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ABSTRACT 

Commercial Off-The-Shelf (COTS) Simulation Packages 
(CSPs) are widely used to facilitate the creation of simu-
lation models using some kind of visual interactive inter-
face. CSPs have “evolved” over the years and are well 
used to support modeling demands in different market 
niches and domains. However, in terms of distributed 
simulation, there is almost a complete lack of support for 
interoperability. The advent of the High Level Architec-
ture (HLA) standard makes it possible to connect distrib-
uted model components together. The model components 
can be developed using specific CSPs best suited to the 
application area. In this paper, a CSP Emulator (CSPE) is 
proposed to investigate the interfaces between the CSPs 
and the HLA Runtime Infrastructure. In addition to sup-
port for standalone models as provided by current CSPs, 
the CSPE has some new features needed for building dis-
tributed models. An evaluation is conducted between 
CSPE and Simul8, one of the popular CSPs. 

1 INTRODUCTION 

In the last few years, Commercial Off-The-Shelf Simula-
tion Packages (CSPs) have gained popularity in a range of 
diverse areas such as commerce, health care, manufactur-
ing, military, supply chains, civil and maritime transporta-
tion. A CSP provides an easy, efficient and reliable way 
to build a discrete event simulation model using some 
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kind of visual interactive modeling interface. Many com-
mercial and governmental organizations are now relying 
on CSPs rather than developing and maintaining their 
own programs. Examples of CSPs include: ProModel, 
Arena, AutoMod, Simul8, Extend and Witness. 

Meanwhile, distributed simulation has become in-
creasingly important as a way of supporting reuse and in-
teroperability. Other reasons, such as scalability and 
group working also motivate the use of distributed simu-
lation. It is desirable to develop a distributed simulation 
based on CSPs by customizing the various simulation 
packages to suit local requirements, and gluing the com-
ponents together. Most of the CSPs have some degree of 
extensibility through VB, COM or Excel etc. which allow 
the model to interact with the external environment. How-
ever, this still introduces time consuming work in devel-
oping middleware to link multiple simulation components 
built using appropriate CSPs (possibly from different 
companies, even in dispersed locations). In addition, the 
lack of expertise in distributed simulation (e.g. time syn-
chronization algorithm) may also be a barrier to the de-
velopment of such middleware. There is a pressing need 
for a common standard for interoperability of CSPs.  

The IEEE 1516 standard The High Level Architecture 
(HLA) was developed by the U.S. Department of Defense 
(DoD) to facilitate interoperability and reusability (IEEE 
1516 2000). The standard provides a common technical 
framework for the interoperability of simulation models. 
It comprises four components: a set of HLA rules, the in-
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terface specification, the object model template (OMT) 
and the federation development process (FEDEP). In 
HLA terms, a federate is a simulation model while a fed-
eration is a collection of federates that form the entire 
simulation. The responsibilities of federates and the fed-
eration are described by the rules. The interface specifica-
tion, implemented by the Runtime Infrastructure (RTI), 
defines how federates interact with one another. Each 
federate defines the objects and interactions that are 
shared in its simulation object model (SOM) using the ob-
ject model template. The FEDEP is a generalized process 
for building and executing HLA federations. 

Although there are examples of successful distributed 
simulations with CSPs based on the HLA, a general solu-
tion to this problem of heterogeneous integration is miss-
ing (Wang et al. 2004a). In this paper we describe a ge-
neric interface between the CSP and the HLA RTI which 
can then be tailored to specific CSPs. By integrating with 
the HLA RTI through the interface, the CSPs allow the 
modelers to design their model components in a “plug & 
play” way (involving only process modeling but no inter-
vention due to the needs of interoperability).  

Since currently CSPs are heterogeneous in terms of 
their properties and extensibility, different CSPs have dif-
ferent degrees of capabilities for their external interfaces. 
This makes it extremely difficult to find a general ap-
proach for the integration. To investigate this problem, we 
designed a CSP Emulator (CSPE) with a simple simula-
tion engine. The CSPE is intended to emulate the func-
tionality and interface to a CSP and can be used to inves-
tigate and to compare various interoperability approaches.  
Based on the CSPE, the requirements for integration of 
CSPs and the HLA were investigated and interfaces are 
proposed for the Type I Interoperability Reference Model 
(IRM) specified by the CSPI-PDG (COTS Simulation 
Package Interoperability Product Development Group) 
(Taylor, Turner and Low 2005). Additionally, the evalua-
tion of the CSPE is also conducted using the Type I IRM. 

The rest of the paper is organized as follows. Section 
2 describes related work in integrating CSPs with the 
HLA. In section 3 we propose our generic architecture as 
well as the interface for the integration of CSPs. Section 4 
presents our CSP Emulator (CSPE) to investigate the in-
terfaces between the CSPs and the HLA RTI. Some new 
features in CSPE to support distributed simulation are de-
scribed. The CSPE is evaluated in section 5 by conducting 
a comparison between our CSPE and the CSP, Simul8 
(Simul8 Corporation 2005) on the basis of a simple bicy-
cle manufacturing system. For CSPE, both a standalone 
model and distributed simulation are created for the sys-
tem. Finally, section 6 concludes the paper and outlines 
further work in this area. 
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2 RELATED WORK 

2.1 Requirements for Integration of CSPs with the 
HLA 

In (Straβburger et al. 1998), the requirements for integra-
tion of CSPs with the HLA are analyzed from two as-
pects: requirements resulting from being part of a distrib-
uted simulation and requirements resulting from a certain 
programming paradigm. Being part of a distributed simu-
lation indicates that the CSP should provide an interface 
to connect to other systems or programs. This interface 
also requires a common standard for data representation 
and exchange as well as a synchronization mechanism be-
tween different simulation components. For the pro-
gramming paradigm, on the other hand, special considera-
tion is needed because of the ambassador paradigm of the 
HLA (Kuhl, Weatherly, and Dahmann 1999). The CSP 
should be able to communicate with the HLA RTI 
through the RTIAmbassador and implement the corre-
sponding FederateAmbassador.  

Based on the analysis of requirements, a number of 
HLA interfaces for CSPs have been developed. These in-
terfaces make the CSPs HLA compatible, allowing them 
to be integrated into a distributed simulation environment. 
The interfaces can be classified as either explicit or im-
plicit from the modeler’s point of view. While the explicit 
approach needs the modeler to enhance the model with 
HLA functionality, the implicit approach means all HLA 
functionality is hidden from the modeler since the CSP 
and its underlying software handle all the HLA synchro-
nization and communication. For example, while an im-
plicit approach could be used for Simplex3 (Straβburger 
2001) because its source code is available, an explicit ap-
proach is easier for SLX (Straβburger et al. 1998) since 
SLX does not provide the functionality to support the im-
plicit approach. Obviously, the implicit approach makes it 
easier for the modeler to link simulation models together. 
We propose a generic architecture which can be adopted 
for various CSPs using an implicit approach from the 
user’s point of view.  

A CSP needs new features to enable a model built us-
ing the package to join a distributed simulation. Some 
work has been done in this area to suggest new features to 
be added to Simul8 and CSPs in general to provide inter-
operability functionality (Ryde and Taylor 2003). Simi-
larly new features are also introduced in our CSPE. Our 
CSPE extends the CSPE in (Taylor et al. 2005a), which 
was first introduced to create a pipeline model for bench-
marking purpose. The extensions include increased func-
tionality and a more flexible user interface for building 
general models. 
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2.2 CSPI–PDG Interoperability Reference Models 

In 2004, the CSPI-PDG (Commercial-Off-The-Shelf 
Simulation Package Interoperability Product Develop-
ment Group) was approved by the Simulation Interopera-
bility Standards Organization (SISO) (Taylor, Turner and 
Low 2005). Previously known as the HLA CSPI Forum 
(HLA-CSPIF 2004), it is dedicated to creating a standard-
ized approach to support the interoperation of discrete 
event models created in CSPs using the IEEE 1516 High 
Level Architecture. 

The Interoperability Reference Models (IRMs) are 
one set of products produced by the CSPI-PDG. The aim 
of the IRMs is to categorize the integration problem into 
different requirements, thereby providing an easy way to 
create solutions for each specific integration problem. The 
following are the six IRMs currently identified by the 
CSPI-PDG: 

 
• Type I:   Asynchronous Entity Passing 
• Type II:   Synchronous Entity Passing 
   (Bounded Buffer) 
• Type III:  Shared Resources 
• Type IV:  Shared Events 
• Type V:   Shared Data Structures 
• Type VI:  Shared Conveyor. 

 
The Type I IRM Asynchronous Entity Passing deals 

with the common requirement of transferring entities be-
tween simulation models.  In the Type II IRM Synchro-
nous Entity Passing, the input model can transfer entities 
only when it makes sure that the destination side is not 
blocked (workstation) or not full (queue) in the receiving 
model. The other four types of IRM deal with the sharing 
of resources, events, data structures and transportation 
tools across simulation models. In this paper, the interface 
for the Type I IRM model is investigated.  

3 INTEGRATION OF A CSP WITH THE HLA 

3.1 The Generic Architecture 

Based on the previous requirements analysis, we propose 
a generic architecture with the incorporation of a DSMan-
ager library and extended RTI as shown in Figure 1. The 
DSManager provides a generic interface consisting of a 
set of functions to be invoked by the CSP or CSP Emula-
tor (see Section 4) when necessary. The C++ / Java based 
RTI is wrapped by “normal” C functions, that can easily 
be integrated with most of the current CSPs written in C, 
C++, Java or VB. Another important feature of the 
DSManager is to try to hide the HLA concept from both 
the CSP and the modeler. It is difficult to match model 
information represented in the CSPs to the ob-
ject/interaction concept in the HLA standard. In addition, 
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the terminology between different CSPs differs as there is 
no internationally recognized naming convention. The in-
terface adopts a generic approach based on the concept of 
entity transfer, and will be proposed as a standard by the 
CSPI-PDG in the future. 

In the architecture, the DSManager also interacts 
with the extended RTI which is developed using a mid-
dleware approach (Gan et al. 2003). In this extended RTI, 
known as RTI+, appropriate synchronization algorithms 
are designed in order to improve the simulation perform-
ance and relieve the user from the burden of time man-
agement. Examples are a shared state manager (Gan et al. 
2003) for conservative synchronization and a rollback 
controller (Wang et al. 2004b) for optimistic synchroniza-
tion. The RTI+ library is composed of the RTIAmbassa-
dor+, the FederateAmbassador+ and the original RTI li-
brary. It provides all the services in the RTIAmbassador 
as well as some new or modified/extended services and 
filters the callbacks through the FederateAmbassador+ 
before passing them to the FederateAmbassador. It is im-
portant that all necessary implementation in the RTI+ is 
transparent to the DSManager, CSP and the modeler. The 
RTI+ library is linked with the DSManager instead of the 
RTI library.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: A Generic Architecture for Integration of a CSP 
with the HLA 

 
The implementation of the generic architecture is 

based on the cooperation between the model, the CSP, the 
DSManager and the RTI+. Although the DSManager and 
the RTI+ are responsible for interacting with other simu-
lation components within the distributed simulation, the 
model and the CSP have to fulfill some requirements to 
be part of the distributed simulation (as discussed in Sec-
tion 4).  
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3.2 The Generic Interface 

The DSManager provides an interface consisting of a set 
of functions to be invoked by the CSP when a distributed 
simulation is created. Through the interface, the DSMan-
ager invokes necessary calls to the RTIAmbassador+ on 
behalf of the CSP and transfers the information received 
from the FederateAmbassador+ to the CSP. Figure 2 
shows the basic communication protocol between the 
CSP, DSManager and RTI+ for CSPI-PDG Type I IRM.   

In the initialization phase, the CSP registers its model 
as part of a distributed simulation via registerDS. Receiv-
ing such information, the DSManager invokes the corre-
sponding createFederationExecution and joinFedera-
tionExecution in the RTIAmbassador+. One of the  
component models must be a controller in a distributed 
simulation. It is responsible for synchronizing the start of 
the distributed simulation after all the component models 
have joined the federation. For the controller model in the 
distributed simulation, registerController is also invoked. 
Since the component model needs to interact with other 
component models, it should have some input and/or out-
put information. In the generic interface, such information 
is represented using the concept of entity. The functions 
registerInEntity and registerOutEntity are provided for 
the CSP to declare an exchanged entity. For each ex-
changed entity, the modeler should give the entity name 
and the name of the external model with which the entity 
is exchanged. This information is passed to the RTIAm-
bassador+ by calling subscribeInteractionClass and pub-
lishInteractionClass. It should be noted that an interaction 
class rather than an object class is used to transfer an en-
tity in the interface.  This decision is based on the work in 
(Turner et al. 2004). 

During the simulation execution, each model needs to 
advance time to progress the whole distributed simulation. 
There are various approaches to time management when 
using the HLA RTI to support distributed simulation (Fu-
jimoto 1998).  The approach described here is based on 
NextEventRequest (conservative synchronization). When 
the CSP wishes to advance to the time of its next event, it 
issues an advanceTime request to the DSManager.  The 
DSManager invokes the corresponding RTI+ service nex-
tEventRequest. The response from the RTI+ is zero or 
more interactions received via receiveInteraction and a 
new simulation time granted via timeAdvanceGrant. The 
interactions represent the arrival of entities at the time 
granted by timeAdvanceGrant and this time may be less 
than the time initially requested by the CSP (i.e. if entities 
arrive before the time of the original next event the new 
time of the next event is that of the arriving entities).  If 
no interactions appear, the time granted is exactly the re-
quested time.  Either way, this grant time is returned to 
the CSP with the number of  entities received nEntityRe-
ceived (if any). If nEntityReceived is larger than zero, the 
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CSP will retrieve all the entities via receiveEntity and ge-
tAttributeValue (if the entity has some attributes). In this 
way, the CSP advances its local simulation time and con-
tinues execution. Conversely, if any entities leave the 
simulation model, the CSP will send them to the DSMan-
ager using setAttributeValue and transferEntity as many 
times as appropriate.  The DSManager will translate these 
into interactions and then forward these to the RTI+ by 
invoking sendInteraction. This procedure continues until 
some terminating condition, such as the simulation end 
time, is met.   

The CSP informs the DSManager that the terminating 
condition is met via terminateDS. This causes the 
DSManager to invoke the RTI+ service resignFedera-
tionExecution to leave the distributed simulation. In addi-
tion,  destroyFederationExecution is called by the 
DSManager of the controller model to destroy the distrib-
uted simulation.    

 

 
Figure 2: Interaction among CSP, DSManager and RTI+ 

 
Besides the functions mentioned above, there are 

some other functions supporting the distributed simula-
tion. For example, for benchmarking purposes a looka-
head value can be set and the synchronization approach to 
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the work to be transparent to the modeler based on model 
analysis by the CSP (Taylor et al. 2005b). 
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destination side is not blocked (workstation) or not full 
(queue) in the receiving model. The status information is 
converted into an interaction by the DSManager and 
sent/received through the RTI+. This part of the interface 
is under implementation as part of our research work.  

4 STRUCTURE OF THE CSPE 

A challenge arises from the implementation of the pro-
posed generic architecture. Due to the heterogeneous 
properties and various degrees of extensibility, it is ex-
tremely difficult to find a general approach for the inte-
gration of CSPs with the HLA. The CSP Emulator 
(CSPE) is proposed to emulate the functionality and inter-
face to a CSP and can be used to investigate and to 
benchmark alternative interoperability solutions. The 
CSPE supports the creation of a standalone model in the 
same way as CSPs, and additionally it has some new fea-
tures used by the modeler to build a component model as 
part of a distributed simulation. 

4.1 Features for Supporting Distributed Simulation 

A model built using the CSPE may become part of a  dis-
tributed simulation by providing some necessary informa-
tion to the CSPE (as discussed in Section 4.1.1). It is 
achieved through the new features introduced in the CSPE 
for supporting distributed simulation. These suggested ex-
ternal and internal features provide an example of how 
current CSPs may be enhanced with interoperability func-
tionality.  

4.1.1 External Features 

The CSPE enables the modeler to design interoperating 
models through a GUI or a specified file. In the CSPE, an 
entity is processed and passes through some simulation 
objects. There are four basic types of  simulation objects: 
entry point, queue (bin or storage), workstation (machine) 
and exit point. The modeler needs to define the attributes 
and property of each entity type, and assign and link nec-
essary simulation objects to process each entity. To be 
part of a distributed simulation, some additional menu op-
tions are provided in the CSPE. 

Figure 3 shows part of the menu for entity definition. 
The entity can be generated in the local model or received 
from some external models, and can remain in the local 
model or be transferred to some external models. If the 
modeler chooses that the entity is exchanged with external 
models, the name of the source models or destination 
models should be input in the list.  

Figure 4 shows part of the menu for entry definition. 
Choosing an external entry means the entity comes from 
an external model. It should be noted that each external 
entry here is only for one type of entity from one source 
406
model. The modeler can use other external entries if there 
are entities from other source models.  

 
 

 
 
  

 
 
 
 
 
 
 
 

 
Figure 3: External Entity 

 
 
 
 
 
 
 
 
 

Figure 4: External Entry 
 
Figure 5 shows part of the menu for exit definition. 

Similarly to external entry, choosing an external exit 
means the entity finishing its life cycle in the local model 
will be transferred to an external model. It is possible 
there are more than one entity that need to be sent to the 
same destination model at the same time (one kind of si-
multaneous events). Some tie-breaking rule is needed to 
schedule the ordering of these simultaneous events. In 
CSPE, the approach used is to assign a different priority 
to each external exit. The higher the priority (lower 
value), the earlier (in real time) the entity will be sent out.  

Figure 6 shows part of the menu for the general defi-
nition of the model. A model built using CSPE can be a 
standalone model or part of a distributed simulation. The 
modeler needs to choose one and only one of the compo-
nent models as a controller model. The controller model is 
in charge of managing the creation and termination of the 
distributed simulation. The number of component models 
in the distributed simulation is only needed by the con-
troller model. It is used for the initialization phase of the 
simulation execution. Each component model also should 
give the name of the distributed simulation, and the name 
of the FED Configuration File which is used to supply the 
RTI with all necessary federation execution details during 
the creation of a new federation (DoD 1998). The menu 
also shows the names of all external models interoper-
ating with local model. 



Wang, Turner, Taylor, Low, and Gan 

 

 
 
 
 
 
 
 
 
 
 

Figure 5: External Exit 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Component Model in a Distributed Simulation 
 
By providing the above additional information in a 

straightforward way from the modeler’s point of view, the 
model built using the CSPE can join a distributed simula-
tion. The modeler need not worry about the details of 
transferring entities among the models and is able to build 
the models easily and efficiently. 

4.1.2 Internal Features 

In addition to managing the execution of the local model, 
the CSPE is responsible for interacting with the DSMan-
ager. It includes forwarding necessary information de-
scribing the distributed simulation to the DSManager, 
transferring entities from external exit points, and receiv-
ing entities from the DSManager and passing them to the 
corresponding external entry points.  

For CSPI-PDG Type II IRMs, the CSPE has extra 
tasks. For example, it needs to update the status of the ex-
ternal entry points in the local model when they are 
changed, or check the status of external exit points related 
with the destination model as appropriate. More work is 
also necessary for handling simultaneous events received 
from different external models. The CSPE may also need 
to provide some tie-breaking rule (e.g. priority informa-
tion) to the DSManager to achieve simulation consistency 
over repeated executions.  

4.2 Three Phase Approach 

The CSPs require some kind of simulation engine (control 
program or executive) to manage the activities of the enti-
407
ties and trace the life history of each entity. The three 
phase approach used for modeling a discrete event simu-
lation was suggested by Tocher (Tocher 1963) and dis-
cussed in detail in (Pidd 1998). It combines the simplicity 
of the activity approach with the efficient execution of the 
event approach. Our CSPE adopts the three-phase ap-
proach to demonstrate our architecture to support interop-
erability.  

In a three phase simulation, there are two different 
types of system events (activities). One type is Bound (B) 
event, which can be scheduled in advance, bound to hap-
pen at some time. The other type is Conditional (C) event, 
which cannot be scheduled to occur at some time in ad-
vance. They depend on some condition, i.e. the states of 
system resources or availability of the entities.  

A three phase simulation has three phases, called A, 
B and C phase. These three phases are executed continu-
ally in a cycle as the simulation proceeds. The phases are 
as follows: 

 
• A phase (time scan) During this phase, the 

simulation executive determines when the next 
event is due to happen and then advances the 
simulation time to this next event time.  

• B phase (B events execution) During this phase, 
the simulation executive will process all the B 
events which are due to execute at the current 
simulation time. After processing these events, 
some other new B events or C events may be 
generated. In addition, these B events may 
change some conditions (e.g. the states of work-
stations) and lead to some C events to be exe-
cuted at the current simulation time.  

• C phase (C events scan and execution) During 
this phase, the executive will scan all the C 
events and execute those C events whose condi-
tions have been satisfied at the current simulation 
time. Processing C events may also change some 
states which may satisfy the conditions of other 
C events. This is repeated until no more C events 
can be executed in this phase.  

 
In our CPSE, the three phases are executed with op-

erations on two event lists as follows: 
 
• Bound (B) event list The list of B events, re-

ferred to as the B event list, is ordered by the 
time stamp of the B event which indicates when 
the event will happen. For simultaneous events 
with the same time stamp, they are ordered by 
some other elements, such as, the priority of the 
event or the priority of the entities themselves. 

• Conditional (C) event list The list of C events, 
referred to as the C event list, is also ordered by 
some rules, such as the time when the entity 
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starts waiting for the service, the priority of the 
event or the priority of the entities themselves. 

 
To avoid spending much time on the C phase, we try 

to keep the C event list as short as possible. For example, 
in a manufacturing simulation system, there are usually 
some entities in a queue, waiting to be processed in a 
workstation. It is usual to schedule this kind of activity as 
a C event waiting for the condition that the workstation 
becomes idle. The entity information is associated with 
the corresponding C event. However, in some situations 
where the entity arrival interval is less than the processing 
time of the workstation, the queue will keep increasing 
and in turn the C event list will become quite long, result-
ing in a time consuming C phase. An alternative way is 
not to produce a C event for this kind of activity. Instead 
the entity information is associated with the queue where 
the entity is stored. If any workstation becomes idle, all of 
its input queues will be scanned to find possible entities 
waiting to be processed by the workstation. In this 
method, however, some unnecessary time will be spent in 
checking the queues without entities in them. Our imple-
mentation tries to exploit the advantages of the previous 
two methods. That is, one and only one such C event is 
scheduled for each queue with entities in it. The informa-
tion about each entity in the queue is also kept in the cor-
responding queue object. In this way, less time is spent on 
scanning C events compared to the first method. More-
over, it is also more efficient than the second method 
since queues without entities will not be scanned when 
the workstations become idle. 

5 EVALUATION 

In order to evaluate the correctness of the CSPE, we com-
pare simulation results between the CSPE and Simul8. 
Simul8 is one of the popular discrete event CSPs, and is 
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used in almost every industry for a wide variety of appli-
cations. Since Simul8 currently cannot support distributed 
simulation, only a standalone model is built using it. For 
CSPE, however, both a standalone and distributed simula-
tion are created. The experiments were carried out using a 
bicycle manufacturing system, which for the distributed 
simulation is a CSPI-PDG Type I IRM.  

Figure 7 shows a distributed and deterministic simu-
lation for the bicycle manufacturing system. It consists of 
three main parts: a wheel production line (WPL), a frame 
production line (FPL), and a bicycle assembly line (BAL) 
that assembles two wheels to one frame to produce a bi-
cycle.  The BAL checks wheels for faults and can return 
them to the WPL for re-machining (an example of valid 
feedback for Type I IRMs). To achieve a deterministic 
model for evaluation, the Circulate routing-out rule is 
used here at workstation W3a. This means that the first 
entity will go to the first destination (exit point Ex3b), the 
second work item to the second (queue Q3b) and so on. 
Frames have no such feedback. 

To describe part of the simulation, raw materials for 
the WPL arrive every 20 minutes at entry point En1a and 
wait for processing in Q1a.  When machine W1a becomes 
free, raw materials are taken from queue Q1a, processed 
into wheels and released.  This activity takes a fixed time 
of 20 minutes. We assume that the entry point, the queue 
and the machine are adjacent. The newly created wheels 
then take 100 minutes travel time to be transferred to the 
BAL’s entry point En3a.  The rest of the distributed simu-
lation can be described in a similar manner with the vari-
ous times to perform actions shown on the models. In this 
deterministic model all distributions are fixed. A corre-
sponding standalone and deterministic model is shown in 
Figure 8, where the simulation process is the same as the 
distributed one except that all the process is completed in 
one combined model named Bicycle Manufacturing Sys-
tem (BMS).  
 
Figure 7: The Bicycle Manufacturing System (Distributed & Deterministic) 
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Figure 8: The Bicycle Manufacturing System (Standalone & Deterministic) 

En1a W1aQ1a 

fixed(20)fixed(20) 

Q1b

fixed(10)

Raw Materials 

Recycled Wheels

Ex3a 

Inspection
fixed(10)

W3b Q3b

Assembly 
fixed(20) 

Frames

2

1

Rejected 
Wheels Bicycles 

En2 W2Q2 

fixed(10)fixed(20) 

Raw Materials 

Q3c

W3aQ3a

W1b

Wheels

Bicycle Manufacturing System (BAS)

100

100

100
100

100 
 
The experiments for the distributed simulation were 

run on four DELL 2.8GHz P4 1GB memory computers 
connected via a 1Gbps network. One computer was used 
to run the rtiexec (DMSO RTI1.3NG-V6), and the other 
three for three separate components models (WPL, FPL 
and BAL models respectively). The experiments for the 
standalone model were run on one such computer. 
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Table 1 shows the experimental results for simulating the 
system for 100,000 simulation time in Simul8, CSPE(SA) 
(standalone model) and CSPE(DS) (distributed simula-
tion). The final throughput of the system as well as the 
statistics for each simulation object are identical for all 
three cases, showing the correctness of the CSPE and suc-
cessful interoperability of CSPE models. 
 
Table 1: Experiment Results for Deterministic Model 

 Simul8 CSPE(SA) CSPE(DS) 
En1a 5000 5000 5000 
En2 

Arrival 
Entities 5000 5000 5000 

En1a 0 0 0 
En2 

Refused 
Entities 0 0 0 

 

Q1a 5000 5000 5000 
Q1b 4978 4978 4978 
Q2 5000 5000 5000 
Q3a 9966 9966 9966 
Q3b 4982 4982 4982 
Q3c 

Total  
Entered 
Entities 

4994 4994 4994 
Q1a 0 0 0 
Q1b 0 0 0 
Q2 0 0 0 
Q3a 0 0 0 
Q3b 0 0 0 
Q3c 

Queue 
Length at 
 End Time 

2503 2503 2503 
 

W1a 4999 4999 4999 
W1b 4977 4977 4977 
W2 4999 4999 4999 
W3a 9965 9965 9965 
W3b 

Completed 
Entities 

2490 2490 2490 
W1a busy busy busy 
W1b busy busy busy 
W2 busy busy busy 
W3a busy busy busy 
W3b 

Status at 
End Time 

busy busy busy 
 

Ex1 Completed 
Entities 2488 2488 2488 
 
Table 2: Experiment Results for Stochastic Model 

 Simul8 CSPE(SA) CSPE(DS) 
En1a 5000 5000 5000 
En2 

Arrival  
Entities 5000 5000 5000 

En1a 0 0 0 
En2 

Refused 
Entities 0 0 0 

 

Q1a 5000 5000 5000 
Q1b 4976 4894 4894 
Q2 5000 5000 5000 
Q3a 9947 9869 9869 
Q3b 4920 4969 4969 
Q3c 

Total  
Entered 
Entities 

4994 4994 4994 
Q1a 16 15 15 
Q1b 0 0 0 
Q2 0 0 0 
Q3a 47 1 1 
Q3b 0 0 0 
Q3c 

Queue 
Length at 
End Time 

2534 2509 2509 
 

W1a 4983 4984 4984 
W1b 4975 4894 4894 
W2 4999 4999 4999 
W3a 9899 9867 9867 
W3b 

Completed 
Entities 

2459 2484 2484 
W1a busy busy busy 
W1b busy idle idle 
W2 busy busy busy 
W3a busy busy busy 
W3b 

Status at 
End Time 

busy idle idle 
 

Ex1 Completed 
Entities 2456 2481 2481 
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By introducing some probability distributions into the 
bicycle manufacturing system, another set of experiments 
is carried out for stochastic models. Instead of a fixed dis-
tribution, a normal distribution is used for the processing 
time in all workstations. For instance, the processing time 
of W1a is changed from Fixed (20) to Normal (20, 5) and 
that of W1b is changed from Fixed(10) to Normal (10, 
2.5). Moreover, the routing-out rule for W3a is changed 
from Circulate to Percent (50%, 50%), which also intro-
duces some stochastic property into the model. It is due to 
the fact that the destination is decided randomly based on 
the specified percentage going to each destination. As be-
fore, both a standalone model and distributed simulation 
are created for the CSPE.  Table 2 shows the experimental 
results for the stochastic model in all three cases. As with 
the deterministic model, CSPE(SA) and CSPE(DS) gen-
erate identical results. The results between Simul8 and 
CSPE are also almost identical, showing the correctness 
of the CSPE. The minor differences between the CSPE 
and Simul8 are mainly due to different ways of generating 
random numbers. We can see that the percentage of the 
entities to be sent to different destinations by W3a is 
nearly (50%, 50%) for all three cases. 

From the above experiments, we find the CSPE can 
support both standalone and distributed simulations, and 
generate correct simulation results. It is also interesting to 
compare the performance between the standalone and dis-
tributed simulations, which is one of the motivations for 
distributed simulation. A comparison conducted based on 
the same Bicycle Manufacturing System is given in (Tay-
lor et al. 2005b).  

6 CONCLUSIONS AND FUTURE WORK 

The CSP Emulator (CSPE) is developed to investigate the 
requirements for integration of CSPs and the HLA. By 
invoking the interface provided by the DSManager, a 
middleware in the generic architecture, the CSPE can al-
low the modeler to build and link component models in a 
distributed simulation. The DSManager takes the respon-
sibility of interacting with the HLA RTI, which is almost 
transparent to the modeler and the CSPs. The interface be-
tween the CSPE and the DSManager has been defined for 
CSPI-PDG Type I IRM. To evaluate the CSPE, some ex-
periments were conducted to compare the simulation re-
sults between the CSPE and a typical CSP, Simul8. For 
the CSPE, both a standalone model and distributed simu-
lation are created for the same system. The results are 
analyzed, showing the correctness of the CSPE. Based on 
the work of the integration of the CSPE with the HLA, the 
generic interface has also been applied for another CSP, 
Autosched AP, to support the interoperability of distrib-
uted simulation models (Gan et al. 2005). 

Some work is still required in this area. We will de-
velop the interface for CSPI-PDG Type II IRM and ex-
410
tend the CSPE to support this type of model. To improve 
the performance of distributed simulation, it is necessary 
to exploit lookahead. It is desirable for the CSPE to com-
pute the lookahead value automatically based on the sce-
nario of the model, without interference of the modeler. 
The lookahead value plays an important role in perform-
ance improvement for conservative synchronization. In 
those situations where lookahead value is difficult to ex-
ploit, it is worthwhile to include optimistic synchroniza-
tion into the interface for the interoperation of CSPs.  
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