initial warmup or startup phase. For a modeler, the
challenge is to identify the end of the startup phase. Several
heuristics exists in the literature and in tools to support or
automize this decision. Nevertheless, once a simulation run
has been performed, it might be interesting to judge it for
transient behavior. Our MSC visualization supports this
in the following way. We observed that service times at
FUs and life-spans of processes are likely to be extreme in
an initial warmup phase (with respect to the corresponding
empirical distribution) while in the rest of a trace, service
times and life-spans have values from the whole range of
values observed in the empirical distribution if the model
shows a stationary behavior. If the trace is too short for a
stationary behavior or the model fails to show a stationary
behavior in general, it is likely that values of service times
and life-spans follow a rather monotonous sequence, i.e.,
the value range of the empirical distribution is followed
from one side to the other which results in a coloring of
the MSC trace with 3 distinguishable phases, e.g. from
green to red via black (or vice versa). We do not claim,
that the MSC coloring is superior to other visualizations of
a warmup phase, but it provides the potential to obtain a
simple overview as well as the option to track down the
details of the behavior.

5 IMPLEMENTATION ISSUES

Note that visualization of traces by MSCs is rather indepen-
dent from the ProC/B formalism, respectively the simulation
modeling formalism. Consequently, we developed an XML
file format for traces that consists of some header informa-
tion that defines the set of MSC processes P , state variables
and names of events associated with each process as well as
a static matching for any send, receive or broadcasting event
to its processes. The trace as an ordered sequence of events
(optionally an alternating ordered sequence of states and
events) follows that header. The header avoids repetition of
redundant information in the sequence of events that forms
the trace.

6 CONCLUSIONS

We aim to improve the productivity in the verification, vali-
dation and testing phase of a simulation study by considering
appropriate visualizations of simulation traces. We focus
on process interaction models and propose a visualization
by a variant of MSCs that highlights extremal delays for
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processes as well as resource usage. We discuss the value
of that visualization to identify partial deadlocks as well as
congestion, queuing and blocking situations, bottlenecks and
an initial startup phase. An implementation of the approach
in Java is evaluated for traces generated by the ProC/B
simulation environment. Future work goes into handling
large amounts of data which includes reduction techniques
for its visualization by MSCs and implementation improve-
ments that makes more effective use of available graphics
hardware.
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