
Proceedings of the 2005 Winter Simulation Conference
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

RMIS: MIDDLEWARE FOR TRANSPARENT OBJECT-ORIENTED MODELING
IN MULTI-SIMULATOR SYSTEMS

Niels A. Lang

Dept. of Decision and Information Sciences
Burg. Oudlaan 50, PO Box 1738

RSM Erasmus University Rotterdam
3000DR, Rotterdam, THE NETHERLANDS

Peter H.M. Jacobs
Alexander Verbraeck

Systems Engineering Group
Faculty of Technology, Policy and Management

Delft University of Technology
Jaffalaan 5, 2628BX, Delft, THE NETHERLANDS
ABSTRACT

A system of middleware services is proposed to realize trans-
parent Object Oriented (OO) modeling in multi-simulator
systems. Shortcomings of Remote Procedure Call schemes
in a multi-simulator setting are identified. The use of sim-
ulation time synchronization services is suggested instead.

The resulting middleware system supports both asyn-
chronous and synchronous interaction. Remote Method
Invocation Scheduling (RMIS) is introduced as the main en-
abling mechanism. Special naming services are introduced
to generate required middleware objects. The middleware
system is fully transparent to model objects, which may thus
remain deployment neutral. Current results and directions
for further research are presented.

1 INTRODUCTION

Object Oriented (OO) methods are widely adopted for soft-
ware development. This is for example demonstrated by the
emphasis placed on OO features of major software platforms
like Microsoft’s .NET and Sun Microsystem’s Java. The ad-
vantages offered by OO methods include enhanced reusabil-
ity, scalability and maintainability (Martin and Odell 1998,
Booch 1991).

The main principles by which OO realizes these ad-
vantages include encapsulation and design independence
(Martin and Odell 1998). The first principle advocates a
strict separation of (external) interface and (internal) imple-
mentation. As a result, the same interface may be imple-
mented by a wide variety of components, which realizes a
high level of maintainability. The second principle advocates
the development of technology independent, or deployment
neutral, OO components. This allows easy component reuse
in heterogenous deployment settings.

The relevance of such principles can be ob-
served in today’s increasing attention for web services
336
(Papazoglou and Geogakopoulos 2003) and grid comput-
ing (Foster et al. 2001). Both technologies intend to har-
ness the computational potential of heterogenous, distributed
environments by developing modular, deployment neutral
components.

It is clear that the typical benefits of OO software
development are desirable for simulation modeling as well.
In fact, it is perhaps no coincidence that the first OO
language SIMULA (Dahl and Nygaard 1966) was intended
for simulation. Besides realizing reusable, maintainable
model components, OO simulation modeling may also open
up the potential of distributed computing environments.

In Jacobs et al. (2002), we presented the Distributed
Simulation Object Library (DSOL) as an architecture for
OO simulation modeling. DSOL was designed to enable
reusable, scalable modeling in a distributed environment.

For DSOL, Discrete Event System Specification
(DEVS, Zeigler et al. (2000)) was proposed as the sim-
ulation paradigm for scalability reasons. In combination
with OO models, the OO-DEVS paradigm results. In a
OO-DEVS simulation system, the model consists of ob-
jects and, following OO practice, all interactions take the
form of method invocations. Such method invocations are
either scheduled, in which case they are delegated to a sim-
ulator, or called directly. DSOL fully supports simulation
in a distributed setting, however, it was limited to single-
simulator systems. In a DEVS setting, this implies that
the simulation process is executed as a single, sequential
process (Zeigler et al. 2000).

In this paper, we explore the application of DSOL
(i.e. the OO-DEVS paradigm) for multi-simulator systems.
Multi-simulator simulation may be beneficial for a number
of reasons (Fujimoto 1999):

• Models and simulators may be deliberately dis-
persed at a number of geographical locations. For
example, different parts of a supply chain model

Lang, Jacobs, and Verbraeck
may be developed and controlled by different actors
(Zeigler et al. 2000, Kuhl et al. 1999).

• For certain domains (e.g. logistics) the computa-
tional resources required within components (e.g.
simulation of a number of individual production
facilities) may outweigh those required for inter-
component interaction (e.g. a model describing
flows between production facilities). Such decou-
pled models are naturally deployed as a number
of independent, parallel simulation processes, only
requiring modest interaction.

• Multi-simulator systems may fully employ the
potential for parallel computing offered by grid
computing. Application of distributed simula-
tions on the grid are therefore actively researched
(Fitzgibbons et al. 2004, Iskra et al. 2002).

• Currently, developments in hardware appear to
head in the direction of multi-threaded and
multi-core processors. While originally intended
for the server market, this development may
eventually reach the ’ordinary’ desktop as well
(Spracklen and Abraham 2005). Multi-simulator
systems may fully employ the potential for paral-
lel computing offered by such single-box hardware.

We found that OO interaction (i.e. method invocations)
in a multi-simulator OO-DEVS setting is impeded by the
need for simulator synchronization. We also found that
current tools for distributed simulation do not fully support
OO-style interactions (i.e. method invocation). We there-
fore set out to develop a system of middleware services to
realize OO interaction in distributed, multi-simulator sys-
tems. In line with the objectives of OO modeling, we
furthermore require that this middleware preserves the de-
ployment neutrality of OO models. In other words, the
developed middleware mechanisms should be fully trans-
parent to the model objects involved.

The paper proceeds as follows. First, the problem
of multi-simulator OO interaction is presented in more
detail. After that, relevant types of middleware services are
presented. Remote Method Invocation Scheduling (RMIS)
is introduced as a main enabling middleware mechanism.
Subsequently, the use of RMIS to realize OO interaction is
demonstrated. Specifically, the application to asynchronous
and synchronous interaction is presented. The preservation
of deployment neutrality is illustrated. Finally, the paper
presents conclusions and directions for further research.

2 OBJECT ORIENTED MODELING IN MULTI-
SIMULATOR SYSTEMS

To obtain a clearer view on the issues regarding OO inter-
action in multi-simulator systems, we will first compare it
337
with single simulator systems. After that, previous work
and requirements are discussed.

2.1 Single Simulator OO Models

In a single-simulator setting, all model objects can be con-
sidered time synchronized, as they all use the same simulator
to discover simulation time. This also holds true in case
the model is in fact distributed over multiple runtime en-
vironments. This situation is illustrated in Figure 1, which
illustrates the mechanisms and functions involved in a single
simulator distributed OO model. The legend for this and
subsequent figures is provided in Figure 2.

Model Runtime 1 Model Runtime 2

simulator server

DEVS
simulator

Naming server

object discovery
service provider

MO_4

MO_5

MO_6

MO_1

MO_2

MO_3

asynchronous
interaction:

schedule

synchronous
interaction:
call locally

synchronous interaction:
call remote (RPC)

discover /
locate
objects

asynchronous
interaction:

schedule

Figure 1: Remote Interaction in a Single Simulator Dis-
tributed OO Model

Figure 1 shows a model consisting of several model
objects (e.g. MO_1, MO_2). Furthermore it presents two
service types facilitating the object model: a DEVS sim-
ulator and a provider of object discovery services. The
latter allows the construction of the model as a loosely
coupled object system, in which the actual objects are only
resolved during runtime. The first facilitates time scheduled
asynchronous object communication.

Asynchronous object communication is defined in
Booch et al. (1999) as an object invoking an operation on
another object where it does not expect immediate result. In
a simulation context, this implies that a result value is either
never delivered, or delivered at a possibly later moment in
simulation time. Delivery takes place by passing the result
value as an argument in a new call on the initiating object.

Analogously, synchronous object communication can
be defined as an object invoking an operation on another
object where it DOES expect immediate result. In a sim-
ulation context, this implies that invocation and the return
of the result value are to happen at the same simulation
time. In fact, the initiating object is not allowed to perform
any other tasks before the return value has been received,
since otherwise parallel state modifying processes (in both
calling and called object) could violate the deterministic
state change sequence required in a single DEVS simulator
setting. In a single simulator setting, synchronous ob-
ject communication can simply be implemented by direct

Lang, Jacobs, and Verbraeck
<name>
[<interface>]

<info>

An object, with a given name,
interface (optional) and

descriptive information (optional)

<label>

A runtime environment (e.g.
a Java Virtual Machine)

described by a label (optional).

a method invocation
by 'A' on 'B'

A B

synchronous return value
delivery from 'B' to 'A'

A B

a (directed) association
between objects 'A' and 'B',

with corresponding
role descriptions (optional)

A B
<role><role>

1 step identifier

Figure 2: Conceptual Diagram Notation
method invocation. This invocation can either be local (i.e.
between objects within a single runtime environment) or
remote (i.e. between objects residing in different runtime en-
vironments). For the latter, several Remote Procedure Call
(RPC) mechanisms are available, such as Java’s Remote
Method Invocation (RMI) (Arnold et al. 2000), CORBA
(Object Management Group 1995) or the Simple Object
Access Protocol (SOAP) (Box et al. 2000). As indicated
before, since all objects use the same simulator to determine
simulation time, direct method invocation, whether local or
remote, will not cause causality violations.

However, although RPC has been originally devel-
oped as a paradigm for simple and transparent remote
communication (Menascé 2005, Birrell and Nelson 1984,
Birrell 1992), we find that RPC frameworks used in prac-
tice often fail to provide this transparency. For example,
Java’s Remote Method Invocation (RMI) framework en-
forces the use of special exception declarations in all RMI
enabled interfaces. As this renders RMI enabled interface
incompatible with non-RMI interfaces (as in Java the ex-
ception declarations are part of the interface signature), we
argue that this violates the principle of deployment neutral
model objects. In order to arrive at truly deployment neutral
model objects, middleware should hide the details of the
RPC mechanisms employed for the model objects involved.

2.2 Multi-simulator OO Models

Figure 3 presents the situation of an OO model deployed
in a distributed manner using multiple simulators.

Model Runtime 1 Model Runtime 2

distributed
simulation server

Naming server

object
discovery
services

MO_5

MO_6

DEVS
simulator

MO_2

MO_3

DEVS contract:
schedule events

SYNCHRONIZATION ?

discover /
locate
objects

DEVS
simulator

time
synchronization

services

time
synchronization

contract

time
synchronization

contract

Figure 3: Unsafe Remote Interaction in a Multi-simulator
Distributed OO Model
338
First, we note that, in contrast with the single simulator
situation, all model objects have access to a local simulator.
Interactions between these objects and their local simulator
are in potential faster than in the single simulator situation,
where model objects always need an RPC connection to
contact their simulator.

Secondly, time synchronization services were added.
The need for such services to prevent causality violations
is well described in the distributed simulation literature
(Fujimoto 1999).

Finally, however, we note that direct, simple RPC inter-
action between distributed model objects in a multi-simulator
setting will violate time synchronization requirements. This
is illustrated in Figure 3 by the interaction between MO_2
and MO_6. At the moment of invocation, MO_2 can observe
its own simulation time. However, it has no guarantee what-
soever that MO_6 will observe the same simulation time.
This can only be guaranteed when proper simulation time
synchronization has taken place between the two simulators
before the remote invocation. However, such functionality
is not provided by standard RPC mechanisms.

2.3 Towards Middleware Supporting Transparent
Multi-simulator OO Modeling

In the previous section we demonstrated that in distributed
settings, there is a lack of support for transparent remote
interaction between different Object Oriented simulation
models. In the single simulator setting, we found that
the direct use of common RPC mechanisms impacts the
object model, since RPC specific interface elements are re-
quired. In the multi-simulator setting, we moreover found
that the the direct use of RPC will violate time synchroniza-
tion requirements. We conclude that to realize transparent
Object-Oriented modeling in multi-simulator settings, the
following functionality is required:

• Supporting remote versions of OO interaction prim-
itives: scheduled asynchronous and synchronous
method invocations. As the use of remote inter-
actions must not violate the validity of the multi-
simulator system, the remote protocol must ensure
proper inter-model time synchronization.

• To allow model reuse in a variety of deployment
settings, the details of the remote interaction func-

Lang, Jacobs, and Verbraeck
tionality should be hidden from the model objects
involved. Specific deployment details should be
part of the experimental frame (which is by defi-
nition experiment specific) rather than the model.

The fields of distributed simulation and software devel-
opment have developed a substantive body of knowledge
on distributed simulation and OO respectively. However,
to our knowledge no conclusive work has been presented
on this paper’s subject, which requires integrated results
from both fields. We summarize some related efforts in the
following paragraphs.

2.3.1 The High Level Architecture

The High Level Architecture (HLA) (Kuhl et al. 1999) is
generally regarded as the main reference architecture for dis-
tributed simulation (Boer and Verbraeck 2002). An evolved
version has recently been adopted as IEEE standard 1516
(IEEE 2000). Main services provided by HLA control the
management of federates, simulation time, objects and data
distribution.

Although the HLA includes support for objects, HLA
objects are not fully Object Oriented (Kuhl et al. 1999, p.
29). The most important omission, in the context of multi-
simulator OO modeling, is the lack of support for object
methods. This prevents the definition of a model in terms
of services, transparently implemented by multiple flavors
of objects.

2.3.2 IDSim

The Interoperable Distributed Simulation (IDSIM,
Fitzgibbons et al. (2004)) framework was developed as a
domain-independent, extensible framework for distributed
simulation. The framework, built upon the Open Grid Ser-
vices Infrastructure (OGSI), allows automatic and controlled
deployment of distributed simulation models on arbitrary
grid configurations, thus realizing a high level of model
deployment neutrality. Main services provided by IDSim
control the management of federates, simulation time and
data distribution.

As we understand, IDSim’s current support for remote
model interaction is based on user-customizable events.
Other than HLA, IDSim supports both push-type and pull-
type delivery methods. However, method invocation style
interactions appear yet to be unsupported. As IDSim is
explicitly designed to support extensions, we expect that
the mechanisms proposed in this paper could easily be
incorporated in the IDSim framework.
339
2.3.3 Distributed Simulation Objects

In 1997, Heim already proposed a framework for distributed
OO simulation (Heim 1997) which closely resembles the
perspective adopted in this paper. Recognizing the need
for model reuse, maintenance and integration, he departs
from the notion of a model as an association of distributed
model-objects. He suggested the Common Object Request
Broker Architecture (CORBA) as the remote inter-object
infrastructure. The proposed framework features interface
generators, able to generate remote interaction helper objects
for simple model objects, thus preserving the deployment
neutrality of the original models. Finally, the framework
introduced the use of an open directory protocol (LDAP)
to standardize remote model object discovery.

However, issues regarding inter-model coordination (i.e.
synchronization) were not resolved. It is specifically on these
issues that this paper intends to make a contribution.

2.3.4 Remote Procedure Calls

Extensive literature is available on the concept of RPC. A
hidden assumption in RPC literature is that remote objects
are allowed to interact at any arbitrary moment in time.
However, as illustrated before, this assumption is not true
in a multi-simulator setting.

Although earlier research results provide important par-
tial solutions for realizing transparent multi-simulator OO
modeling, we did not find a framework meeting all the earlier
mentioned requirements. We therefore set out to develop
such a framework and an accompanying proof of concept
to realize a deployment neutral implementation. In the next
sections, the proposed middleware architecture is presented.
First, the architecture’s components and functions are in-
troduced. After that, the application of the architecture
for asynchronous interaction, deployment independent ref-
erencing and synchronous interaction are provided. Finally,
first results for a proof of concept are demonstrated. The
paper is concluded by discussing the current results and
future research.

3 MIDDLEWARE ENABLING MULTI-
SIMULATOR OO MODELS

This section presents the components which constitute the
proposed middleware for multi-simulator OO models. They
cover three functions already introduced in Figure 3: simu-
lation, object discovery and time-synchronization. Finally,
a new middleware component (Remote Method Invocation
Scheduling) is introduced, which enables time synchro-
nized object interaction following the requirements stated
in section 2.3.

Lang, Jacobs, and Verbraeck
3.1 Discrete Event System Specification

We consider Discrete Event System Specification (DEVS)
to be a useful simulation formalism to simulate object
systems for a number of reasons. First, as demonstrated
by Zeigler (Zeigler et al. 2000), DEVS is a fundamental
formalism able to embed other ones. As such, DEVS is a
fundamental formalism which may serve as the basis for
multi-formalism simulation systems. Second, we argued
in Jacobs et al. (2002) that, compared to thread-based OO
simulation systems, DEVS based simulations scale further
and offer more potential for distributed deployment.

Conceptually, a DEVS simulator executes events se-
quentially in strict ascending time order. The simulator
exposes event (un)scheduling services to the model. Dur-
ing the event execution phase, the model may generate and
schedule new events, or unschedule previously scheduled
events. We argued in Jacobs et al. (2002) that in a pure OO
model, the only relevant events take the form of scheduled
method invocations. Such an event specifies at a minimum
the target object, the method to be invoked, the simulation
time at which invocation should take place and the invoca-
tion arguments. In our view, only the ability to schedule
method invocations distinguishes simulation model objects
from ’ordinary’ software objects.

As an implementation for the OO-DEVS formal-
ism, we used the open source Java-based Distributed
Simulation Object Library (DSOL, Jacobs et al. (2002),
Lang et al. (2003)). Since in an OO-DEVS system all
scheduled inter-object interaction is managed by a simula-
tor, this simulator is the natural object to extend with custom
event processing functionality.

3.2 Dynamic Object Discovery Services

Naming systems are a fundamental part of distributed sys-
tem development (Silva et al. 1998). In our view, the use
of naming systems also offers significant benefits in the de-
velopment of OO models, such as the possibility for object
referencing by name and to provide a natural layer to per-
form object transformations in a deployment neutral way.
In the context of distributed OO modeling, a naming system
preferably has the following properties. First, we like it to
be applicable for arbitrary name spaces, e.g. to support dif-
ferent URL schemes. Second, we favor an open standard,
allowing a wide variety of implementations. For exam-
ple, specific implementations may need to be distributed,
or in-memory, or perform specific middleware transforma-
tions. Finally, the naming system should support update
notifications, as monitoring the lifetime of model objects
is a basic need for simulation modeling. In the proof of
concept presented in this paper we applied the Java Naming
and Directory Interface (JNDI) framework. As a set of
high-level interfaces supporting naming systems of differ-
340
ent capabilities, JNDI meets all our requirements. Default
JNDI providers are available to access file, RMI, LDAP
and CORBA based namespaces.

3.3 Time Management Services

In order to realize correct multi-simulator behavior, simula-
tors need to synchronize event execution to prevent causality
violations. In this work, we applied the High Level Ar-
chitecture (HLA, (Kuhl et al. 1999) now also IEEE 1516
(IEEE 2000)) to realize this synchronization. In terms of the
HLA, the simulators participate as federates in a federation.
Federates make use of HLA’s services via a single instance
of the RunTime Infrastructure (RTI). In the context of this
work, we only employed a subset of HLA services, namely
the ones supporting initialization, interaction relay and con-
servative synchronization (see Fujimoto (1999)). As HLA’s
object model is not fully object oriented, we decided not
to use HLA’s object management services. Instead, objects
may be discovered using the naming services introduced
previously. In the following, we briefly discuss our use of
initialization and interaction services.

During the initialization phase, a special manage-
ment federate supervises proper initialization of the multi-
simulator system, using HLA’s synchronization services.

During execution, simulators use interactions to com-
municate simulation time-sensitive events. In HLA, an
interaction is a pre-specified message of a given type with
a given number of named attributes. An interaction type
may extend another interaction type. As we intend to use
interactions for time-sensitive information, we use HLA’s
capability to send the interactions in a reliable fashion, in
Time Stamp Order (TSO). As we use conservative synchro-
nization, HLA guarantees that an interaction thus sent by
a federate with timestamp T will be delivered to receiving
federates at a time t ≤ T , with t denoting the simulation time
at the receiving federate. In other words, such interactions
will never be received in a federate’s past.

In the next section, we introduce how this time-stamped
interaction mechanism can be used to implement time-safe
remote method invocations.

3.4 Remote Method Invocation Scheduling

As indicated previously, we regard the main event in an OO
simulation model to be the scheduled method invocation.
However, when attempting to schedule a method invocation
on a remote object, one encounters the following challenges.
First, the remote object resides by definition in a remote
runtime. For ’ordinary’ objects, i.e. ones not prepared for
a remote protocol such as RMI or CORBA, remote ref-
erences cannot be obtained. Second, method invocations
on the remote object are managed by a remote simulator.
The management of the invocation event should therefore

Lang, Jacobs, and Verbraeck
be transferred to the remote simulator. In a conservative
synchronization setting, this must at least have been per-
formed before the remote simulator has passed the event’s
invocation time.

We propose to combine naming and HLA services to
meet both challenges. To solve the first challenge, the
remote target object should be identified by a reference (i.e.
an object providing a name), rather than by a direct handle.
The reference should be resolvable by the naming system
in use.

To meet the second challenge, we introduced
a special HLA interaction type: Interaction-
Root.DSOLEvtInteraction, with attributes evt and
targetFED. The evt attribute can hold a network streamable
version of the method invocation event. The targetFED
attribute identifies the destination federate. Under a
conservative synchronization policy, a method invocation
event wrapped as an interaction will be transported in time
by the RTI. Using this interaction, a simulator can relay a
simulation event to another simulator, thus delegating its
execution.

The originating simulator will discover the need for
relaying the event by inspecting the event’s target property. If
the target’s name identifies a context other than the local one,
the event is automatically relayed to the simulator managing
that context. Using the local context, the receiving simulator
is able to resolve the target’s reference into a handle.

This basic mechanism, which we will hereafter re-
fer to as Remote Method Invocation Scheduling (RMIS)
provides the backbone middleware mechanism for realizing
transparent inter-model object interaction in multi-simulator
settings. We note that RMIS could also be implemented
on simulator synchronization and messaging services other
than HLA.

In the next sections, the application of RMIS for re-
alizing transparent remote object interaction is discussed.
Asynchronous interaction, transparent referencing and syn-
chronous interaction are discussed respectively.

4 TIME-SYNCED ASYNCHRONOUS REMOTE
OBJECT INTERACTION

Supporting time synchronized asynchronous remote object
interaction proved to be a rather direct application of RMIS.
In this section, the steps involved in a successful asyn-
chronous remote interaction are introduced. However, for
illustrative purposes we will first introduce a simple example
model. This model will also be referred to in subsequent
sections.

4.1 An Example Model: Distributed Workers

Imagine an organization with several workers, distributed
over several facilities. These workers are encouraged to
341
perform load balancing: when they receive many jobs, they
may delegate the job processing to other workers, possibly
at remote facilities. Figure 4 presents a highly simplified
model for analyzing this situation.

IWorker

processJob(theJob: Job)
getJobCount(): int

Worker Identifiable

getID(): String

Figure 4: A Simple Distributed Model

It is expected that most job processing and delegating
will take place within facilities. It is therefore decided to
model a number of facilities in parallel, using one simulator
per facility. Facilities are numbered fac_1, fac_2, etc.
Workers can push jobs to others by invoking processJob. To
perform load balancing, the number of jobs already allocated
can be returned by calling getJobCount. In addition, the
Identifiable interface allows middleware to discover the name
under which an object is bound in a context.

4.2 Asynchronous Interaction Using RMIS

Figure 5 illustrates the steps involved in scheduling a job
transfer by worker_1 in facility 1 to the remote object
worker_2. In terms of the model presented in Figure 4
this implies scheduling the method processJob, with a Job
object as argument, on the remote worker.

The complete process involves several phases. In each
phase, different middleware functions are used.

In the first phase (step 1), the remote object worker_2
is resolved by the naming system, which hides the details of
remote reference resolution. In the second phase (step 2),
the method invocation is scheduled on the local simulator:
a standard OO model mechanism.

During the third phase (steps 3 and 4), the simulator
notes the need to relay the method invocation event. It then
prepares and sends an interaction encapsulating the event.

In the fourth phase (steps 5, 6 and 7), the remote sim-
ulator processes the received interaction. The encapsulated
event is examined and its target (worker_2) resolved. Then,
the event is scheduled on its local event list. During the fifth
phase (steps 8 and 9) the HLA managed time advancement
process (a sequence of time requests and grants) causes the
remote simulator to reach the time of the remotely scheduled
event. Finally, this event is executed as usual (step 10).

We note that in this example, worker_1 performs the
same steps as it would do when scheduling on a local ob-
ject: it resolves the target object using the naming system
and subsequently schedules the desired method invocation
using the local simulator. The details of the remote inter-
action are transparently performed by middleware services

Lang, Jacobs, and Verbraeck
simulation_1 simulation_2

worker_1
[IWorker]

HLA server

RTI

Root naming server

context "/"
"fac_1"
"fac_2"

context
"fac_1"

"worker_1"

worker_2
[IWorker]context

"fac_2"
"worker_2"

simulator_1
[IDEVSSimulator]

simulator_2
[IDEVSSimulator]

1

2

parent parent

9

3

10
4

5 6

7

8

Figure 5: Asynchronous Interaction Using RMIS
in the simulator, the naming system and the HLA. RMIS
thus enables asynchronous remote object interaction while
preserving deployment neutrality of the model objects.

5 REFERENCE GENERATION

In the previous example, the context returned a reference
rather than a handle. In that example, where no methods were
directly invoked on the reference, this posed no problem.
However, in general the requesting model object (here:
worker_1 expects to retrieve an object implementing a known
model interface from the naming system (here: an object
implementing IWorker). Deployment neutrality demands
that this expectation is not violated when retrieved objects
happen to be situated in a remote context.

We therefore propose middleware to generate references
dynamically, such that the generated references expose the
expected model interfaces. This is effectively an applica-
tion of the OO design pattern known as the bridge pattern
(Lang et al. 2001). In the remainder of this section we
briefly discuss the process of reference generation and the
required content of generated references.

5.1 Middleware for Reference Generation

As indicated previously, a naming system provides a natural
layer to conduct object transformation for middleware pur-
poses. We therefore implemented the reference generation
functionality as part of a custom naming system.

The reference generating process is managed by a cus-
tom context implementation, the so-called HLA context.
First, we note that only objects retrieved from remote con-
text need to be replaced by references. For that purpose,
only remote requests (i.e. originating from the remote root
context) are handled by an HLA context.

The moment an HLA context receives a lookup request,
it first resolves the requested object via its source context.
Then, it inspects whether or not the result should be replaced
by a reference. In the current implementation, this decision
is based on the interfaces implemented by the result value.
342
If the result is to be replaced by a reference, the reference
class is determined. In this implementation, the reference
class equals the original class with suffix HLAWrapper.
If no such class is found, the HLA context generates the
class. Using introspection, a Java source file is generated
which includes the necessary interfaces and methods. This
source is subsequently compiled.

After locating the proper reference class, a new instance
is initialized using the result value’s name in the namespace.
Finally, the reference is returned.

5.2 The Content of Transparent References

The contents of a reference are determined by several re-
quirements. First, it should be recognizable as a reference.
Hence, it must implement an interface identifying it as such.
Second, it should expose the expected model interfaces and
implement them properly (i.e. using RMIS). Finally, the
reference is to be streamed over the network. In Java this
implies the need to identify it as Serializable.

Figure 6 demonstrates an example implementation for
the wrapper of an instance of the class Worker.

First, we developed a generic wrapper (of class Ref-
erenceWrapper) which can execute methods by using the
RMIS mechanism described previously. This service is ex-
posed as a protected method callMethod. It also takes care
of eventual wrapping of the invoked method’s arguments.
The generic wrapper also implements the interface IHLAOb-
jectReference which in our implementation identifies it as
a remote reference to simulators.

The specific reference class (WorkerHLAWrapper) ex-
tends the generic wrapper class. Within this specific class,
methods of the exposed model interfaces are implemented
to delegate invocation to the generic wrapper’s method call-
Method. To a receiving object, the resulting reference thus
implements the expected IWorker interface. Direct method
invocations will be translated into the proper RMIS calls.

We conclude that as long as model objects only depend
on other model object’s interfaces, this reference generating
middleware will fully hide the details of remote interaction

Lang, Jacobs, and Verbraeck
ReferenceWrapper

callMethod
 (args: Object[], method: String)
 : Object

IHLAObjectReference

getName(): String
getContextName(): String

WorkerHLAWrapper

processJob(theJob: Job)
getJobCount(): int

IWorker

processJob(theJob: Job)
getJobCount(): int

java.io.Serializable

Generated method
implementations
delegate invocation
to ' callMethod '

'callMethod' uses the
RMIS mechanism to
schedule the call.

Identifies the wrapper
as an RMIS reference

Figure 6: An RMIS Wrapper for the IWorker Model Interface
for the model. As such, it preserves the model’s deployment
neutrality.

6 TIME-SYNCED SYNCHRONOUS REMOTE
OBJECT INTERACTION

The complement of asynchronous, scheduled interaction
is synchronous interaction, by direct method invocation.
Compared to scheduled interaction, synchronous interaction
introduces the following additional challenges. First, it
implies that methods are directly called on objects as resolved
by the naming system. Second, it implies that a remotely
generated result value needs to be returned to the calling
object. Moreover, between invocation and reception of the
result value, the calling object is to be blocked.

The first challenge is already solved by the use of
transparent references (see section 5). To meet the second
challenge, we refined the RMIS mechanism in a number
of ways. First, the generated wrapper object now not only
invokes the RMIS mechanism, but also registers on a remote
channel and blocks operations. Secondly, a refined simula-
tion event object not only invokes a method on execution,
but also relays the return value on a remote channel. As a
result, the waiting wrapper object will eventually be notified
of the result value, unblock operations and return the value
to the invoking model object. An example of the resulting
synchronous interaction process is illustrated in Figure 7.

Compared to asynchronous interaction (see section 4),
several differences are introduced. First, the calling model
object directly invokes a method on the object as resolved by
the naming system (step 1). This implies that execution is to
take place instantaneous, at simulator_1’s current simulation
time. To prevent past event scheduling, simulator_2 is then
by consequence not allowed to run ahead of simulator_1. We
therefore conclude that under a conservative synchronization
protocol, support for synchronous interaction implies the
use of zero lookahead.

Second, to enable the relay of the remotely generated
result value, the wrapper sets up a remote channel (step 2).
In this implementation, the management of remote channels
343
is performed by a ReturnSessionManager. Currently, this
object is implemented as a Java RMI server, but any other
RPC implementation could have been used instead.

Finally, a special event class (HLAEvent) was intro-
duced, which allows events to relay return values over the
remote channel (steps 7 and 8). As the class implements
common event interfaces, no simulator changes are needed.

As the calling model object remains completely unaware
of the middleware processes performed, we conclude that the
mechanism introduced above realizes remote synchronous
interaction while preserving deployment neutrality.

7 CONCLUSIONS

We presented a system of middleware services to enable
Object Oriented interaction in a distributed, multi-simulator
setting. Asynchronous and synchronous method invoca-
tion were identified as the main required interaction types.
In addition, we identified the requirement of deployment
neutrality, to preserve the modularity and extendability ad-
vantages of OO models.

The middleware service developed employ functional-
ity provided by DEVS simulators, the HLA and naming
services. Remote Method Invocation Scheduling (RMIS)
was developed as the main mechanism for OO-style syn-
chronized remote interaction. We demonstrated how RMIS
enabled (a)synchronous remote, synchronized interaction in
a deployment neutral manner. As a result, the middleware
services developed can be used to deploy simple, non-
remote OO models in a multi-simulator, distributed setting
with minimal effort.

Several issues remain for further research. First, the
performance of the services proposed needs to be analyzed.
Issues potentially limiting performance are the use of dy-
namic code generation (to generate wrappers) and the impli-
cation of zero lookahead in case of synchronous interaction.
Design directions to improve the latter include the use of
optimistic simulator synchronization and the application of
smart remote event prediction.

Lang, Jacobs, and Verbraeck
simulation_1 simulation_2

worker_1
[IWorker]

HLA server

RTI

worker_2
[IWorker]

simulator_1
[IDEVSSimulator]

simulator_2
[IDEVSSimulator]

worker_2_Wrapper
[IWorker],

[IHLAObjectReference]

returnManager
[IReturnSessionManager]

HLAEvent
[ISimEvent]
session ID

returnManager

1

2

3

5 7

8

9

10

4

1. Worker_1 has retrieved a wrapped instance of worker_2 and invokes the method getJobCount() . The wrapper internally
 delegates the call to the generic method callMethod(Object[] args, String name) .
2. The wrapper registers itself as a return value listener with the returnManager , who returns a session id.
3. The wrapper constructs an HLAEvent, initialized with the session id. After performing RMIS, the wrapper blocks the simulator thread.
4, 5. The broadcast interaction is handled using RMIS. As a result, the event is scheduled at simulator_2.
6. The simulator executes the HLAEvent.
7. The HLAEvent invokes the correct method on worker_2 . In addition, the method's return value (here: an int) is retrieved.
8. The returnManager is notified of the return value of the call identified by the session id.
9. The returnManager notifies worker_2_Wrapper of the received return value.
10. The worker_2_Wrapper unblocks the simulation thread and returns the received return value.
 From the perspective of worker_1 , an ordinary synchronous method invocation has just been completed.

6

Figure 7: Synchronous Interaction Using RMIS
Finally, we note that the presented implementation is
Java based. However, we feel the concepts presented here
could easily be translated into a platform neutral implemen-
tation using, for example, CORBA.

REFERENCES

Arnold, K., J. Gosling, and D. Holmes. 2000. The java
(tm) programming language (3rd edition). Boston, MA:
Addison-Wesley Professional.

Birrell, A. 1992. Session: An assessment of the remote
procedure call mechanism. In Proceedings of the 5th
workshop on ACM SIGOPS European workshop: Mod-
els and paradigms for distributed systems structuring,
1–3.

Birrell, A., and B. Nelson. 1984. Implementing remote pro-
cedure calls. ACM Transactions on Computer Systems 2
(1): 39–59.

Boer, C., and A. Verbraeck. 2002. Connecting high level
distributed simulation architectures: An approach for a
famas-hla bridge. In Proceedings of the 14th European
Simulation Symposium, The Society for Computer Sim-
ulation International SCS-European Publishing House,
398–405.

Booch, G. 1991. Object oriented design. Ben-
jamin/Cummings.

Booch, G., J. Rumbaugh, and I. Jacobson. 1999. The uni-
fied modeling language user guide. Indianapolis, IN:
Addison-Wesley.

Box, D., D. Ehnebuske, G. Kakivaya, A. Layman,
N. Mendelsohn, H. Nielsen, S. Thatte, and D. Winer.
2000. Simple object access protocol 1.1. Technical re-
port, W3C.
344
Dahl, O.-J., and K. Nygaard. 1966. Simula - an algol-based
simulation language. Communications of the ACM 9
(9): 671 – 678.

Fitzgibbons, J., R. Fujimoto, D. Fellig, S. Kleban, and
A. Scholand. 2004. Idsim: An extensible framework
for interoperable distributed simulation. In Proceedings
of the IEEE International Conference on Web Services
(ICWS’04).

Foster, I., C. Kesselman, and S. Tuecke. 2001. The anatomy
of the grid: Enabling scalable virtual organizations.
International Journal of High Performance Computing
Applications 15 (3): 200–222.

Fujimoto, R. 1999. Parallel and distributed simulation sys-
tems. Wiley.

Heim, J. 1997. Integrating distributed simulation objects. In
Proceedings of the 1997 Winter Simulation Conference,
ed. S. Andradóttir, K. Healy, D. Withers, and B. Nelson.

IEEE 2000. IEEE standard 1516-2000 IEEE standard for
modeling and simulation (m&s) high level architecture
(hla) – framework and rules.

Iskra, K., R. Belleman, G. van Albada, J. Santoso, P. Sloot,
H. Bal, H. Spoelder, and M. Bubak. 2002. The polder
computing environment, a system for interactive dis-
tributed simulation. Concurrency and Computation:
Practice and experience 14:1313–1335.

Jacobs, P., N. Lang, and A. Verbraeck. 2002. D-SOL; a
distributed java based discrete event simulation archi-
tecture. In Proceedings of the 2002 Winter Simulation
Conference, ed. E. Yücesan, C.-H. Chen, J. Snowdon,
and J. Charnes, 793 – 800.

Kuhl, F., R. Weatherly, J. Dahmann, and A. Jones. 1999.
Creating computer simulation systems: An introduction
to the high level architecture. New Jersey: Prentice-
Hall.

Lang, Jacobs, and Verbraeck
Lang, J., B. Bogovich, S. Barry, B. Durkin, M. Katch-
mar, J. Kelly, J. McCollum, and J. Potts. 2001.
Object-oriented programming and design patterns. ACM
SIGCSE Bulletin 33 (4): 68–70.

Lang, N., P. Jacobs, and A. Verbraeck. 2003. Distributed,
open simulation model development with DSOL ser-
vices. In Simulation in Industry. Proceedings 15th Eu-
ropean Simulation Symposium, ed. A. Verbraeck and
V. Hlupic, 210–218.

Martin, J., and J. Odell. 1998. Object-oriented methods: A
foundation uml edition. Prentice Hall.

Menascé, D. 2005. Mom vs. rpc: Communication models
for distributed applications. IEEE Internet Computing 9
(2): 90–93.

Object Management Group. 1995. The common object re-
quest broker: Architecture and specification.

Papazoglou, M., and D. Geogakopoulos. 2003. Service ori-
ented computing. Communications of the ACM 46 (10):
25–28.

Silva, A., P. Sousa, and M. Antunes. 1998. Naming: design
pattern and framework. In Proceedings COMPSAC ’98 -
22nd International Computer Software and Applications
Conference, August 19-21, 1998, Vienna, Austria, 316–
323: IEEE Computer Society.

Spracklen, L., and S. Abraham. 2005. Chip multithreading:
Opportunities and challenges. In Proceedings of the
11th Int’l Symposium on High-Performance Computer
Architecture (HPCA-11 2005).

Zeigler, B. P., H. Praehofer, and T. Kim. 2000. Theory of
modeling and simulation. integrating discrete event and
continuous complex dynamic systems. 2nd ed.Academic
Press.

AUTHOR BIOGRAPHIES

NIELS A. LANG is a PhD. candidate at the Rotterdam
School of Management. His research focuses on the ap-
plication of simulation to support logistic system design.
Specifically, he investigates the possibilities of integrat-
ing operational and economic logistic models. He is co-
developer of the DSOL project. His e-mail address is
<nlang@rsm.nl>.

PETER H.M. JACOBS is a PhD. student at Delft Uni-
versity of Technology. His research focuses on the design
of simulation and decision support services for the web-
enabled era. His working experience within the iForce
Ready Center, Sun Microsystems (Menlo Park, CA), and
engineering education at Delft University of Technology
founded his interest for this research. His e-mail address
is <p.h.m.jacobs@tbm.tudelft.nl>.

ALEXANDER VERBRAECK is an associate professor in
the Systems Engineering Group of the Faculty of Technol-
345
ogy, Policy and Management of Delft University of Technol-
ogy, and a part-time full professor in supply chain manage-
ment at the R.H. Smith School of Business of the University
of Maryland. He is a specialist in discrete event simula-
tion for real-time control of complex transportation systems
and for modeling business systems. His current research
focus is on development of open and generic libraries of
object oriented simulation building blocks in Java. Contact
information: <a.verbraeck@tbm.tudelft.nl>.

mailto:nlang@rsm.nl
mailto:p.h.m.jacobs@tbm.tudelft.nl
mailto:a.verbraeck@tbm.tudelft.nl

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

