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ABSTRACT

Even after several decades of research, modeling is con-
sidered an art, with a high liability to produce incorrect
abstractions of real world systems. Therefore, validation
and verification of simulation models is considered an in-
dispensable method to establish the credibility of developed
models. In the process of parallelizing or distributing a given
credible simulation model, a bias is introduced, possibly
leading to serious errors in simulation results. Depending
on the mechanisms used for parallelization or distribution,
a separate validation of the parallel or distributed model
is required. A necessary first step for such a validation is
an understanding of the sources of bias that might occur
through parallelization or distribution of a simulation model.
The intention of this paper is to give an overview of the
various types of bias and to give a formal definition of the
bias and its quantification.

1 INTRODUCTION

When developing a parallel or distributed simulation model,
several choices have to be made regarding the partitioning
of the simulation tasks in multiple subtasks and the synchro-
nisation between the parallel processes. Depending on the
nature of the simulation, several different approaches exist.
For example, in real-time training simulations, a federa-
tion of sequential simulations is created using Distributed
Interactive Simulation (DIS) (IEEE Std 1278.1–1995 ). A
constructive (as-fast-as-possible) discrete-event simulation
is parallelized using conservative or optimistic synchroniza-
tion methods (Fujimoto 2000). Simulations from both areas
can be used together in a High-Level Architecture (HLA)
federation (Dahmann, Fujimoto, and Weatherly 1997). In
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each of these cases, the newly developed distributed model
is distinct from the model that was parallelized (the models
that were composed to a distributed simulation, resp.).

Classic synchronisation methods for parallel simulation
of discrete-event models were devised to ensure correctness
of the parallel simulation, i.e. to produce results identical to
the results of a corresponding sequential simulation. Formal
proofs of this property have been provided for conserva-
tive (Misra 1986) and optimistic (Leivent and Watro 1993)
synchronization. However, in many cases, the paralleliza-
tion methods seriously restrict the degree of parallelism of
simulation systems. Therefore, variants of these methods
have been developed where the correctness property does
not hold (Kiesling and Pohl 2004, Martini, Rümekasten,
and Tölle 1997, Rao, Thondugulam, Radhakrishnan, and
Wilsey 1998, Wang and Abrams 1992). In the latter case,
credibility of the parallel simulation models has to be estab-
lished by the use of validation and/or verification methods
in addition to the validation of the sequential model.

The situation is similar with distributed simulation sys-
tems where no strict time-management is utilized, as is the
case with DIS, or HLA federations where at least one fed-
erate is not time-constrained. The necessity of performing
validation and verification activities for the distributed mod-
els has been recognized before (Brade 2003, Section 6.8),
but no decisive steps in this direction have been taken.

Figure 1 shows an abstract view of the development
process of a parallel or distributed simulation. Starting
from a problem in the real world, a model of the real
system is created. It is supposed here, that the initial
model is of a sequential nature, i.e. no special precautions
for the parallelization of the model have been taken. The
abstraction that is involved in the modeling step always leads
to a discrepancy between the behavior of the real system
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Figure 1: Distributed Simulation Development

and the behavior specified in the model. This discrepancy
can be interpreted as a bias of the model in respect to the
real system (the term bias is used in a non-statistical sense
in this paper). The model is considered credible if the
bias is negligible according to the problem definition. To
ensure this credibility, validation of the model against the
real system is performed according to pre-defined criteria.

To create a parallel or distributed simulation, the sequen-
tial model is enhanced with details about the distribution (or
parallelization), resulting in a distributed (or parallelized)
model. As discussed above, this introduces another level
of bias, which is caused by the utilized distribution (or
parallelization) method. It is dangerous to always consider
the distributed model valid without having performed an-
other validation step, either against the sequential model,
or against the real system, or both.

An important aspect to be considered for every validation
activity of the distributed model is the bias introduced in
the distribution/parallelization step. Without a more detailed
knowledge of the bias caused by the distribution, validation
might be hard to perform. This paper gives an overview
about the specific types of bias that might occur in a model
(Section 2) and gives a formal definition of the bias and its
quantification (Section 3).

2 CLASSIFICATION

Prior to formalization of different types of uncertainty,
vagueness, and incorrectness in Section 3, we summarize
with the term bias that there is a difference of an aspect
of a simulation run from some reference. Different as-
pects of interest as well as different reference systems may
be considered. For example, the following aspects in a
(distributed) simulation may be of interest:

• The trajectory of the state vector in the state space,
• an aggregated performance measure (e.g. the av-

erage utilization of a service center in a queueing
network model),

• events occurring in an event-driven simulation,
• the exact ordering of events in a discrete-event

simulation,
• the state of the simulation system at an arbitrary

point in wall clock time during the simulation run.
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Typical reference systems are:

• The real/physical system (keyword validation of
simulation models),

• the formal and/or conceptual model the executable
model is based on (keyword verification of simu-
lation models),

• another simulation run with the same simulator
(keyword repeatability of simulation experiments),

• a sequential version of a parallel or distributed
simulation system (keyword synchronization and
coordination in parallel and distributed simula-
tion),

• an idealized distributed simulation system, i.e. dis-
tributed simulation using a reliable communication
system without latencies.

There are various sources for bias in the above sense.
Below, we roughly classify reasons for uncertainties and
incorrectness in three categories:

1. Bias that is caused independently from paralleliza-
tion or distribution of the simulation model,

2. bias in parallel and distributed simulation that is
caused by the technical framework applied in par-
allel and distributed simulation, and

3. bias that is deliberately accepted by the modeler
(simulation developer, resp.) in a controlled fash-
ion in order to increase the performance or fault
tolerance of a parallel or distributed simulation run.

2.1 Bias not Depending on Parallelization
and Distribution

Even in sequential simulation on a single processor, aspects
of vagueness, inexactness, and uncertainty may occur. In
order to obtain a clearer understanding for the effects of
parallel and distributed simulation, we briefly discuss as-
pects that occur independently from parallel or distributed
simulation.

2.1.1 Abstraction and Implementation

While constructing a simulation model, the required ab-
stractions and simplifications always cause a divergence of
the models behavior from the behavior of the real system.
Controlling this type of inexactness in a systematic way is
dealt with by model validation (Balci 1998, Brade 2003).
The degree of inexactness tolerated here is implicitly or ex-
plicitly defined via the primary objective of the simulation
model.

Incorrect behavior and associated inexactness of a sim-
ulation model as opposed to the corresponding formal or
conceptual model may also be caused by incorrect trans-
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lation and implementation. Such aspects should be dealt
with by methods of model verification (Balci 1998).

2.1.2 Stochastic Modeling

Using random variables is a popular instrument to represent
details of the real system that are not available to the modeler
or that are too fine grained for the intended purpose of the
simulation model. Consequently, in stochastic simulation
uncertainty and vagueness occur at least twofold: Firstly,
repeated simulation runs differ in their behavior due to
the introduced randomness. Secondly, the behavior of the
model clearly differs from the behavior of the real system,
since in the real system many aspects modeled via random
variables are in fact deterministic.

Since random behavior in simulation models is actually
realized via pseudo random sequences (which causes an ad-
ditional difference between the formal and the executable
model), uncertainty in the first sense may be eliminated
by controlling the seeds of the pseudo random number
generators. This way, also (pseudo) stochastic simulation
experiments can be made repeatable. Uncertainties in the
second sense are an integral property of stochastic simu-
lation. They can be dealt with by appropriate statistical
methods (such as confidence intervals or the computation
of higher moments of simulation results) if the intended
purpose of the simulation model is system analysis. If the
intended purpose is training and education, the trainee and
trainer should be aware of random aspects of the model.

2.1.3 Discretization and Rounding Errors

Usually, systems of differential equations are used for the
representation of continuous aspects of system behavior.
Since such mathematical representations often do not allow
for a closed form solution, numerical methods are applied
that typically rely on the discretization of continuous model
aspects. This usually implies a difference between numer-
ically computed model solutions and the theoretical exact
solutions of the formal model. However, many methods of
computational mathematics provide an estimation or bound
for the error introduced by discretization. Moreover, dis-
cretization errors may be controlled by using techniques of
adaptive steplength control.

Also, rounding errors introduced by the application of
numerical methods may be controlled by using appropriate
mathematical tools (e.g., interval arithmetic (Moore 1988,
Neumaier 1990). However, to the best of our knowledge,
such methods are rarely used in simulation models.

2.1.4 Interactivity

The influence of human interaction on simulation behav-
ior has a direct negative influence on the repeatability of
3
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simulation runs by its very nature. However, repeatability
w.r.t. human interaction is not a realistic requirement in
interactive simulation.

2.2 Uncertainties Caused by the Principles andTechnical
Frameworks of Distributed Simulation

Parallel and distributed simulation is based on the principle
of simulating partitions of a simulation model on a number
of processing nodes. Depending on the type of synchro-
nization method, the most relevant aspects of the technical
framework for parallel and distributed simulation w.r.t. bias
and uncertainty are communication latencies, differing hard-
ware clocks and the necessity to order simultaneous events.

2.2.1 Communication Latencies

Communication between processors or computing nodes
is an integral part of parallel and distributed simulation.
Depending on the time management of the distributed sim-
ulation model, communication latencies can be a source of
additional uncertainties and inexactness.

In uncoordinated real-time simulation (e.g., DIS – Dis-
tributed Interactive Simulation) communication latencies
cause a delayed arrival and thus a delayed consideration
of messages. This yields inexact behavior in at least two
respects: Firstly, such delays cause a difference of the simu-
lation behavior from the formal model and a corresponding
sequential implementation. This can lead to time anomalies
and causality violations (consider for example the situation
where an observer sees a target destroyed before he/she
has seen another tank firing). Secondly, communication
latencies contribute to differences between repeated simu-
lation runs, because many communication systems involve
non-deterministic behavior (e.g., Ethernet-based local area
networks or the Internet). When using coordinated real-time
simulation, uncertainties of the latter kind may be elimi-
nated. However, latencies may still cause a violation of
real-time requirements.

The well-known mechanisms for time coordinated as-
fast-as-possible simulations, such as conservative (Chandy
and Misra 1979) or optimistic simulation (Jefferson 1985),
guarantee that parallel simulation produces the same event
sequences as sequential simulation. Thus, uncertainties
described in this section do not appear in time-coordinated
simulation. Especially, repeatability is guaranteed despite
the presence of indeterministic communication latencies.

2.2.2 Asynchronous Hardware Clocks

Even without the consideration of communication latencies,
uncoordinated distributed real-time simulation assumes syn-
chronized hardware clocks in order to obtain correct be-
havior. However, exact synchronization of hardware clocks



Kiesling, Lüthi, and El Abdouni Khayari
cannot be guaranteed. This may contribute to various uncer-
tainty aspects: a divergence from the formal model and from
a sequential implementation as well as non-repeatability of
simulation runs. In analogy to communication delays, also
unsynchronized hardware clocks do not contribute to un-
certainties in the case of coordinated as-fast-as-possible
simulations.

2.2.3 Simultaneous Events

In order to obtain repeatable simulation runs, special care
has to be taken on simultaneous events (i.e., events with
identical simulation time stamp) even in sequential simula-
tion. Repeatable ordering of simultaneous events is an even
more critical challenge in parallel and distributed simulation.

If no measures are taken in order to guarantee a repeat-
able ordering of simultaneous events, uncontrollable factors
such as different event rates or different communication
latencies in repeated simulation runs can cause a different
ordering of simultaneous events.

Various approaches can be used in order to enable re-
peatability of distributed simulations also in the presence
of simultaneous events. These techniques work by making
identical time stamps unique. Among other approaches, this
can be achieved by associating additional bits with each
time stamp that allow the consideration of causal interde-
pendencies. Similar results can be obtained by associating
different priorities to events with equal time stamps. In (Fu-
jimoto 2000), a combination of using an age field, priority,
node-ID and a sequence number is suggested. An overview
of different event ordering schemes can also be found in
(Rönngren and Liljenstam 1999).

2.3 Exploiting Uncertainty and Tolerating Inexactness
in Order to Achieve Higher Efficiency

In this section, we discuss existing approaches and tech-
niques for parallel and distributed simulation that delib-
erately exploit uncertainties in the simulated real system
or tolerate (slightly) incorrect behavior of the executable
model in order to achieve higher efficiency of the simulation
execution.

2.3.1 Temporal Uncertainty

In many models, sufficiently high lookahead values are
hard to determine, preventing high efficiency in conserva-
tive simulation of time coordinated models. In previous
work, future lists have been proposed to increase lookahead
capabilities (Nicol 1988).

In (Martini, Rümekasten, and Tölle 1997), within the
context of a hybrid optimistic/conservative synchronization
scheme, the conservative blocking behavior is relaxed by
introducing a tolerance ε. Consider a synchronization point
4
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at simulation time t0. Then, the tolerant synchronization
approach allows simulation until time t0 + ε. Events with a
time stamp t0+x < t0+ε are scheduled at simulation time t0.
This introduces a controllable error ε in the exact time stamps
of simulated events that allows to increase the efficiency of
the simulation execution significantly. The authors argue
that the introduced error corresponds to unknown factors in
the real system. Furthermore, it is reported that the effect
of the error in time stamps of some events on the error
of the overall simulation result is usually smaller than the
confidence interval of the result.

Fujimoto addresses a similar yet different solution to the
low/zero-lookahead-problem: In (Fujimoto 1999), a partial
order called approximate time order is introduced: in ap-
proximate time order, intervals are used to capture temporal
uncertainty of the simulated real system. Fujimoto argues
that temporal uncertainty can be found in basically every
model because simulation is always only an approximation
of the real world. Given two time intervals, an is-before
relation holds if the intervals do not overlap. For overlap-
ping intervals no ordering relationship exists between the
two events. In the sequel, this relaxed order for overlapping
time intervals is exploited in order to increase efficiency in
conservative simulation. However, causal interdependence
between events may be lost with that approach. Thus, an-
other partial order is defined that considers causality as well:
approximate time causal order. In experiments based on
the PHOLD algorithm (Fujimoto 1990), Fujimoto showed
that significant speedup could be achieved by using time
intervals and approximate time or approximate time causal
order with moderate effects on the accuracy of the simulation
results.

A disadvantage of the approach proposed in (Fujimoto
1999) is the fact that in order to use the proposed algorithms
for the Runtime Infrastructure (RTI) in the High Level
Architecture (HLA), message delivery mechanisms and the
HLA interface specification would have to be modified
(Loper and Fujimoto 2000). To achieve compliance with
the HLA specification, Loper and Fujimoto propose to use a
combination of time intervals and pre-sampling of a precise
time stamp within time intervals according to some specified
probability distribution (Loper and Fujimoto 2000). The
effect of this algorithm is an increase of lookahead values
that can directly be used in HLA-based simulation.

2.3.2 Spatial Uncertainty

In analogy to temporal uncertainty, Quaglia argues that in
many real systems also spatial uncertainty exists (Quaglia
and Beraldi 2004). In parallel and distributed simulation
based on the logical process (LP) paradigm, usually a
uniquely specified LP is responsible for the simulation of a
given event. Quaglia proposes to exploit spatial uncertainty
in the model in order to relax this mapping by associating a
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set of LPs to every event. The event can be passed to any of
the LPs in this set. This freedom is subsequently exploited
as follows: In optimistic simulation, an event that would
cause a rollback at the receiver LP may be passed on to
other LPs in the set associated to the event. This way, the
number of rollbacks can be reduced and the efficiency of the
optimistic simulation run is increased. Similarly, spatial un-
certainty can be used to increase lookahead in conservative
simulation. In (Quaglia and Beraldi 2004), this technique is
applied to the simulation of mobile communication systems
and a moderate bias of the simulation results is reported.

2.3.3 Approximate Time-Parallel Simulation

Kiesling et al. use a technique based on tolerating small
errors in time-parallel simulation (Kiesling 2004, Kiesling
and Pohl 2004, Kiesling and Lüthi 2005). In time-parallel
simulation, the simulation time interval is partitioned into
subintervals and every node simulates the whole model
for one of these subintervals. The main problem in time-
parallel simulation is the so-called state-match problem:
Generally, the simulated state at the end time of one node
does not match the initial state of the successor node. Var-
ious methods have been proposed to solve the state-match
problem, e.g. the method of fix-up computations (Heidel-
berger and Stone 1990). However, the requirement of exact
state matching often prohibits efficient use of time parallel
simulation. In (Kiesling and Pohl 2004) it is proposed to
relax exact state matching and tolerate some difference in
neighboring states. For some applications, it is possible to
simultaneously control the error in the simulation results
(e.g. for cache simulations reported in (Kiesling 2004)).
Another application area where this approach appears to be
promising is traffic simulation, as reported in (Kiesling and
Lüthi 2005).

2.3.4 Relaxed Ordering Mechanisms

Most synchronization schemes for time coordinated dis-
tributed simulation rely on using time stamps for events
and apply a time stamp ordered event simulation and/or
message delivery. However, strict time stamp ordering
often decreases the efficiency of distributed simulation sys-
tems, sometimes to a level that real-time requirements are
no longer met. On the other hand, pure timestamp ordering
is sometimes overpessimistic, because not every message
that is delivered out of order necessarily produces a causality
violation. There exists a couple of approaches to overcome
this problem by relaxation of the strict time stamp ordering.

The most radical concept is that of unsynchronized
parallel discrete-event simulation, proposed by Rao et al.
(Rao, Thondugulam, Radhakrishnan, and Wilsey 1998). In
this work, the effect of dispensing with synchronization in
time-warp-based simulation of queueing models is studied.
5
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For this special case, significant efficiency improvements
were reported in terms of both processor time and memory
usage, with surprisingly little effect in the overall simulation
results. However, the general applicability of such a radical
approach seems questionable.

A concept originally developed in the context of mul-
timedia systems with real-time requirements is the notion
of delta causality (Yavatkar 1992, Adelstein and Singhal
1995). In delta causality, an expiration time is associated
with every time-stamped message. Messages that are re-
ceived before the expiration time is elapsed are delivered and
processed in time-stamp order. Messages that are delivered
after expiration, may be processed out of order, eventually
causing causality violations. A variant of this concept is
also applied in DIS.

Time management in the high level architecture (HLA)
is based on two options for message delivery: receive
order and time-stamp order. In (Lee, Cai, and Zhou 2001),
the notion of causal order in the context of HLA time
management is introduced. Causal order focuses on the most
important aspect of time-stamp order, namely preservation
of causality. However, the costly ordering of all time-stamp-
order messages is reduced such that only messages with
causal dependencies are ordered. One major challenge in
causal ordering is to provide less costly meta information
about causality constraints than event time stamps. In (Zhou,
Cai, Turner, and Lee 2002), the authors propose an enhanced
version of causal ordering, namely critical causal order,
being an additional relaxation of causal order. With the
critical causal order mechanism, it is possible to preserve
causality even with a relatively large number of federates,
while still preserving important real-time properties of the
simulation system.

2.3.5 Dead Reckoning

Communication overhead is a significant performance lim-
itation in distributed real-time simulation. An important
technique that is applied to reduce communication effort is
dead reckoning. Dead reckoning is based on extrapolation
models of objects simulated by other nodes. These so-called
dead-reckoning models are used as local representations of
external objects. Such extrapolations usually provide only
approximations of the correct state of these objects. The
simulation node that is responsible for the simulated ob-
ject computes the associated dead-reckoning model as well.
This way, updates need only be sent when a predefined
accuracy threshold is exceeded. Among other uses, dead
reckoning is an essential method in the DIS standard (IEEE
Std 1278.1–1995 ).
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3 FORMAL DEFINITION

In the previous section, some basic properties of the bias
introduced in the modeling process are discussed in an
informal way. To be able to devise a general approach to
the examination of the bias in a given distributed simulation
model, a formal definition of bias caused by the distribution
is necessary. As introduced in Section 2, there are various
different aspects of a simulation run, where a bias can be
measured. A formal definition of the bias highly depends
on the specific aspect to be measured. In this section, we
will only cope with state deviations at a specific simulated
time and show exemplarily, how a bias can be defined for
this aspect.

The formalization should be applicable to constructive
(as-fast-as-possible), as well as interactive simulation appli-
cations. At first sight, these two areas appear as quite distinct
types of distributed simulations. Fortunately, there are com-
monalities between constructive and interactive simulation
in the way the overall simulation state is distributed among
processing nodes. If we neglect more uncommon simulation
parallelization methods, like time-parallel simulation, the
basic way of distributing a simulation task among multiple
processing nodes is the decomposition of the overall system
state into a number of sub states.

Before discussing details about state decomposition,
some notions have to be introduced. The term logical process
will be used to denote executing entities in the parallel or
distributed simulation system. Logical processes perform
an assigned simulation task in cooperation with other logical
processes. Typically, one logical process is associated with
every processing node. In general, however, multiple logical
processes might execute on the same node. The term
logical process is well established in the field of parallel
discrete-event simulation (Fujimoto 2000). Furthermore,
it will be used here to denote federates in a simulation
federation, as well. The state of a simulation system is
composed of a number of state variables, each having a
scalar value. However, when looking at the semantics of
state variables, often a grouping of the atomic variables
is obvious. For example, in an interactive flight training
simulator, the state of an airplane is typically represented
by several state variables for its position, velocity, heading,
among others. The overall state of the flight simulator
consists of the composition of the state variables of all
airplanes in the simulation. Here, the state variables can
(and frequently will) be grouped by correspondence to a
specific airplane. When speaking of such a group of state
variables, the term object will be used in the rest of the
paper.

Regarding the decomposition of the overall system state
in parallel and distributed simulation, there are two extreme
cases of this decomposition, shown in Figures 2 and 3.
6
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Figure 3: Partitioning of States

Figure 2 illustrates the case where the overall system
state S is completely replicated on all logical processes. In
that case, every logical process LPi has a representation of
the overall system state and is responsible for its consistency
and timeliness. The representations of the system state of
different logical processes can be identical at a given time, but
in general, this will not be the case, due to various influencing
factors (e.g. message latencies, update mechanisms). An
example of this case is a DIS training simulation. In a DIS
simulation, every simulator has knowledge about the state
of all objects in the simulation. To reduce the number of
messages transmitted in a DIS training simulation, the dead
reckoning technique is used. This frequently results in a
deviation of the states of two different logical processes,
which can be interpreted as a bias in the distributed model.

The other extreme case is presented in Figure 3, where
the overall system state is partitioned into multiple non-
overlapping substates. Each of these substates is assigned
to a separate logical process, which is responsible for per-
forming the calculations associated with the corresponding
objects. To support interrelationships between objects in
different partitions, communication between logical pro-
cesses is performed. This approach is often followed in
classical parallel discrete-event simulation models. If syn-
chronization between processes is relaxed, as discussed in
Section 1, the composition of all the sub states at a given
simulation time is not necessarily the same as in a corre-
sponding sequential simulation, introducing a bias in the
distributed model.
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Figure 4: General State Decomposition
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Figure 5: Comparisons of States

In most practical cases, however, these two extremes
of pure replication and pure partitioning rarely can be en-
countered. Frequently, as illustrated by Figure 4, the overall
system state is decomposed into substates, with a possible
overlap of substates assigned to different logical processes.
This is in fact a general view on distributed simulation, as it
can represent both of the extreme cases shown in Figures 2
and 3. Many classical parallel discrete-event simulation
models use this decomposition with overlapping substates,
as well as federates in an HLA federation using declaration
management to subscribe only to certain object classes.

When using the view on state decomposition presented
in Figure 4, the measurement of a bias can be grouped in
two different classes (cf. Figure 5):

(a) The bias can be measured between the sub state of a
specific logical process and the correct state of the
corresponding sequential or idealized simulation
system (cf. Section 2), and

(b) the bias can be measured between common parts
of sub states of different logical processes.

Now, the preliminaries for a formal definition of the bias
have been introduced. The state of a sequential simulation at
a time t is represented by a vector s(t) = (s1(t), . . . , sJ (t)),
where sj (t) for j = 1, . . . , J is the state of the object j in the
simulation. sj (t) might be a scalar value, but in general it
is considered to be a vector. For example, in an interactive
vehicle training simulation, sj (t) = (xj (t), yj (t), vj (t)),
i.e. the state of a vehicle (object) consists of its position in
x- and y-coordinates and its velocity.
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Note, that the measures that are to be introduced here,
are only reasonable with deterministic simulation executions.
However, this does not restrict the types of models that can
be supported. For every stochastic model, deterministic
simulation executions can be ensured by a pre-sampling of
random numbers and executing the simulation with these
numbers. This can be implemented efficiently without the
need of large storage space by the utilization of pseudo
random number generators with pre-determined seeds. Us-
ing this technique, deterministic and repeatable simulation
exeutions are possible.

Furthermore, in a distributed simulation, there are a
number I of logical processes, each having a state si(t) =
(si

1(t), . . . , s
i
J (t)). In every logical process i, the state of

each object is composed of real numbers, i.e. si
j (t) ∈ R

n

for some integer n depending on the type of object. As
the logical processes may have only a restricted knowledge
of object states, an additional value of object states is
introduced: It may be the case that si

j (t) = ∗. The asterisk
symbol ∗ indicates, that logical process i has no knowledge
about object j .

The bias of an object is defined as the distance between
two different states of the object. A real-valued distance
measure dj for object j is utilized to determine the object
bias. A uniform definition of dj for all objects in the
simulation is not possible, as it depends on the type of object
to compare. For example, in a queuing network simulation,
a single queue would be an object in the simulation. As
the state of the queue can be represented by a scalar value,
the number of jobs in the queue at a time, dj can simply
be defined as the distance between the number of jobs in
two different states. In the vehicle simulation mentioned
above, however, the definition of dj is more complex, as a
distance in the position of a vehicle has to be aggregated
with the difference in the velocity. Based on the distance
dj , we define the bias of an object j at time t as

bi
j (t) :=

{
dj (sj (t), s

i
j (t)), if si

j (t) �= ∗
0, otherwise

and

b
i,k
j (t) :=

{
dj (s

i
j (t), s

k
j (t)), if si

j (t) �= ∗ ∧ sk
j (t) �= ∗

0, otherwise.

The term bi
j (t) is used for the comparison between the

state of an object j at a logical process i and the state of the
same object in the sequential simulation (marked with (a) in
Figure 5). b

i,k
j (t) is used for the comparison of the states of

an object j at two different logical processes i and k (marked
with (b) in Figure 5). Note, that for multiple objects in
the simulation belonging to a common class of objects (i.e.
having the same attributes), the same distance measure d

would be used, resulting in a number of different distance
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measures that is equivalent to the number of different types
of objects in the simulation.

Now, it is possible to define the bias of a logical process
i at time t as an aggregation of the bias of every object.
For example this could be a weighted sum:

(a) Bi(t) =
J∑

j=1

wjb
i
j (t) (b) Bi,k(t) =

J∑
j=1

wjb
i,k
j (t)

for Cases (a) and (b) of Figure 5. In the latter case, this
represents the bias of a pair i, k of logical processes at
time t . In both cases some arbitrary weights w1, . . . , wJ

with
∑J

j=1 wj = 1 are utilized. This is a measure of the
deviation of the state of a logical process from the state of
the sequential simulation, or another logical process, resp.
The weights wj are model dependent and have to be chosen
carefully, so as to reflect the proper impact of the object
bias of every object j .

To calculate the bias of a simulation model at time
t of a simultion run, the logical-process biases Bi(t), or
Bi,k(t), resp., have to be aggregated. This can be done in
various ways, for example as a weighted average:

(a) B(a) =
I∑

i=1

ciBi(t) (b) B(b) =
I∑

i=1

I∑
k=i

ci,kBi,k(t)

with
∑I

i=1 ci = 1 for Case (a), and
∑I

i=1
∑I

k=i ci,k = 1
for Case (b). Again, the weights ci (ci,k , resp.) have to
be chosen according to the simulation model, although it
might be possible to give more general definitions.

The bias measures Bi(t) and Bi,k(t) can now be used to
determine the accuracy of a distributed model, either after
a simulation run in comparison to a sequential model for a
validation of the distributed model, or during the simulation
execution for a determination of the result accuracy at a
given simulation time. In this respect, an aggregation of the
model bias over the simulated time might be of interest, as
well. One possibility for the definition of such a measure
is to integrate the simulation model bias over the simulated
time. However, the details of the utilization of the defined
bias measures is out of the scope of this paper.

4 CONCLUSIONS

In the process of building a simulation model, a bias is
introduced, which is a discrepancy between the behavior of
the real system and the behavior of the model. Likewise, a
bias is also introduced with the parallelization or distribution
of a previously developed sequential model. The former
bias is caused by the abstraction that is an important feature
of modeling. This is an issue that has been recognized long
ago, and validation and verification techniques have been
8
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developed to ensure the credibility of developed models.
However, the consequences of a bias introduced with par-
allelization or distribution of a model have been neglected
in many cases. This paper tries to stimulate fundamental
research of these consequences.

The bias introduced in the process of building a model
(sequential or parallel/distributed) can be classified by vari-
ous criteria: Firstly, there are several aspects of a simulation
which have to be considered, e.g. the development of the
simulation state over time (wall clock or simulation time),
the order of events in a discrete-event simulation, or a statis-
tical measure calculated by the simulation. Secondly, it has
to be identified, what has to be compared when measuring
a bias, e.g. the overall state of the simulation system against
the state of a corresponding sequential simulation or the
overlapping parts of the states of two different logical pro-
cesses. Thirdly, the bias can be classified by its causes, e.g.
bias caused by technical constraints of a distributed simu-
lation or introduction of a bias to increase the performance
of a simulation.

Based on these observations, a formal definition of the
measurement of a bias introduced by the parallelization or
distribution of a sequential model has been given. The
definition has been restricted to the aspect of comparing
states at specific simulation times, as this is deemed the
most important aspect. Two fundamentally different ways
of measuring bias have been introduced: as a distance
between the sub state managed by a logical process to
the corresponding sub state in a sequential or idealized
simulation execution, or as a distance between the common
parts of the sub states of two different logical processes. It
is not possible to give a general definition of the distance
measure to utilize, as it highly depends on the specific
model.

It is an important first step for the validation of parallel or
distributed simulation models to have an intricate knowledge
of the bias introduced with the parallelization or distribution.
Furthermore, to apply this knowledge, a measurement of
the bias must be possible. These two aspects have been
addressed in this paper. The utilization of bias measurement
for the accreditation of a parallel or distributed model is
still an open issue. Further research in this direction is
necessary.
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