
Proceedings of the 2005 Winter Simulation Conference
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

A COTS SIMULATION PACKAGE EMULATOR (CSPE) FOR INVESTIGATING
COTS SIMULATION PACKAGE INTEROPERABILITY

Xiaoguang Wang
Stephen John Turner

Parallel and Distributed Computing Centre

School of Computer Engineering
Nanyang Technological University

639798 SINGAPORE

 Simon J. E. Taylor

Centre for Applied Simulation Modeling
School of Information Systems,

Computing and Mathematics
Brunel University, Uxbridge

UB8 3PH, UK

Malcolm Yoke Hean Low
Boon Ping Gan

D-SIMLAB Programme

Singapore Institute of Manufacturing Technology
71 Nanyang Drive

638075 SINGAPORE

ABSTRACT

Commercial Off-The-Shelf (COTS) Simulation Packages
(CSPs) are widely used to facilitate the creation of simu-
lation models using some kind of visual interactive inter-
face. CSPs have “evolved” over the years and are well
used to support modeling demands in different market
niches and domains. However, in terms of distributed
simulation, there is almost a complete lack of support for
interoperability. The advent of the High Level Architec-
ture (HLA) standard makes it possible to connect distrib-
uted model components together. The model components
can be developed using specific CSPs best suited to the
application area. In this paper, a CSP Emulator (CSPE) is
proposed to investigate the interfaces between the CSPs
and the HLA Runtime Infrastructure. In addition to sup-
port for standalone models as provided by current CSPs,
the CSPE has some new features needed for building dis-
tributed models. An evaluation is conducted between
CSPE and Simul8, one of the popular CSPs.

1 INTRODUCTION

In the last few years, Commercial Off-The-Shelf Simula-
tion Packages (CSPs) have gained popularity in a range of
diverse areas such as commerce, health care, manufactur-
ing, military, supply chains, civil and maritime transporta-
tion. A CSP provides an easy, efficient and reliable way
to build a discrete event simulation model using some
402
kind of visual interactive modeling interface. Many com-
mercial and governmental organizations are now relying
on CSPs rather than developing and maintaining their
own programs. Examples of CSPs include: ProModel,
Arena, AutoMod, Simul8, Extend and Witness.

Meanwhile, distributed simulation has become in-
creasingly important as a way of supporting reuse and in-
teroperability. Other reasons, such as scalability and
group working also motivate the use of distributed simu-
lation. It is desirable to develop a distributed simulation
based on CSPs by customizing the various simulation
packages to suit local requirements, and gluing the com-
ponents together. Most of the CSPs have some degree of
extensibility through VB, COM or Excel etc. which allow
the model to interact with the external environment. How-
ever, this still introduces time consuming work in devel-
oping middleware to link multiple simulation components
built using appropriate CSPs (possibly from different
companies, even in dispersed locations). In addition, the
lack of expertise in distributed simulation (e.g. time syn-
chronization algorithm) may also be a barrier to the de-
velopment of such middleware. There is a pressing need
for a common standard for interoperability of CSPs.

The IEEE 1516 standard The High Level Architecture
(HLA) was developed by the U.S. Department of Defense
(DoD) to facilitate interoperability and reusability (IEEE
1516 2000). The standard provides a common technical
framework for the interoperability of simulation models.
It comprises four components: a set of HLA rules, the in-

Wang, Turner, Taylor, Low, and Gan

terface specification, the object model template (OMT)
and the federation development process (FEDEP). In
HLA terms, a federate is a simulation model while a fed-
eration is a collection of federates that form the entire
simulation. The responsibilities of federates and the fed-
eration are described by the rules. The interface specifica-
tion, implemented by the Runtime Infrastructure (RTI),
defines how federates interact with one another. Each
federate defines the objects and interactions that are
shared in its simulation object model (SOM) using the ob-
ject model template. The FEDEP is a generalized process
for building and executing HLA federations.

Although there are examples of successful distributed
simulations with CSPs based on the HLA, a general solu-
tion to this problem of heterogeneous integration is miss-
ing (Wang et al. 2004a). In this paper we describe a ge-
neric interface between the CSP and the HLA RTI which
can then be tailored to specific CSPs. By integrating with
the HLA RTI through the interface, the CSPs allow the
modelers to design their model components in a “plug &
play” way (involving only process modeling but no inter-
vention due to the needs of interoperability).

Since currently CSPs are heterogeneous in terms of
their properties and extensibility, different CSPs have dif-
ferent degrees of capabilities for their external interfaces.
This makes it extremely difficult to find a general ap-
proach for the integration. To investigate this problem, we
designed a CSP Emulator (CSPE) with a simple simula-
tion engine. The CSPE is intended to emulate the func-
tionality and interface to a CSP and can be used to inves-
tigate and to compare various interoperability approaches.
Based on the CSPE, the requirements for integration of
CSPs and the HLA were investigated and interfaces are
proposed for the Type I Interoperability Reference Model
(IRM) specified by the CSPI-PDG (COTS Simulation
Package Interoperability Product Development Group)
(Taylor, Turner and Low 2005). Additionally, the evalua-
tion of the CSPE is also conducted using the Type I IRM.

The rest of the paper is organized as follows. Section
2 describes related work in integrating CSPs with the
HLA. In section 3 we propose our generic architecture as
well as the interface for the integration of CSPs. Section 4
presents our CSP Emulator (CSPE) to investigate the in-
terfaces between the CSPs and the HLA RTI. Some new
features in CSPE to support distributed simulation are de-
scribed. The CSPE is evaluated in section 5 by conducting
a comparison between our CSPE and the CSP, Simul8
(Simul8 Corporation 2005) on the basis of a simple bicy-
cle manufacturing system. For CSPE, both a standalone
model and distributed simulation are created for the sys-
tem. Finally, section 6 concludes the paper and outlines
further work in this area.
403
2 RELATED WORK

2.1 Requirements for Integration of CSPs with the
HLA

In (Straβburger et al. 1998), the requirements for integra-
tion of CSPs with the HLA are analyzed from two as-
pects: requirements resulting from being part of a distrib-
uted simulation and requirements resulting from a certain
programming paradigm. Being part of a distributed simu-
lation indicates that the CSP should provide an interface
to connect to other systems or programs. This interface
also requires a common standard for data representation
and exchange as well as a synchronization mechanism be-
tween different simulation components. For the pro-
gramming paradigm, on the other hand, special considera-
tion is needed because of the ambassador paradigm of the
HLA (Kuhl, Weatherly, and Dahmann 1999). The CSP
should be able to communicate with the HLA RTI
through the RTIAmbassador and implement the corre-
sponding FederateAmbassador.

Based on the analysis of requirements, a number of
HLA interfaces for CSPs have been developed. These in-
terfaces make the CSPs HLA compatible, allowing them
to be integrated into a distributed simulation environment.
The interfaces can be classified as either explicit or im-
plicit from the modeler’s point of view. While the explicit
approach needs the modeler to enhance the model with
HLA functionality, the implicit approach means all HLA
functionality is hidden from the modeler since the CSP
and its underlying software handle all the HLA synchro-
nization and communication. For example, while an im-
plicit approach could be used for Simplex3 (Straβburger
2001) because its source code is available, an explicit ap-
proach is easier for SLX (Straβburger et al. 1998) since
SLX does not provide the functionality to support the im-
plicit approach. Obviously, the implicit approach makes it
easier for the modeler to link simulation models together.
We propose a generic architecture which can be adopted
for various CSPs using an implicit approach from the
user’s point of view.

A CSP needs new features to enable a model built us-
ing the package to join a distributed simulation. Some
work has been done in this area to suggest new features to
be added to Simul8 and CSPs in general to provide inter-
operability functionality (Ryde and Taylor 2003). Simi-
larly new features are also introduced in our CSPE. Our
CSPE extends the CSPE in (Taylor et al. 2005a), which
was first introduced to create a pipeline model for bench-
marking purpose. The extensions include increased func-
tionality and a more flexible user interface for building
general models.

Wang, Turner, Taylor, Low, and Gan

2.2 CSPI–PDG Interoperability Reference Models

In 2004, the CSPI-PDG (Commercial-Off-The-Shelf
Simulation Package Interoperability Product Develop-
ment Group) was approved by the Simulation Interopera-
bility Standards Organization (SISO) (Taylor, Turner and
Low 2005). Previously known as the HLA CSPI Forum
(HLA-CSPIF 2004), it is dedicated to creating a standard-
ized approach to support the interoperation of discrete
event models created in CSPs using the IEEE 1516 High
Level Architecture.

The Interoperability Reference Models (IRMs) are
one set of products produced by the CSPI-PDG. The aim
of the IRMs is to categorize the integration problem into
different requirements, thereby providing an easy way to
create solutions for each specific integration problem. The
following are the six IRMs currently identified by the
CSPI-PDG:

• Type I: Asynchronous Entity Passing
• Type II: Synchronous Entity Passing
 (Bounded Buffer)
• Type III: Shared Resources
• Type IV: Shared Events
• Type V: Shared Data Structures
• Type VI: Shared Conveyor.

The Type I IRM Asynchronous Entity Passing deals

with the common requirement of transferring entities be-
tween simulation models. In the Type II IRM Synchro-
nous Entity Passing, the input model can transfer entities
only when it makes sure that the destination side is not
blocked (workstation) or not full (queue) in the receiving
model. The other four types of IRM deal with the sharing
of resources, events, data structures and transportation
tools across simulation models. In this paper, the interface
for the Type I IRM model is investigated.

3 INTEGRATION OF A CSP WITH THE HLA

3.1 The Generic Architecture

Based on the previous requirements analysis, we propose
a generic architecture with the incorporation of a DSMan-
ager library and extended RTI as shown in Figure 1. The
DSManager provides a generic interface consisting of a
set of functions to be invoked by the CSP or CSP Emula-
tor (see Section 4) when necessary. The C++ / Java based
RTI is wrapped by “normal” C functions, that can easily
be integrated with most of the current CSPs written in C,
C++, Java or VB. Another important feature of the
DSManager is to try to hide the HLA concept from both
the CSP and the modeler. It is difficult to match model
information represented in the CSPs to the ob-
ject/interaction concept in the HLA standard. In addition,
404
the terminology between different CSPs differs as there is
no internationally recognized naming convention. The in-
terface adopts a generic approach based on the concept of
entity transfer, and will be proposed as a standard by the
CSPI-PDG in the future.

In the architecture, the DSManager also interacts
with the extended RTI which is developed using a mid-
dleware approach (Gan et al. 2003). In this extended RTI,
known as RTI+, appropriate synchronization algorithms
are designed in order to improve the simulation perform-
ance and relieve the user from the burden of time man-
agement. Examples are a shared state manager (Gan et al.
2003) for conservative synchronization and a rollback
controller (Wang et al. 2004b) for optimistic synchroniza-
tion. The RTI+ library is composed of the RTIAmbassa-
dor+, the FederateAmbassador+ and the original RTI li-
brary. It provides all the services in the RTIAmbassador
as well as some new or modified/extended services and
filters the callbacks through the FederateAmbassador+
before passing them to the FederateAmbassador. It is im-
portant that all necessary implementation in the RTI+ is
transparent to the DSManager, CSP and the modeler. The
RTI+ library is linked with the DSManager instead of the
RTI library.

Figure 1: A Generic Architecture for Integration of a CSP
with the HLA

The implementation of the generic architecture is

based on the cooperation between the model, the CSP, the
DSManager and the RTI+. Although the DSManager and
the RTI+ are responsible for interacting with other simu-
lation components within the distributed simulation, the
model and the CSP have to fulfill some requirements to
be part of the distributed simulation (as discussed in Sec-
tion 4).

Runtime Infrastructure (RTI)

Generic
Interface

Simulation
Model

RTIAmbassador+
Middleware

RTI+

DSManager (C)
 FederateAmbassador

CSP/CSPE

mapping file
/ GUI

FederateAmbassador+

FDD / FED

RTI Library (C++)

RTIAmbassador

Wang, Turner, Taylor, Low, and Gan

3.2 The Generic Interface

The DSManager provides an interface consisting of a set
of functions to be invoked by the CSP when a distributed
simulation is created. Through the interface, the DSMan-
ager invokes necessary calls to the RTIAmbassador+ on
behalf of the CSP and transfers the information received
from the FederateAmbassador+ to the CSP. Figure 2
shows the basic communication protocol between the
CSP, DSManager and RTI+ for CSPI-PDG Type I IRM.

In the initialization phase, the CSP registers its model
as part of a distributed simulation via registerDS. Receiv-
ing such information, the DSManager invokes the corre-
sponding createFederationExecution and joinFedera-
tionExecution in the RTIAmbassador+. One of the
component models must be a controller in a distributed
simulation. It is responsible for synchronizing the start of
the distributed simulation after all the component models
have joined the federation. For the controller model in the
distributed simulation, registerController is also invoked.
Since the component model needs to interact with other
component models, it should have some input and/or out-
put information. In the generic interface, such information
is represented using the concept of entity. The functions
registerInEntity and registerOutEntity are provided for
the CSP to declare an exchanged entity. For each ex-
changed entity, the modeler should give the entity name
and the name of the external model with which the entity
is exchanged. This information is passed to the RTIAm-
bassador+ by calling subscribeInteractionClass and pub-
lishInteractionClass. It should be noted that an interaction
class rather than an object class is used to transfer an en-
tity in the interface. This decision is based on the work in
(Turner et al. 2004).

During the simulation execution, each model needs to
advance time to progress the whole distributed simulation.
There are various approaches to time management when
using the HLA RTI to support distributed simulation (Fu-
jimoto 1998). The approach described here is based on
NextEventRequest (conservative synchronization). When
the CSP wishes to advance to the time of its next event, it
issues an advanceTime request to the DSManager. The
DSManager invokes the corresponding RTI+ service nex-
tEventRequest. The response from the RTI+ is zero or
more interactions received via receiveInteraction and a
new simulation time granted via timeAdvanceGrant. The
interactions represent the arrival of entities at the time
granted by timeAdvanceGrant and this time may be less
than the time initially requested by the CSP (i.e. if entities
arrive before the time of the original next event the new
time of the next event is that of the arriving entities). If
no interactions appear, the time granted is exactly the re-
quested time. Either way, this grant time is returned to
the CSP with the number of entities received nEntityRe-
ceived (if any). If nEntityReceived is larger than zero, the
405
CSP will retrieve all the entities via receiveEntity and ge-
tAttributeValue (if the entity has some attributes). In this
way, the CSP advances its local simulation time and con-
tinues execution. Conversely, if any entities leave the
simulation model, the CSP will send them to the DSMan-
ager using setAttributeValue and transferEntity as many
times as appropriate. The DSManager will translate these
into interactions and then forward these to the RTI+ by
invoking sendInteraction. This procedure continues until
some terminating condition, such as the simulation end
time, is met.

The CSP informs the DSManager that the terminating
condition is met via terminateDS. This causes the
DSManager to invoke the RTI+ service resignFedera-
tionExecution to leave the distributed simulation. In addi-
tion, destroyFederationExecution is called by the
DSManager of the controller model to destroy the distrib-
uted simulation.

Figure 2: Interaction among CSP, DSManager and RTI+

Besides the functions mentioned above, there are

some other functions supporting the distributed simula-
tion. For example, for benchmarking purposes a looka-
head value can be set and the synchronization approach to
be used can be declared. It may be possible for this part of
the work to be transparent to the modeler based on model
analysis by the CSP (Taylor et al. 2005b).

For CSPI-PDG Type II IRMs, additional functions
must be provided for the CSP to update or check the
status of external models. Before sending entities to a des-
tination model, the input model must make sure that the

advanceTime nextEventRequest

receiveInteraction*

CSP DSManager

receiveEntity*

t t t

transferEntity*
sendInteraction*

timeAdvanceGrantnewSimulationTime

…
…

…
…

nEntityReceived

getAttributeValue*

setAttributeValue*

registerDS
createFederationExecution

joinFederationExecution

…

registerInEntity*
subscribeInteractionClass*

registerOutEntity* publishInteractionClass*

terminateDS
resignFederationExecution

 destroyFederationExecution

RTI+

Wang, Turner, Taylor, Low, and Gan

destination side is not blocked (workstation) or not full
(queue) in the receiving model. The status information is
converted into an interaction by the DSManager and
sent/received through the RTI+. This part of the interface
is under implementation as part of our research work.

4 STRUCTURE OF THE CSPE

A challenge arises from the implementation of the pro-
posed generic architecture. Due to the heterogeneous
properties and various degrees of extensibility, it is ex-
tremely difficult to find a general approach for the inte-
gration of CSPs with the HLA. The CSP Emulator
(CSPE) is proposed to emulate the functionality and inter-
face to a CSP and can be used to investigate and to
benchmark alternative interoperability solutions. The
CSPE supports the creation of a standalone model in the
same way as CSPs, and additionally it has some new fea-
tures used by the modeler to build a component model as
part of a distributed simulation.

4.1 Features for Supporting Distributed Simulation

A model built using the CSPE may become part of a dis-
tributed simulation by providing some necessary informa-
tion to the CSPE (as discussed in Section 4.1.1). It is
achieved through the new features introduced in the CSPE
for supporting distributed simulation. These suggested ex-
ternal and internal features provide an example of how
current CSPs may be enhanced with interoperability func-
tionality.

4.1.1 External Features

The CSPE enables the modeler to design interoperating
models through a GUI or a specified file. In the CSPE, an
entity is processed and passes through some simulation
objects. There are four basic types of simulation objects:
entry point, queue (bin or storage), workstation (machine)
and exit point. The modeler needs to define the attributes
and property of each entity type, and assign and link nec-
essary simulation objects to process each entity. To be
part of a distributed simulation, some additional menu op-
tions are provided in the CSPE.

Figure 3 shows part of the menu for entity definition.
The entity can be generated in the local model or received
from some external models, and can remain in the local
model or be transferred to some external models. If the
modeler chooses that the entity is exchanged with external
models, the name of the source models or destination
models should be input in the list.

Figure 4 shows part of the menu for entry definition.
Choosing an external entry means the entity comes from
an external model. It should be noted that each external
entry here is only for one type of entity from one source
406
model. The modeler can use other external entries if there
are entities from other source models.

Figure 3: External Entity

Figure 4: External Entry

Figure 5 shows part of the menu for exit definition.

Similarly to external entry, choosing an external exit
means the entity finishing its life cycle in the local model
will be transferred to an external model. It is possible
there are more than one entity that need to be sent to the
same destination model at the same time (one kind of si-
multaneous events). Some tie-breaking rule is needed to
schedule the ordering of these simultaneous events. In
CSPE, the approach used is to assign a different priority
to each external exit. The higher the priority (lower
value), the earlier (in real time) the entity will be sent out.

Figure 6 shows part of the menu for the general defi-
nition of the model. A model built using CSPE can be a
standalone model or part of a distributed simulation. The
modeler needs to choose one and only one of the compo-
nent models as a controller model. The controller model is
in charge of managing the creation and termination of the
distributed simulation. The number of component models
in the distributed simulation is only needed by the con-
troller model. It is used for the initialization phase of the
simulation execution. Each component model also should
give the name of the distributed simulation, and the name
of the FED Configuration File which is used to supply the
RTI with all necessary federation execution details during
the creation of a new federation (DoD 1998). The menu
also shows the names of all external models interoper-
ating with local model.

Wang, Turner, Taylor, Low, and Gan

Figure 5: External Exit

Figure 6: Component Model in a Distributed Simulation

By providing the above additional information in a

straightforward way from the modeler’s point of view, the
model built using the CSPE can join a distributed simula-
tion. The modeler need not worry about the details of
transferring entities among the models and is able to build
the models easily and efficiently.

4.1.2 Internal Features

In addition to managing the execution of the local model,
the CSPE is responsible for interacting with the DSMan-
ager. It includes forwarding necessary information de-
scribing the distributed simulation to the DSManager,
transferring entities from external exit points, and receiv-
ing entities from the DSManager and passing them to the
corresponding external entry points.

For CSPI-PDG Type II IRMs, the CSPE has extra
tasks. For example, it needs to update the status of the ex-
ternal entry points in the local model when they are
changed, or check the status of external exit points related
with the destination model as appropriate. More work is
also necessary for handling simultaneous events received
from different external models. The CSPE may also need
to provide some tie-breaking rule (e.g. priority informa-
tion) to the DSManager to achieve simulation consistency
over repeated executions.

4.2 Three Phase Approach

The CSPs require some kind of simulation engine (control
program or executive) to manage the activities of the enti-
407
ties and trace the life history of each entity. The three
phase approach used for modeling a discrete event simu-
lation was suggested by Tocher (Tocher 1963) and dis-
cussed in detail in (Pidd 1998). It combines the simplicity
of the activity approach with the efficient execution of the
event approach. Our CSPE adopts the three-phase ap-
proach to demonstrate our architecture to support interop-
erability.

In a three phase simulation, there are two different
types of system events (activities). One type is Bound (B)
event, which can be scheduled in advance, bound to hap-
pen at some time. The other type is Conditional (C) event,
which cannot be scheduled to occur at some time in ad-
vance. They depend on some condition, i.e. the states of
system resources or availability of the entities.

A three phase simulation has three phases, called A,
B and C phase. These three phases are executed continu-
ally in a cycle as the simulation proceeds. The phases are
as follows:

• A phase (time scan) During this phase, the

simulation executive determines when the next
event is due to happen and then advances the
simulation time to this next event time.

• B phase (B events execution) During this phase,
the simulation executive will process all the B
events which are due to execute at the current
simulation time. After processing these events,
some other new B events or C events may be
generated. In addition, these B events may
change some conditions (e.g. the states of work-
stations) and lead to some C events to be exe-
cuted at the current simulation time.

• C phase (C events scan and execution) During
this phase, the executive will scan all the C
events and execute those C events whose condi-
tions have been satisfied at the current simulation
time. Processing C events may also change some
states which may satisfy the conditions of other
C events. This is repeated until no more C events
can be executed in this phase.

In our CPSE, the three phases are executed with op-

erations on two event lists as follows:

• Bound (B) event list The list of B events, re-

ferred to as the B event list, is ordered by the
time stamp of the B event which indicates when
the event will happen. For simultaneous events
with the same time stamp, they are ordered by
some other elements, such as, the priority of the
event or the priority of the entities themselves.

• Conditional (C) event list The list of C events,
referred to as the C event list, is also ordered by
some rules, such as the time when the entity

Wang, Turner, Taylor, Low, and Gan

starts waiting for the service, the priority of the
event or the priority of the entities themselves.

To avoid spending much time on the C phase, we try

to keep the C event list as short as possible. For example,
in a manufacturing simulation system, there are usually
some entities in a queue, waiting to be processed in a
workstation. It is usual to schedule this kind of activity as
a C event waiting for the condition that the workstation
becomes idle. The entity information is associated with
the corresponding C event. However, in some situations
where the entity arrival interval is less than the processing
time of the workstation, the queue will keep increasing
and in turn the C event list will become quite long, result-
ing in a time consuming C phase. An alternative way is
not to produce a C event for this kind of activity. Instead
the entity information is associated with the queue where
the entity is stored. If any workstation becomes idle, all of
its input queues will be scanned to find possible entities
waiting to be processed by the workstation. In this
method, however, some unnecessary time will be spent in
checking the queues without entities in them. Our imple-
mentation tries to exploit the advantages of the previous
two methods. That is, one and only one such C event is
scheduled for each queue with entities in it. The informa-
tion about each entity in the queue is also kept in the cor-
responding queue object. In this way, less time is spent on
scanning C events compared to the first method. More-
over, it is also more efficient than the second method
since queues without entities will not be scanned when
the workstations become idle.

5 EVALUATION

In order to evaluate the correctness of the CSPE, we com-
pare simulation results between the CSPE and Simul8.
Simul8 is one of the popular discrete event CSPs, and is

408
used in almost every industry for a wide variety of appli-
cations. Since Simul8 currently cannot support distributed
simulation, only a standalone model is built using it. For
CSPE, however, both a standalone and distributed simula-
tion are created. The experiments were carried out using a
bicycle manufacturing system, which for the distributed
simulation is a CSPI-PDG Type I IRM.

Figure 7 shows a distributed and deterministic simu-
lation for the bicycle manufacturing system. It consists of
three main parts: a wheel production line (WPL), a frame
production line (FPL), and a bicycle assembly line (BAL)
that assembles two wheels to one frame to produce a bi-
cycle. The BAL checks wheels for faults and can return
them to the WPL for re-machining (an example of valid
feedback for Type I IRMs). To achieve a deterministic
model for evaluation, the Circulate routing-out rule is
used here at workstation W3a. This means that the first
entity will go to the first destination (exit point Ex3b), the
second work item to the second (queue Q3b) and so on.
Frames have no such feedback.

To describe part of the simulation, raw materials for
the WPL arrive every 20 minutes at entry point En1a and
wait for processing in Q1a. When machine W1a becomes
free, raw materials are taken from queue Q1a, processed
into wheels and released. This activity takes a fixed time
of 20 minutes. We assume that the entry point, the queue
and the machine are adjacent. The newly created wheels
then take 100 minutes travel time to be transferred to the
BAL’s entry point En3a. The rest of the distributed simu-
lation can be described in a similar manner with the vari-
ous times to perform actions shown on the models. In this
deterministic model all distributions are fixed. A corre-
sponding standalone and deterministic model is shown in
Figure 8, where the simulation process is the same as the
distributed one except that all the process is completed in
one combined model named Bicycle Manufacturing Sys-
tem (BMS).

Figure 7: The Bicycle Manufacturing System (Distributed & Deterministic)

Wheel Production Line (WPL)

En1a W1a Q1a

fixed(20) fixed(20)

En1b W1b Q1b

fixed(10)
Raw Materials

Recycled Wheels

En3a

Wheels

Ex3aQ3a
Inspection
fixed(10)

W3bQ3b

Assembly
fixed(20)

En3b

Frames

2

1

Ex3b

Rejected
Wheels

Bicycles

Bicycle Assembly Line (BAL)

Frame Production Line (FPL)

En2 W2 Q2

fixed(10) fixed(20)

Raw Materials

W3a

Q3c

100

100

100

100

Ex2

100

Ex1a

Ex1b

Wang, Turner, Taylor, Low, and Gan

Figure 8: The Bicycle Manufacturing System (Standalone & Deterministic)

En1a W1aQ1a

fixed(20)fixed(20)

Q1b

fixed(10)

Raw Materials

Recycled Wheels

Ex3a

Inspection
fixed(10)

W3b Q3b

Assembly
fixed(20)

Frames

2

1

Rejected
Wheels Bicycles

En2 W2Q2

fixed(10)fixed(20)

Raw Materials

Q3c

W3aQ3a

W1b

Wheels

Bicycle Manufacturing System (BAS)

100

100

100
100

100

The experiments for the distributed simulation were

run on four DELL 2.8GHz P4 1GB memory computers
connected via a 1Gbps network. One computer was used
to run the rtiexec (DMSO RTI1.3NG-V6), and the other
three for three separate components models (WPL, FPL
and BAL models respectively). The experiments for the
standalone model were run on one such computer.
409
Table 1 shows the experimental results for simulating the
system for 100,000 simulation time in Simul8, CSPE(SA)
(standalone model) and CSPE(DS) (distributed simula-
tion). The final throughput of the system as well as the
statistics for each simulation object are identical for all
three cases, showing the correctness of the CSPE and suc-
cessful interoperability of CSPE models.

Table 1: Experiment Results for Deterministic Model

 Simul8 CSPE(SA) CSPE(DS)
En1a 5000 5000 5000
En2

Arrival
Entities 5000 5000 5000

En1a 0 0 0
En2

Refused
Entities 0 0 0

Q1a 5000 5000 5000
Q1b 4978 4978 4978
Q2 5000 5000 5000
Q3a 9966 9966 9966
Q3b 4982 4982 4982
Q3c

Total
Entered
Entities

4994 4994 4994
Q1a 0 0 0
Q1b 0 0 0
Q2 0 0 0
Q3a 0 0 0
Q3b 0 0 0
Q3c

Queue
Length at
 End Time

2503 2503 2503

W1a 4999 4999 4999
W1b 4977 4977 4977
W2 4999 4999 4999
W3a 9965 9965 9965
W3b

Completed
Entities

2490 2490 2490
W1a busy busy busy
W1b busy busy busy
W2 busy busy busy
W3a busy busy busy
W3b

Status at
End Time

busy busy busy

Ex1 Completed
Entities 2488 2488 2488

Table 2: Experiment Results for Stochastic Model

 Simul8 CSPE(SA) CSPE(DS)
En1a 5000 5000 5000
En2

Arrival
Entities 5000 5000 5000

En1a 0 0 0
En2

Refused
Entities 0 0 0

Q1a 5000 5000 5000
Q1b 4976 4894 4894
Q2 5000 5000 5000
Q3a 9947 9869 9869
Q3b 4920 4969 4969
Q3c

Total
Entered
Entities

4994 4994 4994
Q1a 16 15 15
Q1b 0 0 0
Q2 0 0 0
Q3a 47 1 1
Q3b 0 0 0
Q3c

Queue
Length at
End Time

2534 2509 2509

W1a 4983 4984 4984
W1b 4975 4894 4894
W2 4999 4999 4999
W3a 9899 9867 9867
W3b

Completed
Entities

2459 2484 2484
W1a busy busy busy
W1b busy idle idle
W2 busy busy busy
W3a busy busy busy
W3b

Status at
End Time

busy idle idle

Ex1 Completed
Entities 2456 2481 2481

Wang, Turner, Taylor, Low, and Gan

By introducing some probability distributions into the
bicycle manufacturing system, another set of experiments
is carried out for stochastic models. Instead of a fixed dis-
tribution, a normal distribution is used for the processing
time in all workstations. For instance, the processing time
of W1a is changed from Fixed (20) to Normal (20, 5) and
that of W1b is changed from Fixed(10) to Normal (10,
2.5). Moreover, the routing-out rule for W3a is changed
from Circulate to Percent (50%, 50%), which also intro-
duces some stochastic property into the model. It is due to
the fact that the destination is decided randomly based on
the specified percentage going to each destination. As be-
fore, both a standalone model and distributed simulation
are created for the CSPE. Table 2 shows the experimental
results for the stochastic model in all three cases. As with
the deterministic model, CSPE(SA) and CSPE(DS) gen-
erate identical results. The results between Simul8 and
CSPE are also almost identical, showing the correctness
of the CSPE. The minor differences between the CSPE
and Simul8 are mainly due to different ways of generating
random numbers. We can see that the percentage of the
entities to be sent to different destinations by W3a is
nearly (50%, 50%) for all three cases.

From the above experiments, we find the CSPE can
support both standalone and distributed simulations, and
generate correct simulation results. It is also interesting to
compare the performance between the standalone and dis-
tributed simulations, which is one of the motivations for
distributed simulation. A comparison conducted based on
the same Bicycle Manufacturing System is given in (Tay-
lor et al. 2005b).

6 CONCLUSIONS AND FUTURE WORK

The CSP Emulator (CSPE) is developed to investigate the
requirements for integration of CSPs and the HLA. By
invoking the interface provided by the DSManager, a
middleware in the generic architecture, the CSPE can al-
low the modeler to build and link component models in a
distributed simulation. The DSManager takes the respon-
sibility of interacting with the HLA RTI, which is almost
transparent to the modeler and the CSPs. The interface be-
tween the CSPE and the DSManager has been defined for
CSPI-PDG Type I IRM. To evaluate the CSPE, some ex-
periments were conducted to compare the simulation re-
sults between the CSPE and a typical CSP, Simul8. For
the CSPE, both a standalone model and distributed simu-
lation are created for the same system. The results are
analyzed, showing the correctness of the CSPE. Based on
the work of the integration of the CSPE with the HLA, the
generic interface has also been applied for another CSP,
Autosched AP, to support the interoperability of distrib-
uted simulation models (Gan et al. 2005).

Some work is still required in this area. We will de-
velop the interface for CSPI-PDG Type II IRM and ex-
410
tend the CSPE to support this type of model. To improve
the performance of distributed simulation, it is necessary
to exploit lookahead. It is desirable for the CSPE to com-
pute the lookahead value automatically based on the sce-
nario of the model, without interference of the modeler.
The lookahead value plays an important role in perform-
ance improvement for conservative synchronization. In
those situations where lookahead value is difficult to ex-
ploit, it is worthwhile to include optimistic synchroniza-
tion into the interface for the interoperation of CSPs.

ACKNOWLEDGMENTS

This project is part of a pilot project funded by the
Agency for Science, Technology and Research (A-STAR)
Thematic Strategic Research Program under the theme
“Industrial IT - Integrated Manufacturing and Service
Systems”.

REFERENCES

DoD 1998. High Level Architecture Federation Execution
Data (FED) File Specification – RTI 1.3 Version 3.
Department of Defense. 31 July.

Fujimoto, R.M. 1998. Time Management in the High
Level Architecture, Simulation, Dec., 71(6), pp. 388-
400.

Gan, B.P., M.Y.H. Low, J.H. Wei, X.G. Wang, S.J.
Turner and W.T. Cai. 2003. Synchronization and
Management of Shared State in HLA-Based Distrib-
uted Simulation, Proc. 2003 Winter Simulation Con-
ference, New Orleans, USA, Dec. 7-10, pp. 847-854.

Gan, B.P., M.Y.H. Low, P. Lendermann, S.J. Turner,
X.G. Wang, and S.J.E. Taylor. 2005. Interoperating
Autosched AP using the High Level Architecture,
Submitted to Proc. 2005 Winter Simulation Confer-
ence, Orlando, USA, Dec. 4-7.

HLA-CSPIF 2004. CSPI-PDG Product Nomination,
www.cspif.com, [viewed November 22, 2004.]

IEEE 1516 2000. IEEE Standard for Modeling and Simu-
lation (M&S) High Level Architecture (HLA), New
York, NY: Institute of Electrical and Electronics En-
gineers.

Kuhl, F., R. Weatherly and J. Dahmann. 1999. Creating
Computer Simulation Systems: An Introduction to
the High Level Architecture, Prentice Hall PTR.

Pidd, M. 1998. Computer Simulation in Management Sci-
ence, Wiley, 4th edition.

Ryde, M.D. and S.J.E. Taylor. 2003. Issues Using COTS
Simulation Software Packages for the Interoperation
of Models, Proc. 2003 Winter Simulation Confer-
ence, New Orleans, Louisiana. Dec. 7-10, pp. 772-
777.

Simul8 Corporation 2005. Avalable via
www.simul8.com.

http://www.cspif.com/
http://www.simul8.com/

Wang, Turner, Taylor, Low, and Gan

Straβburger, S., T.Schulze, U. Klein and J.O. Henriksen.

1998. Internet-based Simulation using Off-the-Shelf
Simulation Tools and HLA, Proc. 1998 Winter
Simulation Conference, Washington D.C. December
13-16, pp. 1669-1676.

Straβburger, S. 2001. Distributed Simulation Based on the
High Level Architecture in Civilian Application
Domains, PhD Dissertation, University of Magde-
burg, Germany, April.

Taylor, S.J.E., S.J. Turner and M.Y.H. Low. 2005. The
COTS Simulation Interoperability Product Develop-
ment Group. Proc. 2005 European Interoperability
Workshop. Simulation Interoperability Standards Or-
ganization, Institute for Simulation and Training,
Florida, 05E-SIW-056.

Taylor, S.J.E., S.J. Turner, N. Mustafee, H. Ahlander and
R. Ayani. 2005a. COTS Distributed Simulation: A
Comparison of CMB and HLA Interoperability Ap-
proaches to Type I Interoperability Reference Model
Problems. SIMULATION. 81, 1, pp. 33-43.

Taylor, S.J.E., X.G. Wang, S.J. Turner and M.Y.H. Low.
2005b. Integrating Heterogeneous Distributed COTS
Discrete-Event Simulation Packages: An Emerging
Standards-Based Approach, Submitted to IEEE
Transactions on Systems, Man and Cybernetics.

Tocher K.D. 1963. The Art of Simulation. English Uni-
versities Press, London.

Turner, S.J., Y.Y. Yap, S.J.E. Taylor, M.Y.H. Low. 2004.
Comparing High Level Architecture Entity Transfer
Mechanisms, Technical Report, Nanyang Techno-
logical University.

Wang, X.G., S.J. Turner, M.Y.H. Low and B.P. Gan.
2004a. A Generic Architecture for the Integration of
COTS Packages with the HLA, UK Operational Re-
search Society Simulation Workshop, Birmingham,
UK, Mar. 23-24, pp. 225-233.

Wang, X.G., S.J. Turner, M.Y.H. Low and B.P. Gan.
2004b. Optimistic Synchronization in HLA Based
Distributed Simulation, Proc. 18th Workshop on
Parallel and Distributed Simulation, IEEE Computer
Society, Kufstein, Austria, May 16-19, pp. 225-233.

AUTHOR BIOGRAPHIES

XIAOGUANG WANG is currently a Ph.D student at
School of Computer Engineering (SCE), Nanyang Tech-
nological University, Singapore. She received her B.Sc in
Computer Science form Nanjing University of Aeronau-
tics and Astronautics, China in 1997. Her research inter-
ests lie in Distributed Simulation and the High Level Ar-
chitecture. Her e-mail address is
xgwang@pmail.ntu.edu.sg.
411
STEPHEN JOHN TURNER joined Nanyang Techno-
logical University (Singapore) in 1999 and is currently an
Associate Professor in the School of Computer Engineer-
ing and Director of the Parallel and Distributed Comput-
ing Centre. Previously, he was a Senior Lecturer in Com-
puter Science at Exeter University (UK). He received his
MA in Mathematics and Computer Science from Cam-
bridge University (UK) and his MSc and PhD in Com-
puter Science from Manchester University (UK). His cur-
rent research interests include: parallel and distributed
simulation, distributed virtual environments, grid comput-
ing and multiagent systems. His e-mail address is
assjturner@ntu.edu.sg.

SIMON TAYLOR is a Senior Lecturer in the Depart-
ment of Information Systems and Computing and is a
member of the Centre for Applied Simulation Modeling,
both at Brunel University, UK. He is also a Visiting As-
sociate Professor at the Parallel and Distributed Comput-
ing Centre at Nanyang Technological University in Sin-
gapore. He is also Information Director of ACM SIGSIM,
ACM SIGSIM PADS Liaison Officer and Chair of the
Simulation Study Group of the UK Operational Research
Society. He is a steering committee member of PADS
and general co-chair of the UK Simulation Workshop Se-
ries. His main research interests are distributed simulation
and applications of ICT to simulation modeling. His email
address is simon.taylor@brunel.ac.uk.

MALCOLM YOKE HEAN LOW is a Research Fellow
with the Production and Logistics Planning Group at the
Singapore Institute of Manufacturing Technology. He re-
ceived his doctorate from Oxford University in 2002. His
research interests are in the areas of adaptive tuning and
load-balancing for parallel and distributed simulation sys-
tems, and the application of multi-agent technology in
supply chain logistics coordination. His e-mail address is
yhlow@SIMTech.a-star.edu.sg.

BOON PING GAN is a Research Engineer with the D-
SIMLAB Programme at the Singapore Institute of Manu-
facturing Technology. The focus of his research is on the
application of distributed simulation technology for sup-
ply chain simulation. He received a Bachelor of Applied
Science in Computer Engineering and a Master of Ap-
plied Science from Nanyang Technological University of
Singapore in 1995 and 1998, respectively. His research
interests are parallel and distributed simulation, parallel
programs scheduling, and application of genetic algo-
rithms. His email address is bpgan@SIMTech.a-
star.edu.sg.

mailto:xgwang@pmail.ntu.edu.sg
mailto:assjturner@ntu.edu.sg
mailto:simon.taylor@brunel.ac.uk
mailto:yhlow@SIMTech.a-star.edu.sg
mailto:bpgan@SIMTech.a-star.edu.sg
mailto:bpgan@SIMTech.a-star.edu.sg

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

