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ABSTRACT 

The objective of simulation modeling is to gain insight into 
the dynamics of complex systems.  Simulation models of 
complex systems consist of numerous input variable, 
linked together by logical relationships.  The process of de-
termining the set of input variable values that produce the 
optima output has often posed the greatest challenge during 
simulation studies.  In recent years, the ability to integrate 
optimization technology into simulation models has sig-
nificantly improved this process.  To effectively utilize op-
timization technology, however, modelers must define op-
timization variables.  In this paper, an approach is 
developed that provides information concerning the inter-
relationship between input variables used in a simulation 
model.  This information can then be used as the basis for 
selecting optimization variables. 

1 INTRODUCTION 

Computer simulation is a useful tool for analyzing complex 
systems such as factories, health care networks, logistics, 
and service type operations.  Simulation is used when tradi-
tional Operations Research tools such as linear program-
ming, stochastic modeling, or queuing network models can-
not capture the detail or the dynamics of the system.  

While simulation is good for representing complex 
systems, the utility of the technology for finding the “an-
swer” to a given problem has shown mixed results.  The 
traditional process of finding the “answer” to a problem 
using simulation involves defining a number of scenarios 
using combinations of input variable settings, running the 
model with all scenarios, and selecting the ‘best’ scenario’ 
as the ‘answer’ (Akbay 1996).  The selection of critical in-
put variables to use in the optimization is often made on 
the basis of the intuition and experience of the modeler, 
guided by high utilization factors reported in model output 
summaries.  As the complexity and size of the input vari-
able set grows, this approach becomes time intensive, par-
ticularly if the model execution time is large, and con-
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strains the ultimate quality of the answer achieved by those 
who select and define the scenarios.   

Much of the recent research literature in the computer 
simulation field consists of input or output analysis.  Out-
put analysis research has focused on embellishing optimi-
zation algorithms, such as the methods suggested by Cheng 
and Currier (2004).  Of particular importance to this paper 
is the work termed Data Farming by Brandstein and Horne 
(1998).  Data Farming is an alternative approach that gen-
erates and explores statistical results from many simulation 
trials for the purpose of “growing” further simulation sce-
narios.  There has been no effort to date concerning the 
problem of selecting variables to use in a simula-
tion/optimization process.  As simulation models increase 
in complexity, determining which model variables to use in 
optimization formulations becomes a critical step in the 
simulation process.  The main contribution of this paper is 
the development of a methodology that used results from a 
single simulation model run to rank order model variables 
according to their relative importance.  

2 THE EXTERNAL OPTIMIZATION APPROACH 

All simulation modeling software packages incorporate 
heuristic optimization algorithms with simulation models 
to provide ‘automatic’ optimization capability.  Brady and 
Bowden (2001) showed that integrating heuristic-based 
searches with simulation models can provide ‘better’ an-
swers than trial and error methods.  This method can be 
classified as ‘external’ optimization, since the process for 
determining the optimal set of input variable values is 
made outside of the simulation model. 

In the external approach, an optimization framework is 
constructed around the simulation model.  The simulation 
model serves as an objective function calculator.  Figure 1 
graphically depicts the external approach.  Step one defines 
the optimization problem.  Step two selects an instance of 
input variables and passes them to the simulation model.  
Step three consists of the simulation model execution, 
where the output is used as the objective function estimate.  
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Step four is external to the simulation model and consists 
of the optimization algorithm interpreting the objective 
function value.  This entire process is then repeated until 
an appropriate stopping criteria is reached.  

 

 
Figure 1: External Optimization Structure 

 
In this methodology, the selection of decision vari-

ables for the optimization is the determining factor in the 
quality of the solution obtained.  This selection process is 
usually performed manually by domain experts, primarily 
based upon experience.   

3 AN INTERNAL APPROACH FOR SELECTING 
OPTIMIZATION VARIABLES 

In contrast to the external approach, we develop an ap-
proach that allows us to investigate the relationship be-
tween input variables based on the dynamics of their inter-
action within the simulation model.  This information can 
then be used to augment the selection of variables for an 
optimization.  The key to this approach is that simulation 
models consist of numerous inter-related elements.   

Simulation model outputs represent statistical esti-
mates of element values.  Elements are represented in the 
simulation model by structural concepts that include enti-
ties, resources, locations, etc.  It is the interaction of these 
elements that represent the essence of the simulation 
model, and underlying physical system.  These interactions 
are the most important, if not ultimate knowledge that re-
sult from a simulation model.  To date, no method exists 
for capturing and representing the interaction of elements 
during the simulation.  During the simulation, the conten-
tion for resources and associated activity logic of entities 
determine model output.  The correlation of element activi-

Simulation Model

Optimization 
Model Definition 

Decision Variable 
Scenario Definition 

Optimization  
Algorithm 

Until Stopping 
Criteria Met 
286
ties over time can provide a new form of information to 
modelers.  This type of information can tell the modeler 
not only which elements are correlated, but more impor-
tantly when they are correlated.  High levels of interaction 
might be obvious, but lower levels of interaction and corre-
lation between elements might be critical to developing ro-
bust answers to simulation studies.  At the very least, they 
may provide significant insight into critical relationships 
that may present in the system under observation. 

To quantify the levels of interaction between simula-
tion model elements, it is necessary to investigate the indi-
vidual activities that occur as the simulation model is run-
ning.  This can be accomplished using simulation trace 
capability.  All simulation languages contain trace mecha-
nisms, which simply report everything that occurs as the 
model steps through time.  The approach presented in this 
paper, termed introspective analysis uses trace output from 
a simulation model to develop relationships between simu-
lation elements such as resources, entities, and locations.  
These insights can then be used as the basis for further 
scenario development or optimization. 

This approach can be considered an internal approach 
to finding the answer to simulation-based problems.  It is 
internal based on the fact that elements evolve or change 
during the simulation, depending on the relationship of 
them to various agents, who control the behavior of the 
simulation.  In contrast to the external optimization ap-
proach, only one replication of the simulation model is 
necessary. 

4 THE INTROSPECTIVE ANALYSIS APPROACH 

Figure 2 presents the introspective analysis architecture.  A 
comprehensive description of this approach can be found 
in Brady (2005).  Simulation elements such as entities and 
resources, together with model logic such as routing rules 
and queue disciplines define the real system in terms of the 
simulation language.  A set of keywords are defined, which 
are simply identifiers used by the modeler to describe 
modeling elements such as entities, resources, etc.  The 
keyword list is used as input to a frequency analyzer pro-
gram.  This program generates a frequency distribution of 
the keywords based on their appearance in a standard trace 
file.  The simulation elements contained in the keyword list 
are then correlated using the cosine method (Dean 2004).  
This method is commonly used in data analysis to compare 
large sets of data for similarity.  The set of element by 
element correlations can then be used to determine a set of 
input variables that can be used to define scenarios or form 
the basis of an optimization approach used to determine the 
answer to the simulation study.   
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Figure 2: Introspective Analysis Architecture 
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5 SEMICONDUCTOR MANUFACTURING 
EXAMPLE 

A state of the art semiconductor factory (fab) can cost 
well over one billion dollars.  The semiconductor manu-
facturing process consists of several hundred operations 
in a highly reentrant process flow.  The process flow con-
sists of six functional areas:  Lithography, Diffusion, 
Etch, Thin Film, Implant, and Planar.   

The process consists of building layers upon layers 
while patterning, oxidizing, etching, stripping, and im-
planting.  In addition, there are numerous inspection steps 
throughout the process.  The nature of building consecu-
tive layers results in a highly reentrant process flow and 
the inherent setup and batching requirements can result in 
challenging execution strategies for the facility. 

Simulation models are used to explore various execu-
tion strategies and impacts to fab constraints, velocity, 
and order fulfillment with commitment to due dates.  The 
models are also used to quantify impacts to fab loadings 
through new product introduction, expedited products, 
and changes to process, layout, spares, gases, and labor.  
The fab model is used to examine the impact of WIP 
management strategies on the overall fab performance.  
Due to the highly reentrant nature of the fab, the models 
can quantify the impact of changes in functional area per-
formance on the factory as a whole.  The models have 
shown that one seemingly innocent “improvement” in one 
functional area can devastate downstream functional areas 
and result in a negative impact in overall fab performance.  
Thus, the ability to characterize a complete set of interac-
tions is of great value to modelers, and that is exactly 
what is provided from the introspective approach. 
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A highly detailed simulation model of a typical semi-

conductor fab was constructed to test the introspective 
approach.  This model included over one hundred twenty 
operations that were modeled as resources.  Table 1 pre-
sents a partial summary of the cosine value matrix.  For 
example, the cosine between resource 1, Anneal01 and 
resource 2, Anneal02 is .96, indicating a very strong simi-
larity between the two.  The introspective methodology 
proceeds by calculating the average cosine value for each 
element across all of its pair-wise comparisons.  The ele-
ments are then ranked by this value.  After the average 
cosine value was calculated and all resources were 
ranked, only seven, or roughly six percent had a value 
above .80.  Thus,  these seven resources can be consid-
ered critical variables for the simulation by way of their 
high interactions with the other resources. 

Table 2 presents the traditional output summary re-
port.  The table has been ranked in descending order by 
processing percent, which represents the value-added 
utilization of the resource.  The seven resources identified 
by the introspective approach as having the highest corre-
lations with all the resource elements in the simulation are 
listed in Table 3.  

While they may not rank high in traditional utiliza-
tion measures, this group represents the highest ranked 
resources according to similarity with all other resources.  
For example, while the resource Anneal01 had the highest 
utilization, the group of seven resources identified by the 
introspective approach is highly correlated with An-
neal01.  Thus, any operational change involving resource 
Anneal01 should consider the impact on the seven other 
resources listed in Table 3. 
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Table 1:  Cosine Values
 Resource 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

1 Anneal01 0.96 1 0.79 0.86 0.87 0.85 0.63 0.68 0.66 0.67 0.68 0.68 0.78 0.72 0.47 0.51 
2 Anneal02  0.96 0.81 0.87 0.9 0.87 0.64 0.7 0.69 0.66 0.72 0.72 0.79 0.72 0.38 0.48 
3 Anneal03   0.79 0.86 0.87 0.85 0.63 0.68 0.66 0.67 0.68 0.68 0.78 0.72 0.47 0.51 
4 ASH01    0.85 0.93 0.8 0.9 0.91 0.93 0.91 0.92 0.89 0.89 0.92 0.68 0.71 
5 ASH02     0.97 0.95 0.71 0.76 0.76 0.72 0.7 0.66 0.71 0.73 0.51 0.67 
6 ASH03      0.93 0.77 0.81 0.82 0.79 0.8 0.77 0.79 0.81 0.61 0.66 
7 ASH04       0.63 0.65 0.66 0.64 0.65 0.66 0.66 0.67 0.43 0.65 
8 Cure1_01        0.98 0.99 0.99 0.96 0.94 0.94 0.97 0.77 0.84 
9 Cure1_02         1 0.98 0.94 0.9 0.93 0.95 0.72 0.79 
10 Cure1_03          0.98 0.95 0.92 0.93 0.95 0.74 0.8 
11 Cure1_04           0.97 0.94 0.94 0.98 0.79 0.82 
12 Cure1_05            0.96 0.95 0.98 0.71 0.74 
13 Cure1_06             0.97 0.96 0.71 0.76 
14 Cure1_07              0.96 0.67 0.73 
15 Cure1_08               0.82 0.81 
16 DI_Furn01                0.78 

 
 

Table 2:  Standard Output Summary Report 
STN LOTCOMPS CYCLECUR CYCLEAVG PROC% PM% IDLE% FWLAVG 

Anneal01 3324 1:52:47 1:52:47 71.53 0 28.47 3.05 
Anneal02 3324 1:52:47 1:52:47 71.53 0 28.47 3.05 
Anneal03 3324 1:52:47 1:52:47 71.52 0 28.48 3.05 

WetBench01 46418 0:08:04 0:08:04 71.42 23.88 4.7 40.86 
WetBench02 46309 0:08:04 0:08:04 71.25 23.99 4.76 40.86 
WetBench03 46307 0:08:04 0:08:04 71.25 24.03 4.72 40.86 

Scanner04 8989 0:37:32 0:40:51 70.05 23.76 6.19 24.47 
Scanner07 8959 0:37:32 0:40:51 69.82 23.7 6.47 24.47 
Scanner01 8954 0:37:31 0:40:48 69.71 23.54 6.75 24.47 
Scanner08 8970 0:37:31 0:40:43 69.7 23.7 6.6 24.47 
Scanner10 8944 0:37:38 0:40:50 69.68 23.7 6.62 24.47 
Scanner05 8953 0:37:31 0:40:44 69.59 23.65 6.76 24.47 

ASH04 32335 0:11:16 0:11:17 69.57 23.65 6.78 26.35 
Scanner06 8923 0:37:31 0:40:51 69.54 23.65 6.81 24.47 
 

 

 

 

6 CONCLUSIONS 

As simulation technology is applied to increasingly com-
plex systems, traditional methods of output reporting may 
not provide sufficient information to decision makers. 
This paper presents a novel concept for collecting and de-
veloping a new type of output from simulation models. 
This information can then be used as the basis for devel-
oping simulation optimization scenarios.  Preliminary re-
sults from a semiconductor manufacturing laboratory 
simulation model demonstrate that new and insightful in-
formation can be developed. 
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Table 3:  Introspective Ranking 
Station Name Cosine 

Rank(Value) 
Utilization 

Rank 
Litho_Insp02 1(.824) 35 
Planar_Clean01 2(.816) 65 
TF_Inspect01 3(.814) 92 
ASH03 4(.814) 20 
WetBench07 5(.808) 101 
DI_Insp01 6(.806) 80 
ScannerAdvanced05 7(.800) 72 
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