
Proceedings of the 2005 Winter Simulation Conference
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

INTEROPERATING AUTOSCHED AP USING THE HIGH LEVEL ARCHITECTURE

Boon Ping Gan
Peter Lendermann

Malcolm Yoke Hean Low

D-SIMLAB Programme
Singapore Institute of Manufacturing Technology

71 Nanyang Drive
Singapore 638075, SINGAPORE

 Stephen J. Turner
Xiaoguang Wang

Parallel and Distributed Computing Centre
Nanyang Technological University

Block N4, Nanyang Avenue
Singapore 639798, SINGAPORE

Simon J. E. Taylor

Centre for Applied Simulation Modeling
School of Information Systems, Computing and Mathematics

Brunel University
Uxbridge UB8 3PH, UK

ABSTRACT

The High Level Architecture (HLA) is an IEEE standard
for interoperating simulation federates. In this paper, we
describe a set of requirements that simulation packages
need to satisfy in order to be made interoperable using the
HLA standard. AutoSched AP, a commercial off-the-shelf
simulation package (CSP) which is widely used in the
semiconductor industry, was used as a case study for this
interoperation exercise. We demonstrated that a straight-
forward customization of the CSP through a middleware
that provides standard functions for interoperation may not
provide a satisfactory solution. A specially optimized time
synchronization mechanism needs to be installed to ensure
good execution efficiency. Experimental results using a
Borderless Fab model that comprises of two factory mod-
els show that an optimized time synchronization mecha-
nism results in an execution time that is ten times better
than a straightforward application of the HLA Runtime In-
frastructure’s time synchronization mechanism.

1 INTRODUCTION

The ever changing business environment in today’s global
marketplaces requires organizations to adapt to changes
promptly to stay competitive. Many organizations have
adopted simulation as an enabling technology for this deci-
sion support process, evaluating impact of changes to their
business/operations before changes are implemented, in
particular when experiments on the real system are not fea-

394
sible because they would disrupt daily operations. These
simulation models, representing the current business and
operation practice, are mainly built using commercial off-
the-shelf simulation packages (CSPs). Integrating and
interoperating these individual simulation models to form a
larger simulation that represents a supply chain (Gan et al.
2000, Lendermann et al. 2003), for mutual beneficial deci-
sion making among organizations, is very difficult. This is
because most current CSPs do not support interoperation of
simulation components. Some examples of CSPs are:
AutoMod, AutoSched AP, WITNESS, Arena, Pro-Model,
and Simul8.

Interoperation of CSPs can be realized through the
adoption of the High Level Architecture (HLA), an IEEE
standard developed by the U.S. Department of Defense
(DoD) to facilitate interoperability and reusability (IEEE
1516 2000). However, customizing each and every CSP
through different means to achieve interoperation using the
HLA involves significant effort. The Commercial off-the-
shelf Simulation Package Interoperability Product Devel-
opment Group (CSPI-PDG 2005) endorsed by the Simula-
tion Interoperability Standards Organization (SISO) re-
cently began work to complement the HLA standard by
creating standards for interoperation of simulation compo-
nents/packages. Its objective is to derive a set of standard
reference models, data exchange standards and generic in-
terfaces (Taylor, Turner, and Low 2005) for communica-
tion between the Runtime Infrastructure (as defined by the
interface specification) of the HLA standard and the CSPs.
In this paper, we illustrate the exercise of interoperating

Gan et al.

AutoSched AP (ASAP) simulation models through the
adoption of the HLA and the CSPI-PDG draft standard.
ASAP is widely used in the semiconductor industry. It is a
highly flexible CSP where extensions to the simulator can
be realized through the customization module (Brooks
2001). The customization module is then integrated into
the ASAP simulation engine through dynamic linked librar-
ies.

On the modeling aspect, we preserve the way models
are built using ASAP with the interoperation details hidden
from the modeler. The extension also ensures that existing
ASAP models can be made interoperable with minimum
modifications. Straβburger (1999) called this an implicit
approach as all the HLA functionalities are hidden from
the modeler’s point of view.

On the implementation aspect, interoperating simula-
tion components incurs extra overhead as the simulation
executes and communicates across a network. Also, the
simulation components’ time progress needs to be syn-
chronized. This extra overhead should not slow down the
simulation execution too much as it will offset any benefits
gained in reusing and interoperating the simulation com-
ponents. Thus, a Borderless Fab model (Lendermann et al.
2004) built using the ASAP simulator that involves simula-
tion of two wafer fabrication factories sharing capacity to
cope with new product introduction was used to evaluate
the performance of the interoperating ASAP simulation
components.

This paper is organized as follows: Section 2 first
gives a brief overview of how a typical discrete event
simulator advances time using the HLA, followed by a de-
rived set of requirements that CSPs need to fulfill before
they can be made interoperable. In Section 3, we discuss
how ASAP fulfills the requirements outlined in Section 2,
propose a system architecture for the interoperation, and
discuss two variations of the time synchronization mecha-
nism. The Borderless Fab model is described in Section 4.
This is followed by the performance comparison of a se-
quential simulation, and a distributed simulation using the
two variations of the time synchronization mechanism, in
Section 5. Lastly, Section 6 concludes the paper with an
outline of future work.

2 INTEROPERATING COMMERCIAL OFF-THE-
SHELF SIMULATION PACKAGES (CSP)

2.1 Typical Execution Steps for Distributed Discrete
Event Simulation

To interoperate CSPs, we first have to understand how a
typical distributed discrete event simulator executes a
simulation run. This involves three phases, namely the ini-
tialization, execution (state transitions at discrete points in
time), and termination phases. During the initialization
phase, the CSP joins the simulation and declares its interest
395
in information/events. After this it is suspended until all
other simulation components (also known as federates in
HLA terminology) join the simulation. This is illustrated
by Lines 1 to 3 in Figure 1.

The federate transits into the execution phase once all
other federates join the simulation. In the main event loop
(illustrated by Lines 4 to 10 of Figure 1), the federate
makes a request for time advancement before it simulates
any events (Line 5), a necessary action when the conserva-
tive synchronization protocol is used. This is to ensure that
the causality constraint of the simulation is not violated.
The RTI offers two ways of advancing time, namely the
next event request (NER) and the time advance request
(TAR). The most appropriate time synchronization mecha-
nism to be used will be the NER as the federate has no in-
formation about when the next external event arrives, and
when will it trigger an external event. The NER will result
in a grant for the federate to proceed either to the requested
time or the time of the external events that are delivered to
the federate. Upon delivering the external events, the RTI
returns control to the federate. The federate will then simu-
late all the events that have timestamp less than or equal to
the granted time (Line 8). During this process of simula-
tion, new external or local events will be triggered (Line
9). This process of time advancement and simulation is re-
peated until the end of simulation time is reached, or when
there are no more events to be simulated.

The termination phase is the most straightforward. The
federate that exits the simulation last will destroy the simu-
lation.

1. Join simulation
2. Declare interests of the model
3. Suspend simulation till all federates join
4. While not end of simulation
5. ReqTime = time of next event to be
 processed
6. TimeGranted = ask for time advance to
 ReqTime from RTI
7. {receive external messages}
8. Process all events with timestamp at
 TimeGranted or less
9. {sending messages or introducing
 new local events}
10. End of loop
11. Destroy the simulation

Figure 1: Typical Execution Steps for Distributed Discrete
Event Simulation using the HLA Standard

2.2 Interoperation Requirements for CSP

Based on the typical execution steps of distributed discrete
event simulation outlined in Section 2.1, CSPs need to
provide the following features for interoperation using the
HLA standard:

• (R1) Ability to initialize the distributed simulation
prior to simulation execution

• (R2) Ability to suspend the simulation execution

Gan et al.

• (R3) Access to the time of the next event to be
simulated

• (R4) Ability to introduce new events/entities from
the external source into the event list

• (R5) Access to information of simulation ob-
jects/entities that are shared among federates

Features (R1) and (R2) are needed because the feder-
ate needs to first join the simulation and then be suspended
from execution until all the other federates join (Lines 1 to
3 in Figure 1) before the simulation begins. The federate is
also suspended while it is waiting for a time grant from the
RTI (Line 6 of Figure 1).

When the federate requests for time advancement us-
ing the NER time request, it needs to provide the time-
stamp of the next event to be simulated (Line 5 of Figure
1). This means that the CSP needs to provide a mechanism
by which the timestamp of the next event can be obtained,
and hence the (R3) requirement.

New events will be received from other federates dur-
ing the course of simulation (Line 7 of Figure 1), while the
federate is suspended waiting for the time grant. These new
events are simulated when the control is returned to the
federate as their timestamp is less than or equal to the
timestamp of the current local events. Hence the CSP
needs to provide a mechanism to simulate these external
events and suspend the local events for the time being. One
way is to allow these external events to be merged into the
internal event list of the federate. With this, external events
will be handled just like local events when the control re-
turns to the federate. This gives rise to the required (R4)
feature.

When an event is simulated, new external
events/entities might be triggered (Line 9 of Figure 1).
They have to be packed into a message and delivered to the
receiving federate. To pack the content of the event/entity
into a message, the CSP needs to provide a mechanism to
access the data structure that describes the event/entity,
hence the (R5) requirement.

3 INTEROPERATING AUTOSCHED AP (ASAP)
MODELS

3.1 ASAP Fulfilling Interoperability Requirements

AutoSched AP (ASAP) is a CSP supplied by Brooks Auto-
mation that is specially customized to model wafer fabrica-
tion plants. It is widely used in the semiconductor industry
to answer questions such as the impact of dispatching rule
or product mix changes to the factory performance, or
identifying bottleneck equipment with varying demand
profiles, etc. Simulation models are constructed through
input data files. The input data files define the process
routes, resources (workstations and operators), preventive
maintenance (scheduled and non-scheduled), order arrival
patterns, and so on. Simulation progresses as lots move
396
from one workstation to another, following steps defined
by the process route (Brooks 2001). In this paper, lots will
be the basic entities that are moved from one model to an-
other to keep the illustration of interoperating ASAP sim-
ple.

The important aspect of ASAP that will be covered
here is its extensibility for interoperation. ASAP uses a
publish/subscribe messaging system to allow function calls
to be triggered by events that occur during simulation.
These functions are known as the notification functions in
ASAP terms, and they implement extensions to the ASAP
simulation engine. These extensions are all collected into a
library that is loaded into ASAP at runtime. The pub-
lish/subscribe mechanism of ASAP makes it possible to en-
hance the ASAP simulator for interoperation.

Table 1 summarizes the notification messages that the
customization module needs to subscribe to, for interopera-
tion of ASAP models. A notification function of a simula-
tion component that joins the distributed simulation de-
clares interest in information or events (including
information that it shares out) and is associated to the
NT_FACTORY_FINISHED_ALL_FILES message. This notifica-
tion message is published by the ASAP simulation engine
immediately after all the standard input data files are read.
This satisfies (R1) mentioned in Section 2 as we are able to
initialize the distributed simulation prior to simulation exe-
cution. The handing over of execution control to the notifi-
cation function also means that (R2) is satisfied as the
ASAP simulation engine will not proceed until the call to
the notification function returns. Thus, the notification
function can suspend the federate until all other federates
have joined the simulation.

Table 1: Notification Messages by ASAP

Event Type Description

NT_FACTORY_
FINISHED_ALL_

FILES

Published by the simulation
engine immediately after
reading all the standard input
data files.

NT_FACTORY_
FINISHED_

CURRENT_EVENT

Published by the simulation
engine when all events at cur-
rent simulation time are
simulated.

NT_APPLICATION
_INTIALIZED

Published by the simulation
engine just before the simula-
tion begins, after the model is
fully initialized.

NT_APPLICATION
_FINISHED

Published by the simulation
engine immediately before
simulation terminates.

The NT_FACTORY_FINISHED_CURRENT_EVENT is pub-

lished by the simulation engine after all the events at the
current simulation time are simulated. A notification func-
tion that advances the simulation time of the federate

Gan et al.

through the RTI can be associated with this message. By
doing so, we can suspend the simulation from progressing,
by not returning from the notification function, until a time
grant is given by the RTI. This ensures that the federate
does not violate the causality constraint. But in order to is-
sue a time request to the RTI, we need to know the time-
stamp of the next event that will be simulated. ASAP pro-
vides access to its underlying simulation engine through a
set of classes, collectively known as the AP Framework
(Brooks 2001). The timestamp of the next event, which is
the first event in the Future Event List, can be obtained
through the SIMEngine object class. Thus, ASAP satisfies
the (R3) requirement outlined in Section 2.

As mentioned earlier, lots are the basic entities that are
moved from one model to another in ASAP. Lots at the
source model have to be deleted, and need to be introduced
at the destination model when they arrive. The AP Frame-
work offers the FIFactory object class that exposes the
ability to create and delete a lot dynamically during the
simulation run. Having access to this object class, we are
able to introduce lots at the destination model and fulfill
the (R4) requirement.

The FILot object class provided by the AP Framework
enables us to retrieve the attribute values of a lot. These at-
tribute values are packed into a message and delivered
through the RTI when we model movement of a lot from
one factory to another. This means that ASAP fulfills the
(R5) requirement as well. As a result, the ASAP simulator
is able to fulfill all the five requirements for interoperabil-
ity outlined in Section 2.

The NT_APPLICATION_INITIALIZED and the
NT_APPLICATION_FINISHED in Table 1 are another two im-
portant notification messages that the customization mod-
ule needs to subscribe to. The former notification message
has an associated function that requests for initial time ad-
vancement before the simulation begins, after the model is
initialized. This kicks start the simulation and subsequent
time advance requests are triggered by the
NT_FACTORY_FINISHED_CURRENT_EVENT message as dis-
cussed earlier. The latter notification message is used to
implement a notification function that causes the federate
to resign from the simulation when the federate reaches the
end of the simulation.

3.2 Modeling Capability Extension

Section 3.1 mainly focuses on the question whether ASAP
fulfills the interoperability requirements. Another very im-
portant issue that we need to address is that an enhanced
ASAP simulator for interoperation should not be more dif-
ficult to use than the basic ASAP. Bearing this in mind, we
preserve the way the ASAP is used by introducing two new
input data files that define information associated with dis-
tributed simulation. Tables 2 and 3 show the information
that are needed to use this extension. By doing so, the
397
modelers still build their simulation models in the same
way as before. In addition, they just need to supply the data
shown in the two tables.

Besides introducing these two data files, we also ex-
tend the process route data file such that modelers can de-
fine which step of the process route will trigger a lot trans-
fer from one factory to another. Table 4 defines the three
new data fields that were added to the process route data
file. The condition that triggers lots to be moved from one
factory to another can be coded by the modeler using the
AP Framework, and a forward_lot function that is supplied
by our extension. The modeler does not need to know how
the lot is forwarded, but just has to indicate the destination
federate and exit point to be used to forward the lot. Note
that an exit point always corresponds to an entry point in
the receiving federate.

Table 2: Distributed Simulation Configuration File

Field Description

Federation
Name

The name of the distributed simulation.
It is used for the federate to join the
simulation.

Federate
Name The name of this federate.

Fed
Filename

The fed file that defines the information
to be shared in the distributed simula-
tion.

Number of
Federates

Number of federates to join the simula-
tion. Used by the controller federate to
kick start the simulation once all feder-
ates have joined.

Controller
Indicates if the federate is a controller
federate. Only one exists in each simu-
lation.

Table 3: Entry/Exit Points Definition File

Field Description
Source Name of source federate.

Destination Name of destination federate.
Exit Point Exit point that connect the two feder-

ates.
Entry Point Entry point that connects the two feder-

ates.
Delay Delay in hours for sending a lot from

source to destination federate.

Table 4: Extension to Process Route File
Field Description

Condition Condition to satisfy for routing the lot.
Destination Destination federate that receives the

lot.
Exit Point Exit point to be used for movement of

the lot.

Gan et al.

3.3 The System Architecture

As mentioned in Section 1, we adopted the draft standard
defined by the CSPI-PDG that complements the HLA
standard in interoperating the ASAP simulator. The CSPI-
PDG has defined a set of generic interfaces (Wang et al.
2004) that CSPs can call to interact with the RTI of HLA.
This reduces the effort required to interoperate CSPs as
any CSPs that are compliant to this standard will be able to
talk each other, using the same data exchange standard and
protocol that is also defined by the CSPI-PDG. Figure 2
shows the system architecture of the enhanced ASAP simu-
lator. At the top level, the simulation model is built using
the ASAP as usual. ASAP is extended to invoke the
DSManager through the generic interface which handles
the interaction between ASAP and RTI. The details of this
interaction are all hidden in the middleware. The middle-
ware also implements the standard data exchange protocols
that were defined for alternative reference models in CSPI-
PDG. More details of the reference models can be found in
CSPI-PDG (2005).

Figure 2: System Architecture

3.4 Time Synchronization Mechanism

Having discussed the details of interoperating the ASAP
simulator, one very important issue to be resolved in this
interoperation exercise is the time synchronization mecha-
nism to ensure efficient execution of the distributed simu-
lation. The most straightforward way of realizing the time
synchronization among federates is to request for time ad-
vancement for every event that the federate simulates. But
this will potentially slow down the simulation significantly.
One solution to this problem is to request for time ad-
vancement when all local events have a timestamp larger

Runtime Infrastructure (RTI)

Generic
Interface

Simulation
Model

RTIAmbassador+
Middleware

RTI+

DSManager (C)
 FederateAmbassador

ASAP

mapping file
 / GUI

FederateAmbassador+

FED

RTI Library (C++)

RTIAmbassador
398
than the last time granted by the RTI, using the timestamp
of the earliest event that potentially will trigger external
events as the request time.

This approach is valid because local events that do not
affect the causality of other federates are not important to
the RTI (this statement is only true when we use the
NER/NERA time request). The RTI is only interested in
those events that potentially can cause a causality error
during a simulation run. Hence, it is safe for federates to
issue a NER time request with the timestamp of the next
event that potentially can trigger an external event. One
might argue that an event arriving from other federates po-
tentially will also trigger external events. Issuing a time re-
quest without considering these undelivered external
events might not be safe. This is not true because the RTI
will not give a time grant that is greater than the timestamp
of undelivered external events when using the NER time
request. Hence, this approach of requesting for time ad-
vancement using the timestamp of events that potentially
trigger external events is still safe. Now the question is
how do we identify these potential events?

For the ASAP interoperation exercise described in this
paper, we can obtain the potential events by looking at the
steps that trigger a lot moving from one factory to another.
For example, when a lot might be forwarded at step n, a lot
being scheduled at step n-1 potentially will trigger an ex-
ternal event after tn-1 time units where tn-1 is the processing
time of the lot at step n-1. We can keep track of all the
forwarding events that are associated with step n-1 in a po-
tential event list. Whenever a time request needs to be is-
sued, we will use the timestamp of the next event in the po-
tential event list as the requesting time.

1. While not end of simulation
2. EventTime = time of next event to be
 processed
3. If (EventTime > TimeGranted)
4. If (PotentialEvents.is_empty())
5. ReqTime = TimeGranted + TimeStep
6. Else
7. CurrEvent = PotentialEvents.pop()
8. ReqTime = timestamp of CurrEvent
9. End if
10. TimeGranted = ask for time advance to
 ReqTime from RTI
11. End if
12. End of loop

Figure 3: Optimized Time Synchronization Mechanism

Just using the timestamp of the next event in the po-

tential event list for the time request is not a complete solu-
tion. There will be situations in which no activities happen
at step n-1, and the potential event list will be empty. In
such cases, what is the request time that we should use?
Can we issue a time request to the end of simulation time?
Issuing a time request to the end of simulation time is not
valid as some lots that are waiting at step n-2 or earlier
might eventually arrive at step n-1, which potentially will

Gan et al.

trigger an external event. When an external event is sent,
its timestamp must be at least the last granted time plus
lookahead. Lookahead is defined as the minimum time de-
lay at which an external event will be sent from the last
granted time. A solution to this problem is to switch the
time synchronization mechanism to a time step approach,
whereby the request time is incremented with a time period
from the last granted time. This raises the question of what
is the right time period to be used to ensure efficiency of
simulation and preserve the causality constraint of the
simulation.

The best time period that can be used for this time
synchronization mechanism is the processing time of the
lot at step n-1. If there is more than one step that poten-
tially will trigger a lot transfer, the minimum processing
time of all the lots at steps n-1 can be used. This minimum
processing time is safe because any events that are being
scheduled during this time period will only generate the
potential event at time at least t+tn-1, where t is the time-
stamp of the scheduled event. In the worst case, a lot is
moved from step n-2 to step n-1 at the last granted time
and is scheduled onto the workstation at step n-1 immedi-
ately. The earliest that an external event could be triggered
will then be tn-1 later, which falls into the next time ad-
vance request period. Figure 3 gives a code outline of this
optimized time synchronization mechanism that is imple-
mented into the customization module, hidden from the
modeler.

4 BORDERLESS FAB SIMULATION MODEL

The Borderless Fab concept is a means of sharing capacity
across wafer fabrication plants that are within close prox-
imity (Lendermann et al. 2004). Having a means of sharing
capacity across factories is particularly important in the
semiconductor industry as equipment is typically expen-
sive. The capital cost of a typical wafer fabrication plant is
approximately US$3.5 billion. This sharing of capacity can
help factories to handle some unplanned situations more
effectively. Examples of unplanned situations are: a sudden
surge in demand of certain product types or an unsched-
uled breakdown of a bottleneck machine. It is also useful
in scenarios where specialized equipment that is not fully
utilized in one factory can be shared with another instead
of buying additional equipment in other factories. Hence,
the Borderless Fab concept, if successfully implemented,
can help semiconductor companies save millions of dollars
in equipment investment, and assists them to handle un-
planned situations more effectively.

In this paper, a Borderless Fab model that comprises
of two wafer fabs was built using ASAP. The two wafer
fabs have similar capabilities of producing ten wafer prod-
uct types (0.35 micron technology logic devices and anti-
fuse gate devices) but with different capacities. The proc-
ess flows of the wafer products considered range from 200
399
to 300 steps. A total of 73 workstation types were modeled
in each fab, including the downtime behavior of each
workstation. Some example of workstations in the wafer
fab are: wet benches, furnaces, steppers, implanters and
metrology tools.

This Borderless Fab model was used to evaluate dif-
ferent strategies of moving lots from one fab to another.
One of the strategies that was evaluated was that lots are
moved from one fab to another when the lot of a defined
product type reaches a bottleneck machine. Variations of
this strategy will be to allow the lots to continue on at the
receiving fab, or be moved back to the original factory
upon completion of the operation. The model can also be
used to decide what is the optimal number of lots that need
to be collected before they are moved to another fab. Intui-
tively, moving one lot at a time is a waste of resources.
This model was also used to study the impact of introduc-
ing a new product type to a fab that is already at the peak
of its capacity. We showed that moving lots of the new
product from one factory to another helps us keep the
overall capacity of the factory in good shape (Lendermann
et al. 2004).

The Borderless Fab concept is a good application of
distributed simulation technology. With an interoperable
ASAP simulator, the two wafer fab models can now be
executed in two separate computers, interacting with each
other through the RTI, rather than being combined into a
single ASAP model. The process of integrating the two
models into one manually is tedious as we need to worry
about the naming of resources, parts, and orders (just to
name a few) to ensure that there are no name clashes be-
tween the models. Besides that whenever any of the fab
models is modified, we will need to redo the integration
exercise. With an interoperable ASAP, any modification to
the fab model is absolutely transparent to the other fab
models.

5 EXPERIMENTAL RESULTS

The performance of the enhanced ASAP was evaluated us-
ing the borderless fab model described in Section 4. Both
fabs produce ten wafer product types, with approximately
8500 wafer lots being released into each fab in a year of
simulation. We chose a scenario that involves movement
of lots in both directions, with a delay of 3 hours for trans-
ferring the lots. Lots belonging to a specific product are
moved from Fab A to Fab B at a bottleneck workstation,
and then continue in Fab B until they reach another bottle-
neck workstation, when they are moved back to Fab A. We
compare the execution time of simulating this scenario as a
single model, as a distributed model with the basic time
synchronization mechanism, and as a distributed model
with the optimized time synchronization mechanism. The
experiments were conducted using Pentium IV 1.7 GHz
computers, with 1 GBytes of memory. For the distributed

Gan et al.

simulation cases, a computer is allocated exclusively to run
the server process of the RTI. The computers are intercon-
nected by a 100 Mbps Ethernet.

Table 5 compares the execution time collected for the
three scenarios. The execution time collected is the average
of five runs to reduce the error introduced by network traf-
fic, especially in the distributed simulation cases. As
shown in the table, the performance of the enhanced ASAP
with the optimized time synchronization mechanism is
comparable to the sequential simulation. But the perform-
ance using the basic time synchronization mechanism is
ten times worse relative to the sequential simulation. The
reason for this is that the basic time synchronization
mechanism issued approximately 2 million time requests
throughout the simulation execution (approximately 2 mil-
lion events were simulated). In contrast the optimized time
synchronization mechanism issued only 4892 and 8533
time requests for Fab A and Fab B respectively. Thus the
latter approach reduces the overhead of the distributed
simulation significantly. The reason for the difference in
the number of time requests issued by Fab A and Fab B is
that the time step being used is 91.0 minutes at Fab A and
52.4 minutes at Fab B, which are the respective processing
times of step n-1 where n is the step at which lots poten-
tially will be moved from one fab to another.

Table 5: Performance Comparison of Sequential vs Dis-
tributed Simulation using ASAP

Distributed Sequential Basic Optimized
Execution

Time
13.0

minutes
133.8

minutes
13.5

minutes
Fab A 2090819 4892 No of Time

Requests Fab B 2053403 8533

These experimental results are encouraging as they

show that by distributing the simulation models into two
computers, we manage an execution time that is compara-
ble to running the simulation as one single model. The
benefits of distributed simulation will become more sig-
nificant when a larger model is used as distributed simula-
tion provides better scalability. In addition to that, models
are much easier to maintain and enhance.

6 CONCLUSIONS AND FUTURE WORK

We have outlined five requirements that CSPs need to ful-
fill before interoperability can be achieved using the HLA
standard. The ASAP simulator fulfills all the five require-
ments, and was successfully made interoperable through
the adoption of the complementary standards provided by
the CSPI-PDG. The enhanced version of the ASAP still
preserves the way models are built and the details on inter-
operation are transparent to the modeler. An important les-
son that we have learnt from this exercise is that it is criti-
400
cal to spend some effort in optimizing the time
synchronization mechanism during the process of interop-
erating CSPs. Using the basic time synchronization
mechanism provided by the HLA will typically result in an
inefficient simulation execution. This was shown in the
experiments that we did on a Borderless Fab model, where
the basic distributed simulation runs ten times slower than
the sequential simulation. On the other hand, the distrib-
uted simulation using the optimized time synchronization
mechanism was able to achieve an execution time that is
comparable to the sequential simulation.

There is still some work that can be done in enhancing
the time synchronization mechanism. Further experiments
also need to be conducted to evaluate the impact of pa-
rameters such as lookahead, and the processing step of the
process route for monitoring potential events, to the per-
formance of the simulation. On the interoperability of
CSPs, we will next attempt to interoperate AutoMod with
ASAP. This is an important exercise as in 300 mm wafer
fabrication plants, AutoMod is typically used to model the
material handling aspect of the factory, while ASAP is used
to model the process flow. Having the ability to interoper-
ate these two CSPs allow us to easily integrate the two
models to perform what-if analysis on the interdependency
between the material handling and process flows.

REFERENCES

Brooks Automation. 2001. AutoSched AP Customization
Guide v 7.0.

CSPI-PDG. 2005. http://www.cspif.com [accessed
March 20, 2005].

Gan, B.P., L. Liu, S. Jain, S.J. Turner, W. Cai, and W.J.
Hsu. 2000. Distributed Supply Chain Simulation
Across the Enterprise Boundaries. In Proceedings of
the 2000 Winter Simulation Conference, ed. J.A.
Joines, R.R. Barton, K. Kang, and P.A. Fishwick,
1245-1251.

IEEE 1516 2000. IEEE Standard for Modeling and Simula-
tion (M&S) High Level Architecture (HLA), New
York, NY: Institute of Electrical and Electronics Engi-
neers.

Lendermann, P., N. Julka, B.P. Gan, D. Chen, L.F.
McGinnis, and J.P. McGinnis. 2003. Distributed Sup-
ply Chain Simulation as a Decision Support Tool for
the Semiconductor Industry. Simulation. 79. pp. 126-
138.

Lendermann, P., B.P. Gan, Y.L. Loh, H.K. Tan, S.K. Lieu,
L.F. McGinnis, and J.W. Fowler. 2004. Analysis of a
Borderless Fab Scenario in a Distributed Simulation
Testbed, Proceedings of the 2004 Winter Simulation
Conference, Washington DC, USA, December 5-8,
2004, pp.1896-1901.

http://www.cspif.com/

Gan et al.

Strassburger, S., T. Schulze and U. Klein. 1999. Migration

of HLA into Civil Domains. SIMULATION. 73(5):
296-303.

Taylor, S.J.E., S.J. Turner and M.Y.H. Low. 2005. The
COTS Simulation Interoperability Product Develop-
ment Group. Proc. 2005 European Interoperability
Workshop. Simulation Interoperability Standards Or-
ganization, Institute for Simulation and Training, Flor-
ida, 05E-SIW-056.

Wang, X.G., S.J. Turner, M.Y.H. Low and B.P. Gan. 2004.
A Generic Architecture for the Integration of COTS
Packages with the HLA, UK Operational Research
Society Simulation Workshop, Birmingham, UK, Mar.
23-24, pp. 225-233.

Wang, X., S.J. Turner, S.J.E. Taylor, M.Y.H. Low, B.P.
Gan. 2005. A COTS Simulation Package Emulator
(CSPE) for Investigating COTS Simulation Package
Interoperability, to appear in Proc. 2005 Winter Simu-
lation Conference, Orlando, USA, December 4-7.

AUTHOR BIOGRAPHICS

BOON PING GAN is a Research Engineer with the D-
SIMLAB Programme at the Singapore Institute of Manu-
facturing Technology. The focus of his research is on the
application of distributed simulation technology for supply
chain simulation. He received a Bachelor of Applied Sci-
ence in Computer Engineering and a Master of Applied
Science from Nanyang Technological University of Singa-
pore in 1995 and 1998, respectively. His research interests
are parallel and distributed simulation, parallel programs
scheduling, and application of genetic algorithms. His
email address is bpgan@SIMTec.a-star.edu.sg.

MALCOLOM YOKE HEAN LOW is a Research Engi-
neer with the D-SIMLAB Programme at the Singapore In-
stitute of Manufacturing Technology. He received his doc-
torate from Oxford University in 2002. His research
interests are in the areas of adaptive tuning and load-
balancing for parallel and distributed simulation systems,
and the application of multi-agent technology in supply
chain logistics coordination. His e-mail address is
yhlow@SIMTech.a-star.edu.sg.

PETER LENDERMANN is a Senior Scientist and Head
of the D-SIMLAB Programme at Singapore Institute of
Manufacturing Technology (SIMTech). Previously he was
a Managing Consultant with agiplan in Germany where his
focus was on the areas of supply chain management and
production planning. He also worked as a Research Asso-
ciate at the European Laboratory for Particle Physics
CERN in Geneva (Switzerland) and Nagoya University
(Japan). He obtained a Diploma in Physics from the Uni-
versity of Munich (Germany), a Doctorate in Applied
Physics from Humboldt-University in Berlin (Germany)
401
and a Master in International Economics and Management
from Bocconi-University in Milan (Italy). His research in-
terests include modelling and analysis of manufacturing
and logistics systems as well as distributed simulation. His
email address is petrel@SIMTech.a-star.edu.sg.

XIAOGUANG WANG is currently a Ph.D student at
School of Computer Engineering (SCE), Nanyang Techno-
logical University, Singapore. She received her B.Sc in
Computer Science form Nanjing University of Aeronautics
and Astronautics, China in 1997. Her research interests lie
in Distributed Simulation and the High Level Architecture.
Her e-mail address is xgwang@pmail.ntu.edu.sg.

STEPHEN JOHN TURNER joined Nanyang Techno-
logical University (Singapore) in 1999 and is currently an
Associate Professor in the School of Computer Engineer-
ing and Director of the Parallel and Distributed Computing
Centre. Previously, he was a Senior Lecturer in Computer
Science at Exeter University (UK). He received his MA in
Mathematics and Computer Science from Cambridge Uni-
versity (UK) and his MSc and PhD in Computer Science
from Manchester University (UK). His current research in-
terests include: parallel and distributed simulation, distrib-
uted virtual environments, grid computing and multiagent
systems. His e-mail address is
assjturner@ntu.edu.sg.

SIMON J E TAYLOR is a Senior Lecturer in the School
of Information Systems, Computing and Mathematics, and
is a member of the Centre for Applied Simulation Model-
ing, both at Brunel University, UK. He is also a Visiting
Associate Professor at the Parallel and Distributed Com-
puting Centre at Nanyang Technological University in
Singapore. He is also Information Director of ACM
SIGSIM, ACM SIGSIM PADS Liaison Officer and Chair
of the Simulation Study Group of the UK Operational Re-
search Society. He is a steering committee member of
PADS and general co-chair of the UK Simulation Work-
shop Series. His main research interests are distributed
simulation and applications of ICT to simulation modeling.
His email address is simon.taylor@brunel.ac.uk.

mailto:bpgan@SIMTec.a-star.edu.sg
mailto:yhlow@SIMTech.a-star.edu.sg
mailto:petrel@SIMTech.a-star.edu.sg
mailto:xgwang@pmail.ntu.edu.sg
mailto:assjturner@ntu.edu.sg
mailto:simon.taylor@brunel.ac.uk

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

