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ABSTRACT

The goal of Systems Biology is to analyze the behavior and
interrelationships between entities of entire functional bio-
logical systems. Discrete event approaches are of particular
interest if small numbers of entities, like DNA molecules,
shall be modeled. Two general approaches toward discrete
event modeling and simulation are presented. They provide
rather different perspectives on the system to be modeled,
as is illustrated based on a model of the Trypophan Operon.
Whereas in Devs distinctions are emphasized, e.g. between
system and its environment, between structural and non struc-
tural changes, between properties attributed to a system and
the system itself, these distinctions become fluent in the com-
pact description of the π -Calculus. However, both share
the problem that in order to support a comfortable modeling,
adaptations and extensions according to the concrete require-
ments of this challenging application area are needed.

1 INTRODUCTION

The goal of Systems Biology is to analyze the behavior and
interrelationships between entities of entire functional bio-
logical systems (Wolkenhauer 2001), a research area that has
received increasingly attention over the last years. Particu-
larly, based on the availability of more reliable and more fine
grained data the research has gained momentum. Diverse
modeling and simulation methods are being applied in the
area of Systems Biology. Although continuous systems mod-
els are the dominant type of models being used in Systems
Biology (de Jong 2002), stochastic discrete event models are
recently gaining ground as well. They address specific con-
straints of continuous, deterministic models: concentrations
do not necessarily change continuously, particularly if the
dynamics of a small amount of entities, like DNA molecules
and plasmids, shall be modeled (Kuo and Keasling 1996).
In addition, the dynamics of some biological systems can
be best approached in a stochastic manner, e.g. if the gene
regulation is to be described, where stochastic fluctuations
are abundant (Cowan 2003). However, so far most work
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has concentrated on a stochastic, discrete event execution
of reaction equations, rather than on an explicit model-
ing in a discrete event modeling formalism. Many simu-
lation systems, e.g. (Ramsey et al. 2005), offer already to
execute reaction networks by numerical integration or by
stochastic discrete event simulation on demand. For the lat-
ter the reaction rates are turned into reaction probabilities
per unit time following the approach suggested by Gille-
spie (Gillespie 1977). However, whereas stochastic discrete
event executions are widely employed and only critically
inspected due to their lack of performance, discrete event
modeling formalisms have a harder time to get accepted in
the Systems Biology community. Unlike the continuous
systems modeling and simulation realm, the discrete mod-
eling and simulation realm lacks a common denominator
for model description, even though general approaches ex-
ist. E.g. Devs (Zeigler, Praehofer, and Kim 2000), stochas-
tic Petri Nets (Haas 2002), and stochastic π -Calculus
(Priami 1995) (in the following also Stochastic π ) are
formal and generally applicable approaches toward discrete
event systems modeling. Each has been developed with a
rather different objective in mind. E.g. the goal of Devs
has been to combine the functional, network, and hierar-
chical perspective in describing systems, and thus stands in
the tradition of general systems theory. In contrast Petri
Nets and π -Calculus have been developed for describ-
ing concurrent processes and are best known in the context of
Computer Science. Whereas the relation between Devs and
Petri Nets has been the subject of research before, e.g.
recently (Bobeanu et al. 2004), the relation between Devs
and stochastic π -Calculus, is largely unexplored. Our
goal is to approach filling this gap by particularly focusing
on gene regulation processes as part of Systems Biology.

2 STOCHASTIC π -Calculus

The stochastic π -Calculus (Priami 1995) is an extension
of the π -calculus (Milner 1999) that copes with quantita-
tive information to support temporal simulation of complex
systems. The calculus is based on the notion of name that
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represent both interconnection links between active entities
called processes and the data that these entities exchange
through communication. Communication channels are asso-
ciated with probabilistic distributions to describe the quanti-
tative evolution of the overall system.

The abstraction principles that drive the modeling of
molecular interactions are as follows. Processes model
molecules and domains (subcomponents of the molecules
that can have active roles in chemical interactions). Global
channel names and co-names represent complementary do-
mains and newly declared private channels define complexes
and cellular compartments. Communication and channel
transmission model chemical interaction and subsequent
modifications. The actual rate of a reaction between two
proteins is determined according to a constant basal rate
empirically-determined and the concentrations or quantities
of the reactants . If two different reactant molecules, P and
Q, are involved, the reaction rate is given by rb × |P | × |Q|,
where rb is the reaction’s basal rate, and |P | and |Q| are
the numbers of P and Q in the chemical solution computed
via the two auxiliary functions, Inx, Outx that inductively
count the number of receive and send operations on a channel
x enabled in a process.

The syntax of the calculus follows

P ::= 0 | (π, rb).P | (νx)P | [x = y]P | P |P |
P + P | A(y1, . . . , yn) (1)

where π may be either x(y) for input, or xy for output (where
x is the subject and y is the object). (νx)P means that x is a
new name declared in P. The parameter rb corresponds to the
basal rate of a biochemical reaction and it is an exponential
distribution associated to the channel occurring in π . The
order of precedence among the operators is the order (from
left to right) listed above.

The intuitive semantics of the operators follows. The pre-
fix π is the first atomic action that the process π.P can per-
form. The input prefix binds the name y in the prefixed
process. Intuitively, some name y is received along the link
named x. The output prefix does not bind the name y which
is sent along x. Summation denotes nondeterministic choice.
The operator | describes parallel composition of processes.
The operator (νx) acts as a static binder for the name x in the
process P that it prefixes. In other words, x is a unique name
in P which is different from all the external names. Matching
[x = y]P is an if-then operator: process P is activated
if x = y. Finally, each agent identifier A has a unique defin-
ing equation of the form A(y1, . . . , yn) = P , where the yi’s
are the only free names (see below) of P and yi �= yj if
i �= j . The parameter r associated with prefixes defines an
exponential distribution according to which the probabilis-
tic behavior is determined. The semantics of the calculus
thereby defines the dynamic behavior of the modeled system
driven by a race condition, yielding a probabilistic model of
computation. All the activities enabled in a state compete
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and the fastest one succeeds. The continuity of exponential
distributions ensures that the probability that two activities
end simultaneously is zero.

The reduction semantics of the biochemical stochastic π -
Calculus is

(. . . + (x〈z〉, rb).Q)|((x(y), rb).P + . . .)
x,rb ·1·1−−−−−→ Q|P {z/y}

P
x,rb ·r0·r1−−−−−−→ P ′

P |Q x,rb ·r ′
0·r ′

1−−−−−−→ P ′|Q
,

{
r ′
0 = r0 + Inx(Q)

r ′
1 = r1 + Outx(Q)

P
x,rb ·r0·r1−−−−−−→ P ′

(ν x)P
x,rb ·r0·r1−−−−−−→ (ν x)P ′

Q≡P,P
x,rb ·r0 ·r1−−−−−−→P ′,P ′≡Q′

Q
x,rb ·r0 ·r1−−−−−−→Q′

. (2)

A reaction is implemented by the three parameters rb, r0 and
r1, where rb represents the basal rate, and r0 and r1 denote
the quantities of interacting molecules, and are computed
compositionally by Inx and Outx . For instance the first
rule describes how communication takes place. When two
complementary actions are enabled (they can be executed,
one is willing to send a message on a channel and another
is willing to receive something on the same channel), the
two prefixes are consumed. The resulting system is made
up of the continuation after the process having discarded the
alternatives.

3 DEVS

Devs has been developed as a general approach to-
ward modeling and simulation discrete event systems
(Zeigler, Praehofer, and Kim 2000). Devs distinguishes be-
tween atomic models and coupled models. Whereas atomic
models describe the behavior in terms of state transitions that
might be triggered by external events or the flow of time, cou-
pled models define how their components, which might be
atomic or coupled, interact with each other. Thereby, a hier-
archical, modular construction of models is supported. Both
atomic and coupled models communicate with their environ-
ment via input and output sets which are typically structured
into ports. Therefore, Zeigler introduced so called structured
sets. An abstract simulator defines the execution semantics
of typical Devs models. In the following we will take the
PDevs variant of Devs as a base (see (Zeigler et al. 2000)
for further discussions). An atomic model is defined by

DEV S := 〈Xb, Y b, S, δint , δext , δcon, λ, ta〉 (3)

where Xb, Y b are structured multi sets of input and output
respectively, S is the structured set of states, δint : S → S

describes the state transition triggered by the flow of time,
i.e. the occurrence of an internal event, δext : Q × Xb → S

with Q := {(s, e)|s ∈ S ∧ 0 ≤ e ≤ ta(s)} defines state
transitions triggered by the arrival of “external” events, the
confluent transition δcon : S ×Xb → S defines the transition
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Figure 1: The Operon Model
in case internal and external events coincide (note for sim-
plicity, the confluent transition function will in our examples
be neglected assuming to be defined by successively calling
the internal and thereafter the external transition function),
the output function λ : S → Y determines the output given
a state, and the time advance function ta : S → R+

0 as-
sociates with each state a time span after which an internal
event is triggered, which implies calling the lambda func-
tion and thereafter executing the internal transition function.
Stochastic aspects are included by using random variables
of arbitrary random distributions in the different functions,
e.g. in the time advance function to describe an exponential
distributed basal rate.

CoupDEV S := 〈Xb, Y b, D, Couplings〉 (4)

where Xb, Y b denote again the inputs and outputs, D the
set of components which have to be again Devs models,
Couplings define the interactions that exist among the com-
ponents and between the inputs and outputs of the coupled
models and the components. As far as the domain of Sys-
tems Biology is concerned, the atomic models describe the
active species of the cellular systems and the coupled mod-
els support grouping species and defining the interaction
between them. Thus, a similar approach as in applying
Statecharts in Systems Biology (Efroni et al. 2003) is
taken. For a comparison of Statecharts and Devs in
general see e.g. (Borland and Vangheluwe 2003).

4 APPLICATION

The Tryptophan (Trp) Operon is one of the most exten-
sively studied systems for the examination of the prokaryotic
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gene regulation including the spatio-temporally progressing
phenomena of gene repression, transcriptional attenuation
and post translational enzyme feedback inhibition. The Trp
operon comprises a promoter and an operator region and
genes responsible for coding of the 5 enzymes that are needed
to synthesize Trp. The promoter region has a binding site
where the RNA polymerase can bind. This is the enzyme
responsible for the transcription of genes. As long as the re-
pressor is inactive it cannot bind to the operator of the Trp
Operon. However, if the corepressor Trp binds to the in-
active repressor protein, the allosteric repressor protein will
change its shape causing it to become activated. In this state
the repressor protein can bind to the operator region of the
operon. With the active repressor protein bound to the opera-
tor region, RNA polymerase is unable to bind to the promoter
region of the operon. Only if no repressor is bound to the
operon, the transcription of the five genes into mRNA will
be enabled. In the following we will only show parts of
the model. For a detailed discussion of the behavior of the
Tryptophan Operon as a continuous model based on delayed
ODEs, see e.g. (Santill’an and Mackey 2001), as a discrete
event model based onDevs, see e.g. (Degenring et al. 2004,
Degenring et al. 2005), and a model focussing on the
role of the attenuation based on π -Calculus, see e.g.
(Kuttler to appear).

4.1 Operon in DEVS

The operon model can be represented as a StateChart as
shown in Figure 1. (Note inputs are identified by the prefix
“?”, and outputs by the prefix “!”). In Devs the model is
realized as a coupled model with three interacting atomic
models (Figure 2).
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Operon := < X, Y, D, Couplings >

X := { (RnapIn, RepIn) |
RnapIn ∈ { rnap, nil },
RepIn ∈ { dock?, nil } },

Y := { (RnapOut, RepOut) |
RnapOut ∈ { rnap, nil }
RepOut ∈ { accept!, reject!, nil } },

D := { Promoter, Operator, Genearray },

Couplings =
{ (self.RnapIn, Promoter.RnapIn),

(Promoter.RnapOut, self.RnapOut),
(Operator.RnapOut, self.RnapOut),
(GeneArray.RnapOut, self.RnapOut),
(self.RepIn, Operator.RepIn),
(Operator.RepOut, self.RepOut),
(Promoter.RnapOutOp, Operator.RnapIn),
(Operator.RnapOutGe, GeneArray.RnapIn) }

Figure 2: Operon Model in Devs

After a certain time, the promoter forwards the incoming
rnap to the Operator. If the Operator is repressed it
will release the rnap molecule into the cytoplasm, if not it
will forward the incoming rnap to the GeneArray. The
operator is being repressed if a Repressor is coupled to
the Operon, to be more precise to its Operator. Please
note that the model components Promoter, Operator
and Genearray are meant to work also for other types of
operons, like e.g. the Lac Operon. Therefore, the model
allows an rnap to temporarily bind to the Promoter
even if a Repressor is docked to the Operator. In
the presence of a repressor the Operator will turn it
away. The GeneArray is able to process a series of
rnap molecules concurrently, and thus to generate a series
of mRNA models. These models will be newly generated
and are themselves responsible for generating the enzyme
models responsible for the production of the Tryptophan
(Degenring et al. 2004). With each transcription of an indi-
vidual mRNA, the molecules of type RNA polymerase are
released to the cytoplasm. Please note that in the description
below we did not include explicitly the δcon function, by de-
fault δcon is defined by a successive execution of δext and δint .

The above definition of a promoter in Devs (Figure 3)
illustrates one of the problems in defining a cell biological
model in this formalism. The promoter might not be in the
phase to accept an arriving RNA Polymerase, so it will turn it
away. The arrival of the rnap triggers the external transition
function being invoked. Intuitively one would like to remain
in the phase rejecting and simply turn the rnap away.
This turning away requires producing an output. However,
in DEVS only at the time of an internal event an output
can be produced (Zeigler et al. 2000). Thus, in order to
reject the rnap the model has shortly to enforce an internal
32
Promoter := <X, Y, S, deltaint , deltaext , λ , ta>

X := { RnapIn | RnapIn ∈ { rnap, nil } },
Y := { (RnapOut, RnapOutOp) |

RnapOut ∈ { rnap, nil },
RnapOutOp ∈ { rnap, nil } },

S := { (phase, remainTime) |
phase ∈ { accepting, rejecting, dummy }
remainTime ∈ R ∪ ∞ }

ta (phase, remainTime) :=
if phase = dummy then 0 else remainTime

δint (phase, remainTime) :=
if phase = rejecting

then (accepting, ∞ )
else (rejecting, remainTime)

δext ((phase, remainTime), elapsedT, rnap) :=
if phase = accepting

then (rejecting, expRandom(forwardT))
else (dummy, remainTime - elapsedT)

λ (phase,remainTime) :=
if phase = dummy

then (rnap, nil) else (nil, rnap)

Figure 3: Promoter Model in Devs

transition to the dummy phase and afterward will return to
the state (rejecting, remainTime) to continue its
work. Therefore, the remaining time to finish its job when
it was being interrupted, i.e. remainTime is calculated
remainTime-elapsedT, to be used afterward when
the model via the internal transition switches from dummy
to rejecting. The Devs formalism helps rescheduling
events by explicitly including in the invocation of the
external transition function the elapsed time, i.e. the time
that has passed since the last event, and thus the time to
its next internal event. As a further example how in Devs
cell biological models can be specified, we will give the
description of the GeneArray (Figure 4).

This reveals another problem in applying the original
Devs formalism as traditional Devs does not support vari-
able structures. Neither exists a direct or visual support in
Statecharts, they are integrated based on functional calls
as kind of side effects. In the above Devs specification we
integrated them just as a kind of special portmRnaOut that is
actually not connected to any other model but allows us to sig-
nalize this kind of structural event. The events that are leaving
via this port are of type VariableStructureRequest.

4.2 Operon in Stochastic π -Calculus

The operon model is represented by the parallel pro-
cesses Promoter and Operator (Figure 5). The com-
ponent GeneArray which was responsible for succes-
sively generating the mRNA is now represented by the
0
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GeneArray := <X, Y, S, deltaint , deltaext , λ , ta>

X :={ RnapIn | RnapIn ∈ { rnap, nil }},
Y :={ (RnapOut, mRnaOut) |

RnapOut ∈ { rnap, nil},
mRnaOut ofType VariableStructureRequest},

S :={ (phase, remainTime) |
phase ∈ { idle, generating }
remainTime ∈ 2R }

ta (phase, remainTime) :=
if phase = idle
then ∞ else minimum(remainTime)

δint (phase, remainTime) :=
if |remainT| = 1 then (idle, {∞})
else (generating,

remainTime \ minimum(remainTime))

δext ((phase, remainTime), elapsedT, rnap) :=
if phase = idle

then (generating, {expRandom(generationT)})
else (generating,

Subtract(remainTime, elapsedT) ∪
{ expRandom(generationT) })

λ(generating, remainTime) :=
(rnap, VariableStructureRequest

(Create,mRna,toFrom(Cytoplasm))

Figure 4: Genearray Model in Devs

Operon ::= Promoter | Operator

Promoter ::= (rnap, rnapT) .
(rnapOp,opForwardT). Promoter

Operator ::=
((rnapOp, opForwardT).

(Transcribing | (generate,generationT) |
Operator)) +

((dock(d),reprT). (d,unbindingT) . Operator)

Transcribing ::= (generate,generationT) . mRNA

mRNA ::= ...
RnaPolymerase ::= ...

Figure 5: Operon Model in Stochastic π

Transcribing process. After activation on the rnap
channel, the Promoter interacts with the Operator on
the channel rnapOp and then resumes its normal behav-
ior. The Operator can now follow two distinct alter-
native paths: ((rnapOp …) – it can activate a copy of
the Transcribing process, a new copy of itself and
a control process of transcription that communicate with
Transcribing via the generate channel (Note that
the processes of type Transcribing are generated on de-
mand.), or((dock …) – it can receive a channel over which
to synchronize to unbind and resume its behavior. The role of
the promoter, i.e. forwarding RNA Polymerase molecules,
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to the operator region becomes evident.

4.3 Repressor in DEVS

Gene repression takes place, if an active form of the repressor
docks onto free controlling sections of the DNA molecules,
occupies them and prevent the mRNA polymerase from bind-
ing there and initiating the transcription. The repressor itself
is activated by binding two Trp molecules per each repres-
sor molecule, so that the process of repression is directly
regulated by the Trp concentration. For simplicity in the
model we assume that one trp corresponds to two Trypto-
phan molecules. The more often the repressor receives the
two Trp molecules, i.e. ?Trp (Figure 6, which means the
higher the concentration of Trp in the cytoplasm, the more
likely it is that the repressor will try to dock at the operon
model.

Figure 6: A State Chart of the Repressor

Therefore, the Repressor model installs an explicit cou-
pling to Operon. If the docking request is confirmed by the
operon model, the Repressor stays in phase repressing
for a certain time. Afterward, the Repressor will dissolve
its coupling to the Operon and will release the two Tryp-
tophan molecules. Lets have a look how the backward and
forward reaction from the state active to the state free
or trying to dock is modeled (Figure 7), as forward
and backward reactions are quite common in Systems Biol-
ogy. With each state Devs associates a time span how long
this state will persist per se. After this time it will call the
output function to produce an output and the internal tran-
sition function to determine the next state. So intuitively
the time advance function would be generating two expo-
nentially distributed random variable based on deacT and
reprT respectively and choose the smallest one. However,
when the internal transition function would be invoked, it
would have no idea whether to change to the state free
or the state trying to dock as the only information
available is the former state, i.e. active. Therefore, both
generated random numbers deacTime, reacTime have
to become part of the state to be accessible by the inter-
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nal state transition. So the time advance function will re-
turn minimum(deacTime, reprTime), and the inter-
nal transition function will determine based on the defined
guards to which state to move. In installing an explicit dock-
ing to the Operon, the Repressor has to know the name
of the model it wants to dock to. When initialized each re-
pressor is given the name of the one and only operaton, i.e.
Operon in the cell model. Otherwise these information has
to be communicated similarly as in stochastic π .

Repressor := ...

S := { (phase, deacTime, reprTime) |
phase ∈ { free, active, dummy,

tryingToDock,
repressing, releasing }

deacTime, reprTime ∈ R }
...
ta (phase, deacTime, reprT) :=

if phase = active then min(deacTime, reprTime)
...
δint (phase, deacTime, reacTime) :=

if phase = active then
if deacTime < reacTime then (free, ...)
else (tryingToDock, ...)

...
δext ((phase,deacTime,reacTime),elapsedT,trp) :=

if phase = free then
(active, expRandom(deacT), expRandom(reacT))

...
λ (phase, deacTime, reacTime) :=

if phase = active then
if deacTime < reacTime then (trp, nil)
else (nil, VariableStructureRequest

(AddCoupling, toFrom(Operon))

Figure 7: Repressor Model in Devs

4.4 Repressor in Stochastic π -Calculus

Tryptophan molecules, repressors and operon are all pro-
cesses. In the beginning the only channel known is the trp
port and the dock port. Please note that the interaction oc-
curs randomly between repressors and tryptophan processes.
The interaction is synchronous, which implies identifying
a matching pair of repressor and tryptophan processes and
triggering the reduction rule that will be fired with a certain
delay. The delay is calculated based on an exponentially
distribution taking the rate of the corresponding channel
as its mean. Interestingly also here the passing of names
is crucial: not the names of the processes involved but the
names of the channels. Those channels are generated dy-
namically and frequently. Channel creations are the means
for distinguishing between different phases of the repressor,
i.e. free, active, repressing, and releasing
and associating with these different phases certain time
spans. So instead of a time advance function that associates
with a state a time span, now a synchronous interaction
is introduced which naturally will put both processes on
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hold until completed. Distinguishing a phase trying to
dock is no longer needed. As the interaction will only
occur if the repressor’s request dock (its output) is met by
the operator’s request for an input dock, it is guaranteed that
the operon is in the correct state for the docking operation
to occur.

Repressor ::= (trp(c),reactionT) .
((c,releaseT). Repressor) +
((ν freeRepr)(dock(freeRepr),reprT).

(f reeRepr,unbindingT) .
(c,releaseT). Repressor))

Tryptophan ::=
((ν release) (trp(release),reactionT) .

(release,releaseT) . Tryptophan

Figure 8: Repressor Model in Stochastic π

4.5 Structure of the Overall Model

Figure 9 shows the structure of the Tryptophan Operon
model as a multi-level model. The Cytoplasm is a cou-
pled model that describes at macro level, i.e. at concen-
tration levels, species like �Trp, Rnap, Indole, IGP, Ser-
ine, G3P, and Ribosom, which are exchanged between
the models. Thus, it launches molecules to the respec-
tive models at times that are calculated based on the re-
action rate and the number of reactands, following Gille-
spie (Gillespie 1977). As the events of certain reactions to
occur are calculated in advance similarly to the approach
presented in (Gibson and Bruck 2000), the events have to
be rescheduled. In this context again the availability of
the elapsed time is crucial. The coupling between cyto-
plasm and the individual repressor models, enzyme models
and mRNA models are realized by a special type of cou-
pling: multi-couplings which randomly select a coupling
each time an output is generated by the cytoplasm. It
should be noted, that Cytoplasm, Enzyme, Operon,
and mRNA are all coupled models, so the model is hierar-
chically structured. The structure of the overall model in
π -Calculus, if depicted, would show itself as a set of
processes of different types, signalizing at their interfaces
their interest in certain communications, some of them ran-
domly and spontaneously involved in communication. The
structure would be overall flat. This however would change
at the moment extensions of the stochastic π -Calculus,
e.g. Ambients (Cardelli and Gordon 2000) or Beta
Binders (Priami and Quaglia 2005) would come into play.

5 DISCUSSION

Both modeling formalisms provide quite different percep-
tions on the system to be modeled.
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Figure 9: Overall Structure of the Devs Model
5.1 Distinction: System and Environment

Prominent in Devs is the clear distinction between system
and environment by encapsulating the attributes and methods
of a model and constraining the interaction between system
and environment to ports. The knowledge of a system ends
at its ports, it does not even know with whom it is interacting.
Only the superior coupled model is privy to that information.
On the other side from outside nothing is known about the
internal state, if the model has not communicated it before.
Already in the given example it becomes evident that this
information hidden in Devs causes an undesirable overhead
in modeling and simulating cell biological reactions. On the
other side the encapsulation and modular design facilitates
the step wise understanding of the system. Encapsulation,
hierarchical design, together with the notion of describing
the species as a kind of entity being in discrete states are
very intuitive, particularly if visualized by Statecharts,
as has been also emphasized in (Efroni et al. 2005).

In Stochastic π , processes rather than systems are de-
scribed. A system is obtained as composition of elementary
processes. This notion of compositionality is a key feature
of the formalism because it allows the user to incrementally
define the whole set of systems of interest by adding infor-
mation to the part already developed.

As each process is able to generate new channels and
new processes, the interface to the environment is frequently
changing. Most of what happens within a Devs model be-
comes in Stochastic π an interaction directed to the en-
vironment. State transitions in Devs manifest themselves
as communications in Stochastic π . As the interface is
frequently changing the distinction between system and en-
vironment is fluent, in the sense that the interface changes
during simulation, so what does belong and does not belong
to a system changes over time. Whereas thereby, the dis-
tinction between system and environment is not facilitated,
phenomena of changing interfaces that are particularly of in-
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terest in Systems Biology can easily be described.
The interface determines which reaction can occur be-

tween two species. This is even getting more pronounced by
another extension of π -Calculus, i.e. Beta Binders.
The new formalism allows to encapsulate pi-processes within
boxes equipped with types that drive potential interactions
based on the notion of affinity. This releases the exact
complementarity required in Stochastic π that does not
mimick what really happen in a biological setting. In ad-
dition Beta Binders provide additional structure within
Stochastic-π models.

5.2 Structural and non Structural Changes

Whereas structural changes as changing interaction patterns
and compositions are the exception in traditional modeling
formalisms - if they are supported at all - in π -Calculus
they are the rule. State transitions turn into the generation
of channels. The successive processing of a number of RNA
polymerase is modeled by a successive generation of tran-
scription processes.

Traditional Devs does not support variable interaction,
composition, and behavior pattern. Different extensions of
the formalisms exist, e.g. (Barros 1997, Uhrmacher 2001),
which support the change of structure as specific events, and
likely even more implementations do exist. Surely, Devs
was one of the first modeling and simulation formalisms, in
which the need to support variable structures was stressed
(Zeigler 1986). However, none of these realizations does
allow a similarly seamless integration of structural and non
structural changes as the Stochastic π -Calculus.

5.3 Micro-, Macro-, and Multilevel Modeling

Devs does not only clearly distinguish between structural
and non structural events, but also between “active” entities
like enzymes, repressors, mRNA and operon and the “pas-
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sive” entities like the tryptophan molecules, serine etc. In
the stochastic π -Calculus all entities are processes. Pos-
sibly processes could be distinguished though: e.g. whether
processes have an own thread of control which is expressed
in their continuation, e.g. Repressor, Operator,
Genearray, or whether they are simply invoked for a task
to be completed, e.g. Transcribing.

However, the π -Calculus does not lend itself to describ-
ing part of a system as interacting individuals and part of it
as changing concentrations. Thus, no multi-level modeling
is directly supported in π -Calculus like it is in Devs. Al-
though one has to note that in Devs a multi-level model,
that describes a system at different levels of organization, is
not supported via the coupled models as one might assume.
Coupled models do not have a behavior of their own. They
are aimed at supporting a modular, hierarchical construction
of models rather than the description of dynamics at different
hierarchical levels of organization. Coupled models can be
used to define compartments and locations within the cell,
similar e.g. to the boxes in Beta Binders. Thus, they
structure the cellular space in a discrete manner, defining
regions of increased interaction. However, models which
monitor and update concentrations of species at macro level
are defined as atomic models, same as the individual micro
models. For rescheduling events at macro level again the
elapsed time information becomes essential.

One of the advantages of simulating entities individually is
the possibility to track one individual if required. To track an
individual is possible in Devs and Stochastic π . Both
trace specific entities by relying on the names of processes
and models respectively.

5.4 Communication

The communication of the π -Calculus reflects well how
biological systems are assumed to interact. Indeed it can
occur only if both interacting partners are willing to do so
(synchronous). Furthermore, the quantitative information as-
sociated with channels drives the stochastic behavior through
races.

InDevs, an event will arrive asynchronously. It is checked
whether e.g. the operator is in the right phase to accept the
repressor, if not the docking request will be denied. In π -
Calculus, it is known from the outside whether or not the
repressor is in the correct state. Also selecting randomly
among those available, mimics the idea of randomly moving
molecules quite well.

In Devs, the interaction between models are defined by
couplings. If more than one model is connected to the output
of a model the output will be cloned and reach all. This is
similar to the idea of broadcasting events in Statecharts.
If information is communicated this makes perfect sense,
however, less so when consumable resources like Trypto-
phan molecules are communicated along couplings. To real-
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ize the Tryptophan Synthase and Tryptophan Operon model
(Degenring et al. 2004, Degenring et al. 2005) a stochastic
multi-coupling was introduced to facilitate this form of in-
teraction. It constitutes a form of variable coupling that given
a set of models realizes at the moment of output a coupling
to only one of them. Via multi-couplings a trp is sent to a
Repressor, a serine to an Enzyme, or a ribosome
to a mRNA (Figure 9).

The traditional couplings as they are supported in Devs
are of particular benefit if covalent structures like the Trypto-
phan Synthase enzyme shall be modeled. Here the alpha and
beta subunit form a covalent structure and directly interact.
Whereas the beta unit signalizes the availability of serine to
alpha, the alpha subunit tunnels the produced Indole via the
tunnel to beta. Not only this static channeling but also dy-
namic channeling, e.g. observed in the glycolysis, require
a direct communication. This form of interaction is nicely
reflected in Devs.

Covalent structures like the enzyme responsible for the
Tryptophan production, show another important aspect: the
ability to form more complex models by grouping mod-
els into containers. This is one of the strength of Devs,
which has been adapted by many continuous and discrete
modeling formalism. In π -Calculus hierarchies are mod-
eled by relying on the notion of scope of names intro-
duced through the new operator. Like in blocks of pro-
gramming languages, we can define names into nested
structure that implicitly represent hierarchies. Extensions
like Ambients and particularly Bio-Ambients, and
Beta Binders make these implicit composition hierar-
chies explicit (Cardelli and Gordon 2000, Regev et al. 2004)
and support a grouping of processes within locations.

5.5 Execution

For both stochastic π -Calculus and Devs simula-
tion engines, e.g. (Himmelspach and Uhrmacher 2004,
Regev 2001), and abstract simulator specifications exist,
e.g. (Phillips and Cardelli 2004, Zeigler et al. 2000). Both
formalisms belong into the family of discrete-event for-
malisms, and thus can be interpreted by a discrete-event
simulation engine. Devs simulators are typically general
discrete-event simulation engines. Simulation engines for
Stochastic π , e.g. SPIM (Phillips and Cardelli 2004),
BioSpi (Regev 2001), are aimed at cell biological applica-
tions. For scheduling the next event they take the propensi-
ties of reactions according to Gillespie into account. They
interpret the channels as reactions, and processes as possible
reactands. To determine the time of next event and which
reaction to execute at this time, the simulator calculates the
propensities based on the number of reactands for each re-
action and the mesoscopic reaction rate. Given a reaction to
execute, it selects randomly among the available reactands.
In the Devs model which is executed by a general discrete
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event simulator, the cytoplasma keeps track of the number of
models, i.e. reactands, and describes the collision probabil-
ity explicitly. In realizing the random selection of possible
reactands stochastic multi-couplings are used. Thus, addi-
tional effort in modeling is required, however the simulation
engine supports a higher flexibility in describing biological
systems.

6 CONCLUSION

Both modeling formalism support different perspectives on
the system to be modeled. The strength of Devs lies in its
modular, hierarchical design. In combination with the sup-
port of variable structures and multicouplings it provides a
basis for designing complex cellular models, whose individ-
ual entities are easy to understand, if visualized e.g. by a
StateChart variant, which given the closeness of both
formalisms should be straightforward. However, keeping all
information about state changes in the inside of the model
puts unnecessary overhead on modeling and simulation. En-
riching the interface, e.g. by a dynamic generation of typed
ports would be a possibility to address this deficiency. In ad-
dition more flexible communication patterns than the usual
couplings have to be supported, one step into this direction
are the multicouplings already introduced.

The Stochastic π is a linguistic framework to model
the dynamic behavior of complex interacting systems. It is
based on the notion of names used to represent both commu-
nication channels and data. This property allows to make the
interconnection topology of the interacting processes vary
over time mimicking a notion of mobility. The formalism
include the notion of rate associated with transitions that
allow to build stochastic models on which simulation can
be carried out. The main advantage of the formalism that
has been proved useful in modeling biological systems, e.g.
(Lecca et al. 2004, Kuttler 2005), are its simple structure
coupled with a strong theoretical foundation and the notion
of compositionality. Current efforts are directed to provide
additional structure in modeling, see e.g. BioAmbients
and Beta Binders.
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