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ABSTRACT 

The High Level Architecture (HLA) is an IEEE standard 
for interoperating simulation federates. In this paper, we 
describe a set of requirements that simulation packages 
need to satisfy in order to be made interoperable using the 
HLA standard. AutoSched AP, a commercial off-the-shelf 
simulation package (CSP) which is widely used in the 
semiconductor industry, was used as a case study for this 
interoperation exercise. We demonstrated that a straight-
forward customization of the CSP through a middleware 
that provides standard functions for interoperation may not 
provide a satisfactory solution. A specially optimized time 
synchronization mechanism needs to be installed to ensure 
good execution efficiency. Experimental results using a 
Borderless Fab model that comprises of two factory mod-
els show that an optimized time synchronization mecha-
nism results in an execution time that is ten times better 
than a straightforward application of the HLA Runtime In-
frastructure’s time synchronization mechanism. 

1 INTRODUCTION 

The ever changing business environment in today’s global 
marketplaces requires organizations to adapt to changes 
promptly to stay competitive. Many organizations have 
adopted simulation as an enabling technology for this deci-
sion support process, evaluating impact of changes to their 
business/operations before changes are implemented, in 
particular when experiments on the real system are not fea-
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sible because they would disrupt daily operations. These 
simulation models, representing the current business and 
operation practice, are mainly built using commercial off-
the-shelf simulation packages (CSPs). Integrating and 
interoperating these individual simulation models to form a 
larger simulation that represents a supply chain (Gan et al. 
2000, Lendermann et al. 2003), for mutual beneficial deci-
sion making among organizations, is  very difficult. This is 
because most current CSPs do not support interoperation of 
simulation components. Some examples of CSPs are: 
AutoMod, AutoSched AP, WITNESS, Arena, Pro-Model, 
and Simul8. 

Interoperation of CSPs can be realized through the 
adoption of the High Level Architecture (HLA), an IEEE 
standard developed by the U.S. Department of Defense 
(DoD) to facilitate interoperability and reusability (IEEE 
1516 2000). However, customizing each and every CSP 
through different means to achieve interoperation using the 
HLA involves significant effort. The Commercial off-the-
shelf Simulation Package Interoperability Product Devel-
opment Group (CSPI-PDG 2005) endorsed by the Simula-
tion Interoperability Standards Organization (SISO) re-
cently began work to complement the HLA standard by 
creating standards for interoperation of simulation compo-
nents/packages. Its objective is to derive a set of standard 
reference models, data exchange standards and generic in-
terfaces (Taylor, Turner, and Low 2005) for communica-
tion between the Runtime Infrastructure (as defined by the 
interface specification)  of the HLA standard and the CSPs. 
In this paper, we illustrate the exercise of interoperating 
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AutoSched AP (ASAP) simulation models through the 
adoption of the HLA and the CSPI-PDG draft standard. 
ASAP is widely used in the semiconductor industry. It is a 
highly flexible CSP where extensions to the simulator can 
be realized through the customization module (Brooks 
2001). The customization module is then integrated into 
the ASAP simulation engine through dynamic linked librar-
ies. 

On the modeling aspect, we preserve the way models 
are built using ASAP with the interoperation details hidden 
from the modeler. The extension also ensures that existing 
ASAP models can be made interoperable with minimum 
modifications. Straβburger (1999) called this an implicit 
approach as all the HLA functionalities are hidden from 
the modeler’s point of view. 

On the implementation aspect, interoperating simula-
tion components incurs extra overhead as the simulation 
executes and communicates across a network. Also, the 
simulation components’ time progress needs to be syn-
chronized. This extra overhead should not slow down the 
simulation execution too much as it will offset any benefits 
gained in reusing and interoperating the simulation com-
ponents. Thus, a Borderless Fab model (Lendermann et al. 
2004) built using the ASAP simulator that involves simula-
tion of two wafer fabrication factories sharing capacity to 
cope with new product introduction was used to evaluate 
the performance of the interoperating ASAP simulation 
components. 

This paper is organized as follows: Section 2 first 
gives a brief overview of how a typical discrete event 
simulator advances time using the HLA, followed by a de-
rived set of requirements that CSPs need to fulfill before 
they can be made interoperable. In Section 3, we discuss 
how ASAP fulfills the requirements outlined in Section 2, 
propose a system architecture for the interoperation, and 
discuss two variations of the time synchronization mecha-
nism. The Borderless Fab model is described in Section 4. 
This is followed by the performance comparison of a se-
quential simulation, and a distributed simulation using the 
two variations of the time synchronization mechanism, in 
Section 5. Lastly, Section 6 concludes the paper with an 
outline of future work. 

2 INTEROPERATING COMMERCIAL OFF-THE-
SHELF SIMULATION PACKAGES (CSP) 

2.1 Typical Execution Steps for Distributed Discrete 
Event Simulation 

To interoperate CSPs, we first have to understand how a 
typical distributed discrete event simulator executes a 
simulation run. This involves three phases, namely the ini-
tialization, execution (state transitions at discrete points in 
time), and termination phases. During the initialization 
phase, the CSP joins the simulation and declares its interest 
395
in information/events. After this it is suspended until all 
other simulation components (also known as federates in 
HLA terminology) join the simulation. This is illustrated 
by Lines 1 to 3 in Figure 1. 

The federate transits into the execution phase once all 
other federates join the simulation. In the main event loop 
(illustrated by Lines 4 to 10 of Figure 1), the federate 
makes a request for time advancement before it simulates 
any events (Line 5), a necessary action when the conserva-
tive synchronization protocol is used. This is to ensure that 
the causality constraint of the simulation is not violated. 
The RTI offers two ways of advancing time, namely the 
next event request (NER) and the time advance request 
(TAR). The most appropriate time synchronization mecha-
nism to be used will be the NER as the federate has no in-
formation about when the next external event arrives, and 
when will it trigger an external event. The NER will result 
in a grant for the federate to proceed either to the requested 
time or the time of the external events that are delivered to 
the federate. Upon delivering the external events, the RTI 
returns control to the federate. The federate will then simu-
late all the events that have timestamp less than or equal to 
the granted time (Line 8). During this process of simula-
tion, new external or local events will be triggered (Line 
9). This process of time advancement and simulation is re-
peated until the end of simulation time is reached, or when 
there are no more events to be simulated. 

The termination phase is the most straightforward. The 
federate that exits the simulation last will destroy the simu-
lation. 

 
1.  Join simulation 
2.  Declare interests of the model 
3.  Suspend simulation till all federates join 
4.  While not end of simulation 
5.   ReqTime = time of next event to be 
  processed 
6.   TimeGranted = ask for time advance to  
  ReqTime from RTI 
7.   {receive external messages} 
8.   Process all events with timestamp at 
  TimeGranted or less 
9.   {sending messages or introducing  
    new local events} 
10. End of loop 
11. Destroy the simulation 

Figure 1: Typical Execution Steps for Distributed Discrete 
Event Simulation using the HLA Standard 

2.2 Interoperation Requirements for CSP 

Based on the typical execution steps of distributed discrete 
event simulation outlined in Section 2.1, CSPs need to 
provide the following features for interoperation using the 
HLA standard: 

• (R1) Ability to initialize the distributed simulation 
prior to simulation execution 

• (R2) Ability to suspend the simulation execution  
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• (R3) Access to the time of the next event to be 
simulated 

• (R4) Ability to introduce new events/entities from 
the external source into the event list 

• (R5) Access to information of simulation ob-
jects/entities that are shared among federates 

Features (R1) and (R2) are needed because the feder-
ate needs to first join the simulation and then be suspended 
from execution until all the other federates join (Lines 1 to 
3 in Figure 1) before the simulation begins. The federate is 
also suspended while it is waiting for a time grant from the 
RTI (Line 6 of Figure 1). 

When the federate requests for time advancement us-
ing the NER time request, it needs to provide the time-
stamp of the next event to be simulated (Line 5 of Figure 
1). This means that the CSP needs to provide a mechanism 
by which the timestamp of the next event can be obtained, 
and hence the (R3) requirement. 

New events will be received from other federates dur-
ing the course of simulation (Line 7 of Figure 1), while the 
federate is suspended waiting for the time grant. These new 
events are simulated when the control is returned to the 
federate as their timestamp is less than or equal to the 
timestamp of the current local events. Hence the CSP 
needs to provide a mechanism to simulate these external 
events and suspend the local events for the time being. One 
way is to allow these external events to be merged into the 
internal event list of the federate. With this, external events 
will be handled just like local events when the control re-
turns to the federate. This gives rise to the required (R4) 
feature. 

When an event is simulated, new external 
events/entities might be triggered (Line 9 of Figure 1). 
They have to be packed into a message and delivered to the 
receiving federate. To pack the content of the event/entity 
into a message, the CSP needs to provide a mechanism to 
access the data structure that describes the event/entity, 
hence the (R5) requirement. 

3 INTEROPERATING AUTOSCHED AP (ASAP) 
MODELS 

3.1 ASAP Fulfilling Interoperability Requirements 

AutoSched AP (ASAP) is a CSP supplied by Brooks Auto-
mation that is specially customized to model wafer fabrica-
tion plants. It is widely used in the semiconductor industry 
to answer questions such as the impact of dispatching rule 
or product mix changes to the factory performance, or 
identifying bottleneck equipment with varying demand 
profiles, etc. Simulation models are constructed through 
input data files. The input data files define the process 
routes, resources (workstations and operators), preventive 
maintenance (scheduled and non-scheduled), order arrival 
patterns, and so on. Simulation progresses as lots move 
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from one workstation to another, following steps defined 
by the process route (Brooks 2001). In this paper, lots will 
be the basic entities that are moved from one model to an-
other to keep the illustration of interoperating ASAP sim-
ple. 

The important aspect of ASAP that will be covered 
here is its extensibility for interoperation. ASAP uses a 
publish/subscribe messaging system to allow function calls 
to be triggered by events that occur during simulation. 
These functions are known as the notification functions in 
ASAP terms, and they implement extensions to the ASAP 
simulation engine. These extensions are all collected into a 
library that is loaded into ASAP at runtime. The pub-
lish/subscribe mechanism of ASAP makes it possible to en-
hance the ASAP simulator for interoperation. 

Table 1 summarizes the notification messages that the 
customization module needs to subscribe to, for interopera-
tion of ASAP models. A notification function of a simula-
tion component that joins the distributed simulation de-
clares interest in information or events (including 
information that it shares out) and is associated to the 
NT_FACTORY_FINISHED_ALL_FILES message. This notifica-
tion message is published by the ASAP simulation engine 
immediately after all the standard input data files are read. 
This satisfies (R1) mentioned in Section 2 as we are able to 
initialize the distributed simulation prior to simulation exe-
cution. The handing over of execution control to the notifi-
cation function also means that (R2) is satisfied as the 
ASAP simulation engine will not proceed until the call to 
the notification function returns. Thus, the notification 
function can suspend the federate until all other federates 
have joined the simulation. 

 
Table 1: Notification Messages by ASAP 

Event Type Description 

NT_FACTORY_ 
FINISHED_ALL_ 

FILES 

Published by the simulation 
engine immediately after 
reading all the standard input 
data files. 

NT_FACTORY_ 
FINISHED_ 

CURRENT_EVENT 

Published by the simulation 
engine when all events at cur-
rent simulation time are 
simulated. 

NT_APPLICATION
_INTIALIZED 

Published by the simulation 
engine just before the simula-
tion begins, after the model is 
fully initialized. 

NT_APPLICATION
_FINISHED 

Published by the simulation 
engine immediately before 
simulation terminates. 

 
The NT_FACTORY_FINISHED_CURRENT_EVENT is pub-

lished by the simulation engine after all the events at the 
current simulation time are simulated. A notification func-
tion that advances the simulation time of the federate 



Gan et al. 

 
through the RTI can be associated with this message. By 
doing so, we can suspend the simulation from progressing, 
by not returning from the notification function, until a time 
grant is given by the RTI. This ensures that the federate 
does not violate the causality constraint. But in order to is-
sue a time request to the RTI, we need to know the time-
stamp of the next event that will be simulated. ASAP pro-
vides access to its underlying simulation engine through a 
set of classes, collectively known as the AP Framework 
(Brooks 2001). The timestamp of the next event, which is 
the first event in the Future Event List, can be obtained 
through the SIMEngine object class. Thus, ASAP satisfies 
the (R3) requirement outlined in Section 2. 

As mentioned earlier, lots are the basic entities that are 
moved from one model to another in ASAP. Lots at the 
source model have to be deleted, and need to be introduced 
at the destination model when they arrive. The AP Frame-
work offers the FIFactory object class that exposes the 
ability to create and delete a lot dynamically during the 
simulation run. Having access to this object class, we are 
able to introduce lots at the destination model and fulfill 
the (R4) requirement. 

The FILot object class provided by the AP Framework 
enables us to retrieve the attribute values of a lot. These at-
tribute values are packed into a message and delivered 
through the RTI when we model movement of a lot from 
one factory to another. This means that ASAP fulfills the 
(R5) requirement as well. As a result, the ASAP simulator 
is able to fulfill all the five requirements for interoperabil-
ity outlined in Section 2. 

The NT_APPLICATION_INITIALIZED and  the 
NT_APPLICATION_FINISHED in Table 1 are another two im-
portant notification messages that the customization mod-
ule needs to subscribe to. The former notification message 
has an associated function that requests for initial time ad-
vancement before the simulation begins, after the model is 
initialized. This kicks start the simulation and subsequent 
time advance requests are triggered by the 
NT_FACTORY_FINISHED_CURRENT_EVENT message as dis-
cussed earlier. The latter notification message is used to 
implement a notification function that causes the federate 
to resign from the simulation when the federate reaches the 
end of the simulation. 

3.2 Modeling Capability Extension 

Section 3.1 mainly focuses on the question whether ASAP 
fulfills the interoperability requirements. Another very im-
portant issue that we need to address is that an enhanced 
ASAP simulator for interoperation should not be more dif-
ficult to use than the basic ASAP. Bearing this in mind, we 
preserve the way the ASAP is used by introducing two new 
input data files that define information associated with dis-
tributed simulation. Tables 2 and 3 show the information 
that are needed to use this extension. By doing so, the 
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modelers still build their simulation models in the same 
way as before. In addition, they just need to supply the data 
shown in the two tables. 

Besides introducing these two data files, we also ex-
tend the process route data file such that modelers can de-
fine which step of the process route will trigger a lot trans-
fer from one factory to another. Table 4 defines the three 
new data fields that were added to the process route data 
file. The condition that triggers lots to be moved from one 
factory to another can be coded by the modeler using the 
AP Framework, and a forward_lot function that is supplied 
by our extension. The modeler does not need to know how 
the lot is forwarded, but just has to indicate the destination 
federate and exit point to be used to forward the lot. Note 
that an exit point always corresponds to an entry point in 
the receiving federate. 

 
Table 2: Distributed Simulation Configuration File 

Field Description 

Federation 
Name 

The name of the distributed simulation. 
It is used for the federate to join the 
simulation. 

Federate 
Name The name of this federate. 

Fed 
Filename 

The fed file that defines the information 
to be shared in the distributed simula-
tion. 

Number of 
Federates 

Number of federates to join the simula-
tion. Used by the controller federate to 
kick start the simulation once all feder-
ates have joined. 

Controller 
Indicates if the federate is a controller 
federate. Only one exists in each simu-
lation. 

 
Table 3: Entry/Exit Points Definition File 

Field Description 
Source Name of source federate. 

Destination Name of destination federate. 
Exit Point Exit point that connect the two feder-

ates. 
Entry Point Entry point that connects the two feder-

ates. 
Delay Delay in hours for sending a lot from 

source to destination federate. 
 

Table 4: Extension to Process Route File 
Field Description 

Condition Condition to satisfy for routing the lot. 
Destination Destination federate that receives the 

lot. 
Exit Point Exit point to be used for movement of 

the lot. 
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3.3 The System Architecture 

As mentioned in Section 1, we adopted the draft standard 
defined by the CSPI-PDG that complements the HLA 
standard in interoperating the ASAP simulator. The CSPI-
PDG has defined a set of generic interfaces (Wang et al. 
2004) that CSPs can call to interact with the RTI of HLA. 
This reduces the effort required to interoperate CSPs as 
any CSPs that are compliant to this standard will be able to 
talk each other, using the same data exchange standard and 
protocol that is also defined by the CSPI-PDG. Figure 2 
shows the system architecture of the enhanced ASAP simu-
lator. At the top level, the simulation model is built using 
the ASAP as usual. ASAP is extended to invoke the 
DSManager through the generic interface which handles 
the interaction between ASAP and RTI. The details of this 
interaction are all hidden in the middleware. The middle-
ware also implements the standard data exchange protocols 
that were defined for alternative reference models in CSPI-
PDG. More details of the reference models can be found in 
CSPI-PDG (2005). 

 
Figure 2: System Architecture 

3.4 Time Synchronization Mechanism 

Having discussed the details of interoperating the ASAP 
simulator, one very important issue to be resolved in this 
interoperation exercise is the time synchronization mecha-
nism to ensure efficient execution of the distributed simu-
lation. The most straightforward way of realizing the time 
synchronization among federates is to request for time ad-
vancement for every event that the federate simulates. But 
this will potentially slow down the simulation significantly. 
One solution to this problem is to request for time ad-
vancement when all local events have a timestamp larger 

Runtime Infrastructure (RTI) 

Generic 
Interface 

Simulation 
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RTIAmbassador+ 
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RTI+ 

DSManager (C) 
 FederateAmbassador

ASAP  

mapping file
 / GUI

FederateAmbassador+

FED 

RTI Library (C++) 
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than the last time granted by the RTI, using the timestamp 
of the earliest event that potentially will trigger external 
events as the request time. 

This approach is valid because local events that do not 
affect the causality of other federates are not important to 
the RTI (this statement is only true when we use the 
NER/NERA time request). The RTI is only interested in 
those events that potentially can cause a causality error 
during a simulation run. Hence, it is safe for federates to 
issue a NER time request with the timestamp of the next 
event that potentially can trigger an external event. One 
might argue that an event arriving from other federates po-
tentially will also trigger external events. Issuing a time re-
quest without considering these undelivered external 
events might not be safe. This is not true because the RTI 
will not give a time grant that is greater than the timestamp 
of undelivered external events when using the NER time 
request. Hence, this approach of requesting for time ad-
vancement using the timestamp of events that potentially 
trigger external events is still safe. Now the question is 
how do we identify these potential events? 

For the ASAP interoperation exercise described in this 
paper, we can obtain the potential events by looking at the 
steps that trigger a lot moving from one factory to another. 
For example, when a lot might be forwarded at step n, a lot 
being scheduled at step n-1 potentially will trigger an ex-
ternal event after tn-1 time units where tn-1 is the processing 
time of the lot at step n-1. We can keep track of all the 
forwarding events that are associated with step n-1 in a po-
tential event list. Whenever a time request needs to be is-
sued, we will use the timestamp of the next event in the po-
tential event list as the requesting time. 

 
1.  While not end of simulation 
2.    EventTime = time of next event to be 
  processed 
3.   If (EventTime > TimeGranted) 
4.  If (PotentialEvents.is_empty()) 
5.   ReqTime = TimeGranted + TimeStep 
6.  Else 
7.   CurrEvent = PotentialEvents.pop() 
8.   ReqTime = timestamp of CurrEvent 
9.  End if 
10.  TimeGranted = ask for time advance to  
   ReqTime from RTI 
11.   End if 
12. End of loop 

Figure 3: Optimized Time Synchronization Mechanism 
 
Just using the timestamp of the next event in the po-

tential event list for the time request is not a complete solu-
tion. There will be situations in which no activities happen 
at step n-1, and the potential event list will be empty. In 
such cases, what is the request time that we should use? 
Can we issue a time request to the end of simulation time? 
Issuing a time request to the end of simulation time is not 
valid as some lots that are waiting at step n-2 or earlier 
might eventually arrive at step n-1, which potentially will 



Gan et al. 

 
trigger an external event. When an external event is sent, 
its timestamp must be at least the last granted time plus 
lookahead. Lookahead is defined as the minimum time de-
lay at which an external event will be sent from the last 
granted time. A solution to this problem is to switch the 
time synchronization mechanism to a time step approach, 
whereby the request time is incremented with a time period 
from the last granted time. This raises the question of what 
is the right time period to be used to ensure efficiency of 
simulation and preserve the causality constraint of the 
simulation. 

The best time period that can be used for this time 
synchronization mechanism is the processing time of the 
lot at step n-1. If there is more than one step that poten-
tially will trigger a lot transfer, the minimum processing 
time of all the lots at steps n-1 can be used. This minimum 
processing time is safe because any events that are being 
scheduled during this time period will only generate the 
potential event at time at least t+tn-1, where t is the time-
stamp of the scheduled event. In the worst case, a lot is 
moved from step n-2 to step n-1 at the last granted time 
and is scheduled onto the workstation at step n-1 immedi-
ately. The earliest that an external event could be triggered 
will then be tn-1 later, which falls into the next time ad-
vance request period. Figure 3 gives a code outline of this 
optimized time synchronization mechanism that is imple-
mented into the customization module, hidden from the 
modeler. 

4 BORDERLESS FAB SIMULATION MODEL 

The Borderless Fab concept is a means of sharing capacity 
across wafer fabrication plants that are within close prox-
imity (Lendermann et al. 2004). Having a means of sharing 
capacity across factories is particularly important in the 
semiconductor industry as equipment is typically expen-
sive. The capital cost of a typical wafer fabrication plant is 
approximately US$3.5 billion. This sharing of capacity can 
help factories to handle some unplanned situations more 
effectively. Examples of unplanned situations are: a sudden 
surge in demand of certain product types or an unsched-
uled breakdown of a bottleneck machine. It is also useful 
in scenarios where specialized equipment that is not fully 
utilized in one factory can be shared with another instead 
of buying additional equipment in other factories. Hence, 
the Borderless Fab concept, if successfully implemented, 
can help semiconductor companies save millions of dollars 
in equipment investment, and assists them to handle un-
planned situations more effectively. 

In this paper, a Borderless Fab model that comprises 
of two wafer fabs was built using ASAP. The two wafer 
fabs have similar capabilities of producing ten wafer prod-
uct types (0.35 micron technology logic devices and anti-
fuse gate devices) but with different capacities. The proc-
ess flows of the wafer products considered range from 200 
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to 300 steps. A total of 73 workstation types were modeled 
in each fab, including the downtime behavior of each 
workstation. Some example of workstations in the wafer 
fab are: wet benches, furnaces, steppers, implanters and 
metrology tools. 

This Borderless Fab model was used to evaluate dif-
ferent strategies of moving lots from one fab to another. 
One of the strategies that was evaluated was that lots are 
moved from one fab to another when the lot of a defined 
product type reaches a bottleneck machine. Variations of 
this strategy will be to allow the lots to continue on at the 
receiving fab, or be moved back to the original factory 
upon completion of the operation. The model can also be 
used to decide what is the optimal number of lots that need 
to be collected before they are moved to another fab. Intui-
tively, moving one lot at a time is a waste of resources. 
This model was also used to study the impact of introduc-
ing a new product type to a fab that is already at the peak 
of its capacity. We showed that moving lots of the new 
product from one factory to another helps us keep the 
overall capacity of the factory in good shape (Lendermann 
et al. 2004). 

The Borderless Fab concept is a good application of 
distributed simulation technology. With an interoperable 
ASAP simulator, the two wafer fab models can now be 
executed in two separate computers, interacting with each 
other through the RTI, rather than being combined into a 
single ASAP model. The process of integrating the two 
models into one manually is tedious as we need to worry 
about the naming of resources, parts, and orders (just to 
name a few) to ensure that there are no name clashes be-
tween the models. Besides that whenever any of the fab 
models is modified, we will need to redo the integration 
exercise. With an interoperable ASAP, any modification to 
the fab model is absolutely transparent to the other fab 
models. 

5 EXPERIMENTAL RESULTS 

The performance of the enhanced ASAP was evaluated us-
ing the borderless fab model described in Section 4. Both 
fabs produce ten wafer product types, with approximately 
8500 wafer lots being released into each fab in a year of 
simulation. We chose a scenario that involves movement 
of lots in both directions, with a delay of 3 hours for trans-
ferring the lots. Lots belonging to a specific product are 
moved from Fab A to Fab B at a bottleneck workstation, 
and then continue in Fab B until they reach another bottle-
neck workstation, when they are moved back to Fab A. We 
compare the execution time of simulating this scenario as a 
single model, as a distributed model with the basic time 
synchronization mechanism, and as a distributed model 
with the optimized time synchronization mechanism. The 
experiments were conducted using Pentium IV 1.7 GHz 
computers, with 1 GBytes of memory. For the distributed 
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simulation cases, a computer is allocated exclusively to run 
the server process of the RTI. The computers are intercon-
nected by a 100 Mbps Ethernet. 

Table 5 compares the execution time collected for the 
three scenarios. The execution time collected is the average 
of five runs to reduce the error introduced by network traf-
fic, especially in the distributed simulation cases. As 
shown in the table, the performance of the enhanced ASAP 
with the optimized time synchronization mechanism is 
comparable to the sequential simulation. But the perform-
ance using the basic time synchronization mechanism is 
ten times worse relative to the sequential simulation. The 
reason for this is that the basic time synchronization 
mechanism issued approximately 2 million time requests 
throughout the simulation execution (approximately 2 mil-
lion events were simulated). In contrast the optimized time 
synchronization mechanism issued only 4892 and 8533 
time requests for Fab A and Fab B respectively. Thus the 
latter approach reduces the overhead of the distributed 
simulation significantly. The reason for the difference in 
the number of time requests issued by Fab A and Fab B is 
that the time step being used is 91.0 minutes at Fab A and 
52.4 minutes at Fab B, which are the respective processing 
times of step n-1 where n is the step at which lots poten-
tially will be moved from one fab to another. 

 
Table 5: Performance Comparison of Sequential vs Dis-
tributed Simulation using ASAP 

Distributed  Sequential Basic Optimized 
Execution 

Time 
13.0 

minutes 
133.8 

minutes 
13.5 

minutes 
Fab A 2090819 4892 No of Time 

Requests Fab B 2053403 8533 
 
These experimental results are encouraging as they 

show that by distributing the simulation models into two 
computers, we manage an execution time that is compara-
ble to running the simulation as one single model. The 
benefits of distributed simulation will become more sig-
nificant when a larger model is used as distributed simula-
tion provides better scalability. In addition to that, models 
are much easier to maintain and enhance. 

6 CONCLUSIONS AND FUTURE WORK 

We have outlined five requirements that CSPs need to ful-
fill before interoperability can be achieved using the HLA 
standard. The ASAP simulator fulfills all the five require-
ments, and was successfully made interoperable through 
the adoption of the complementary standards provided by 
the CSPI-PDG. The enhanced version of the ASAP still 
preserves the way models are built and the details on inter-
operation are transparent to the modeler. An important les-
son that we have learnt from this exercise is that it is criti-
400
cal to spend some effort in optimizing the time 
synchronization mechanism during the process of interop-
erating CSPs. Using the basic time synchronization 
mechanism provided by the HLA will typically result in an 
inefficient simulation execution. This was shown in the 
experiments that we did on a Borderless Fab model, where 
the basic distributed simulation runs ten times slower than 
the sequential simulation. On the other hand, the distrib-
uted simulation using the optimized time synchronization 
mechanism was able to achieve an execution time that is 
comparable to the sequential simulation. 

There is still some work that can be done in enhancing 
the time synchronization mechanism. Further experiments 
also need to be conducted to evaluate the impact of pa-
rameters such as lookahead, and the processing step of the 
process route for monitoring potential events, to the per-
formance of the simulation. On the interoperability of 
CSPs, we will next attempt to interoperate AutoMod with 
ASAP. This is an important exercise as in 300 mm wafer 
fabrication plants, AutoMod is typically used to model the 
material handling aspect of the factory, while ASAP is used 
to model the process flow. Having the ability to interoper-
ate these two CSPs allow us to easily integrate the two 
models to perform what-if analysis on the interdependency 
between the material handling and process flows. 
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