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ABSTRACT 

This paper presents a first effort to integrate DEVS-based 
cellular space models with agent models using dynamic 
structure DEVS for the simulation of forest fire spread and 
suppression. The main focus is on the interaction between 
mobile agents (such as fire fighters, air-tankers) and forest 
cells. DEVS models’ dynamic structure modeling 
capability is applied where couplings between mobile 
agents and forest cells are dynamically added and removed 
when the agents move in the cellular space. Two methods, 
a time-based method and an event-based method, are 
discussed to update a mobile agent’s position in a cellular 
space. A system architecture is presented and a prototype 
fire spread and suppression example is implemented. 
Based on this initial work, we hope to understand more 
about the nature of this hybrid agent-cellular space 
approach and to apply it to the modeling and simulation of 
forest fires and other ecological applications.  

1 INTRODUCTION  

The ecological problem of wildfires is concerned with 
propagation processes that are distributed in both time and 
space. Therefore, the study of fire spread often requires 
developing simulation models that consider the system 
evolution in both time and space. Hence, such simulation 
models are generally of a large-scale nature and are 
challenging to be efficiently simulated. Furthermore, once 
a fire starts there is an immediate need to effectively 
contain it. This calls for incorporating fire fighting or fire 
suppression modeling into the fire spread simulation 
models. 

In forest fire simulation, Cellular Automata (CA) has 
been often used to discretize the space into cells. Recently, 
studies such as (Ameghino et al., 2001; Ntaimo et al., 
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2004; Muzy et al., 2005) pinpoint the need for developing 
new classes of CA for fire spreading applications using the 
Discrete EVent System Specification (DEVS) formalism 
(Zeigler, et al., 2000). Unlike CA, DEVS models can 
receive external updated information, and the fire 
parameters can be updated at any moment due to the 
continuous time nature of the discrete event specifications. 
Moreover, founded on the DSDEVS formalism (Barros, 
1997), Dynamic Structure Cellular Automata (DSCA) 
(Barros and Mendes, 1997 ; Muzy et al., 2004) allows to 
dynamically add active cells, to remove the quiescent ones 
and to change couplings between cells. Hence, a more 
faithful modeling and a more efficient simulation can be 
obtained. Using DEVS to model fire spread includes 
developing DEVS cellular models and couple them to form 
a cellular space. This cellular modeling approach has the 
ability to effectively represent large-scale spatial dynamic 
phenomena for timely simulations (e.g. Ameghino et al., 
2001; Muzy et al., 2002; Zeigler 2003). In the cellular 
approach, the actual forest is modeled as a cell-space and is 
divided into forest cells. Fire spread is abstracted and 
modeled within a forest cell using a fire spread 
mathematical model of choice. Such a mathematical model 
uses the forest cell properties such as fuel, topography, 
wind speed and direction as input to compute the fire 
spread and other parameters of interest within the cell.  

Besides modeling and simulating fire spread, there is 
also a need to effectively model and simulate fire 
suppression activities. Towards that end, (Ameghino et al., 
2001) has incorporated fire suppression into a cellular Cell-
DEVS (Wainer and Giambiasi, 2001) model. (Ntaimo et 
al., 2004; Ntaimo and Zeigler, 2005) also developed 
cellular DEVS models of forest fire spread that include fire 
suppression control measures. These works model both fire 
spread and fire suppression using the cellular modeling 
approach. Thus each cell either incorporates fire 
suppression activities directly or is coupled to a separated 
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fire suppression model. Different from the above works, 
this paper proposes a hybrid modeling approach that 
integrates cellular DEVS models and agent models using 
dynamic structure DEVS for fire spread and suppression 
simulation. We consider this as an alternative approach to 
model fire spread and fire suppression, which can be 
treated as separated activities. Fire spreading is a series of 
ignitions progressing through a fuel bed. Fire suppression 
refers to the activities connected with restricting the spread 
of fire following its detection. For forest fire, fire 
suppression efforts are usually carried out by fire fighters 
or air-tankers. Based on this observation, our research 
separates the concerns of fire spread that is modeled by 
cellular space model from fire fighting that is modeled by 
agent models. A similar approach has been taken by 
(Duboz et al., 2004), which proposed a formalization of 
Multiple Agent System (MAS) using DSDEVS. During the 
simulation, agents and resources of the environment 
(contained in the cells) can be destroyed or created and 
couplings can be added or removed. Our work, while 
following the same direction, focuses more on the hybrid 
nature of agents and cellular models and the interactions 
between them.  

The rest of this paper is organized as follows. In the 
next section design considerations for the hybrid agent and 
cellular space modeling approach are given. In Section 3 
the system architecture of the proposed approach is 
presented and in Section 4 a prototype fire spread and 
suppression example is given. Conclusions and discussions 
of this research, including future research directions, are 
given in Section 5. 

2 DESIGN CONSIDERATIONS FOR HYBRID 
AGENT-CELLULAR SPACE MODELING 

This section discusses some design considerations that are 
important to support hybrid agent and cellular space 
modeling and simulation.  

2.1 Dynamic Coupling Change between  
Agents and Cells 

Agents are used to model fire fighters and air-tankers. In 
order to carry out fire fighting actions, an agent needs to 
know the fire spreading conditions from its environment 
and then take actions to affect the environment. In our 
approach, we allow an agent to interact with one (and only 
one) cell where it locates at any given time (this restriction 
can be relaxed to allow an agent to interact with multiple 
local cells.) Couplings are added between the agent and 
that cell. This allows the cell to send the agent fire 
spreading condition messages and the agent to send the cell 
fire fighting action messages. When an agent changes its 
location in the cellular space, the cell that is coupled to the 
agent is changed too. Thus the couplings between an agent 
and the corresponding cells will be dynamically added and 
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removed during simulation. For example, when an agent 
moves from cell_A to cell_B, couplings between the agent 
and cell_A are removed and couplings between the agent 
and cell_B are added.  

This feature of dynamic coupling change can be 
modeled by DEVS’ dynamic structure modeling capability 
(Barros, 1997). In (Hu et al., 2005), four dynamic structure 
change operations: addModel(), removeModel(), 
addCoupling(), removeCoupling(), have been defined. 
Among them, addModel() and removeModel() allow 
models to be added and removed dynamically. 
addCoupling() and removeCoupling() allow couplings 
between models to be added and removed dynamically. To 
support dynamic couplings, a special atomic model, such 
as the couplingManager in Figure 2, is created and added 
into the system. This model receives position information 
from an agent and finds the corresponding cell where the 
agent locates. It invokes coupling changes if the agent has 
moved out from an old cell and arrived in a new cell.  

Let LX×LY denote the size of each cell in the two 
dimensional cellular space. For an agent with position 
(x,y), the ID (C_IDx, C_IDy) of the cell that corresponds to 
the agent’s position can be calculated as follows:  

 
 )/(floor_ LXxIDC x =  (1) 

 
 )/(floor_ LYyIDC y =  (2) 

 
For a system with multiple agents, each agent has a 

unique ID and is coupled to its corresponding cell. 
Multiple agents may occupy (thus are coupled to) the same 
cell. To allow the couplingManager to know which agent 
is coupled to which cell, the mapping information between 
agentID and cellID is maintained and updated as agents 
move in the cellular space.  

2.2  Movement in the Cellular Space 

Dynamic coupling changes are triggered by agents’ 
movements in the cellular space. In our approach, each 
agent keeps track of its own position. To model an agent’ 
movement and to update its position in the cellular space, 
we define an agent’s position as (x,y) in a two dimension 
coordinate system with (0,0) corresponding to the bottom 
left corner of the cellular space. An agent’s position at time 
t is defined as (x(t), y(t)). Motion of an agent is controlled 
by its speed (r(t), θ(t)), where r(t) is the value of the speed 
and θ(t) is the angular heading at time t. Based on these 
notations, below we consider two different methods to 
update an agent’s position in the cellular space as 
illustrated in Figure 1.  

The first method, which we refer to as time-based 
method, ignores the existence of cells and treats the cellular 
space as a continuous space. A time step is defined and the 
agent updates its position at the end of each time step. 



Hu, Muzy, and Ntaimo 
(x’, y’)

x’

y’

LX

LY(x, y)
θ θ

Δx

Δy

(a) time step (b) event step  
Figure 1: Model an Agent’s Movement in a Cellular Space 
 
Assuming the time step is Δt and an agent’s speed does not 
change during Δt, the agent’s new position can be 
calculated based on formulas (3) and (4). After calculating 
its new position, an agent sends it to the couplingManager, 
which finds the corresponding cell as described in Section 
2.1. 

 
 ytyttyxtxttx Δ+=Δ+Δ+=Δ+ )()(and)()(  (3) 
 
 )(sin)(and)(cos)( ttryttrx θθ =Δ=Δ  (4) 
 

The second method, which we refer to as event-based 
method, updates an agent’s position only when the agent 
crosses the boundary of a cell. The justification of this 
method is that an agent, even though is moving, stays in 
the same cell unless it passes the boundary of that cell to 
arrive in a new cell. Only at that point, dynamic coupling 
change needs to be invoked. In this event-based method, 
the time interval for position update is not constant. Let (x′, 
y′) denote the relative coordinates of an agent within its 
cell, the time interval ta for the next position update can be 
computed as follows. Note that the mod function returns 
the remainder from division, 
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Both of these two methods have their advantages and 

disadvantages. The time-based method is straightforward 
to be implemented. Furthermore, in this method an agent is 
largely decoupled from the cellular space model. Thus an 
agent can be designed and tested “independently” from the 
cellular space model. But this method is dependent on a 
suitable time step. As will be discussed in the next section, 
an inappropriate time step may result in bad simulation 
performance or even incorrect simulation results. In the 
event-based method, an agent is closely coupled to the 
cellular space because the computation of ta is dependent 
on the dimensions of cells and the agent’s relative 
coordinates (x′, y′) in the cell. However, this method 
handles time more efficiently because the simulation 
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proceeds based on events that indicate an agent is crossing 
from one cell to another. Thus this approach is superior to 
the time-based approach for applications, such as the forest 
fire application, characterized as temporal and spatial 
heterogeneity.  

While in the above two methods, an agent can move 
freely in the space, there are other methods that treat the 
space as a discrete space, i.e., only discrete locations or 
discrete directions are allowed for an agent to move. For 
example, (Batty and Jiang, 1999) considers eight discrete 
directions {0, (1/4)π, (1/2)π, (3/4)π, π, (5/4)π, (3/2)π, and 
(7/4)π} along which an agent can move. This approach 
needs some approximation functions to be defined for an 
agent to find the right direction in each step. (Dijkstra et 
al., 2000) considers each cell as a discrete dot thus the 
cellular space is essentially defined as a grid.  An agent can 
move from one point to another point in this grid.   

2.3 Different Time Resolution for Simulation 

One characteristic of this hybrid agent-cellular space 
modeling approach is that agents and cellular models may 
operate in different time resolutions. This is true for the 
fire spread and suppression application that we consider in 
this paper. For example, the speed of a typical fire 
spreading could be 1m/s. However, a fire fighting agent, 
such as an air-tanker, may move in the speed of 10m/s, 
which is 10 times as fast as the speed of fire spread. Thus 
during simulation, the time for an agent to move across a 
forest cell is one tenth of that for fire spreading. This issue 
of multi-resolution time scales is common for many 
ecological systems (Ball, et al., 1996).  

In discrete time simulation, models’ states are updated 
based on a time step. The time-based method to update an 
agent’ position (described in the previous section) belongs 
to this category. Thus for this method, selecting a suitable 
time step is important. If the time step is too small, the 
change of an agent’s position will be insignificant in one 
time step. This results in unnecessary computation. 
However, if the time step is too large, an agent may move 
across multiple cells in one time step. This may result in 
incorrect simulation, since, for example, the agent may 
bypass a fire spot that should be suppressed. Different from 
discrete-time simulation, discrete event simulation treats 
time in reference to events. In discrete event simulation, 
the model only performs calculations when it is ready to 
change states. There is no need to select an appropriate 
time step as there is an inherent synchronization in this 
approach, since each model will automatically be staged 
according to the next event time. The event-based method 
to update an agent’s position (described in the last section) 
belongs to this category. This approach handles time more 
efficiently and has the potential to increase simulation 
performance. 

The potential of efficient time handling and simulation 
can be exploited by the design of advanced simulation 



Hu, Muzy, and Ntaimo 

 

engines. Since agents and cellular models operate in 
different time resolutions, in most simulation steps only a 
small subset of models (i.e., the agent models) will change 
their states. Thus an advanced simulation engine can be 
developed to focus on only those “active” models in every 
simulation step. This is the idea behind the work of (Hu 
and Zeigler, 2004) where a high performance simulation 
engine was developed. This simulation engine exploits 
temporal and spatial heterogeneity of the simulation 
models and develops a data structure to support efficient 
search of the next event time.  

3 SYSTEM ARCHITECTURE 

3.1 The System Architecture 

Figure 2 shows a system architecture that integrates agents 
and cellular space models for fire spread and suppression 
simulation. Only one agent model is shown in Figure 2. 
However, it can be easily expanded to include multiple 
agents. The forest is modeled as a two dimensional cellular 
space model. But this architecture can be upgraded to 
support three dimensional cellular space models for other 
ecological problems. 
 

agent couplingManager
update agent position (x,y)

cell

trigger cell state update

update cell state
execute fire fighting actions

fireManager

set fire fighting strategies
Forest Cell Space Model

  
 
Figure 2: Architecture for Hybrid Agent and Cellular 
Space Simulation 
 

This system architecture is composed from four 
loosely coupled components: Forest Cell Space Model, 
Agent model, couplingManager model, and fireManager 
model.  

The Forest Cell Space Model is used to model the 
spatial state of the forest. It is defined according to the 
conventions of cellular automata modeling. Each cell has 8 
adjacent neighboring cells (the Moore neighborhood) 
surrounding it. A forest cell has states such as unburned, 
burning, and burned. It transits from one state to another 
based on external or internal events. For example, an 
unburned cell, if ignited, may transit to the burning state, 
and then after a period of time may transit to the burned 
state. The time for a cell to stay in the burning state can be 
computed based on a fire spread algorithm, which takes into 
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account factors such as fuel type, wind speed, and fire 
fighting efforts. Fire in one cell may spread to its 
neighboring cells. The fire spread speed along a particular 
direction can be calculated based on some mathematic fire 
spreading models such as Rothermel’s model (Rothermel, 
1972). An implementation of a similar cellular space model 
in the DEVS formalism can be found in (Ntaimo, et al., 
2004). In this implementation, couplings are added between 
a cell and all its surrounding cells. To model fire spread 
from one cell to another, messages are sent between cells. 
This model is expanded in our architecture in several ways. 
For example, a new port, such as the queryState port shown 
in Figure 3, is added for each cell. Whenever a cell receives 
a message on this port, it sends out a message that contains 
its current state. Also, a cell will send out its state whenever 
it transitions to a new state. This allows the agents coupled 
to this cell to know the current state of the cell.  

The Agent model is used to model fire fighters or air-
tankers. An agent can move in the cellular space with a 
certain speed. During the movement, it keeps track of its 
own position and updates it based on moving speed and 
direction (see Section 2.2). Meanwhile, an agent 
continuously monitors the condition (state) of its 
corresponding cell and, if necessary, takes fire suppression 
actions based on some pre-defined rules. To support the 
interactions between an agent and the corresponding cell, 
couplings are added between them. This allows a cell to 
update its state to the agent and the agent to send fire 
fighting commands to the cell. When an agent moves in the 
cellular space, couplings are dynamically added and 
removed as described in Section 2.1.  

The couplingManager model takes care of coupling 
changes when an agent moves in the cellular space. It 
receives messages that contain the agent’s (new) positions 
(x,y) from the agent. This message triggers the 
couplingManager to find the cell where the agent locates. 
If the cell ID has changed, couplings between the agent 
and the old cell will be removed and couplings between the 
agent and the new cell will be added. Furthermore, a 
coupling will be added from the couplingManager to the 
new cell. This coupling allows the couplingManager to 
inform the new cell to send out its current state. Thus 
whenever an agent is coupled to a new cell, it will receive 
an “initial” message from the cell that contains the cell’s 
current state. These couplings that are dynamically 
added/removed are represented in dashed lines in Figure 2. 
Using the structure change operations developed in (Hu, et 
al., 2005), the couplingManager can execute the following 
code to remove a coupling from an agent to an old cell and 
to add a coupling from the agent to a new cell:  

 
removeCoupling( agent , "ffAction", oldCell, 
"inFireFight"); 
addCoupling(agent , "ffAction", newCell, 
"inFireFight"); 



Hu, Muzy, and Ntaimo 
The fourth part of this architecture concerns the 
fireManager that is represented in the dotted box in Figure 
2. During the process of fire suppression, an agent may 
receive high-level commands from the fireManager, whose 
role is to allocate fire fighting resources and set fire 
fighting strategies from the global point of view. In order 
for the fireManager to make timely and optimized 
decisions, information about fire spread and fire 
suppression will be continuously updated to the 
fireManager from cellular models and agents. The 
couplings that support this information update are not 
shown in Figure 2. Based on this information, the fire 
manager assesses the current situation and makes a 
decision. To account for the stochastic nature of fire spread 
and fire suppression, stochastic programming techniques 
such as the stochastic server location problem studied by 
(Ntaimo, 2004) may be applied in order to reach an 
optimized decision. This fire manager model has not been 
implemented in our prototype example described in 
Section 4. 

3.2 Towards a Formal Specification 

It is desirable to provide a formal specification for the 
above architecture and all its components. Such a formal 
specification would provide a clear definition of the system 
and leave out any possible misinterpretations. Towards this 
goal, this section presents some previous works from the 
specification point of view. We discuss the relationship 
between our work and these previous works and suggest 
how a complete formal specification may be derived. Our 
discussion focuses on the specification of dynamic 
structure changes, the specification of cellular space 
models, and the specification of agent models. We leave 
the specification of fire manager for future research. 

Barros  (Barros, 1997) provides a formal specification 
for dynamic structure DEVS where the ability to initiate 
structure changes is supported by a central network 
executive. Based on Barros’ structure, (Duboz et al., 2004) 
recently proposed a formalization of Multi-Agent Systems 
(MASs) using DSDEVS. In this work, a MAS network is 
described by a structure >=< χχ M,,Y,XMAS MASMAS . 

MASX  is the set of MAS input events, MASY  is the set of 
MAS output events, χ  is the name of a special atomic 
model called the executive model, and χM  is the 
executive model. The executive model is a special atomic 
model described by: 

 
>Σ< χλχχδχδχδχχγχχχ ,ta,,conf,int,,,ext,*,,S,Y,X .  

χX  and χY  are the input and output sets of the executive 

model, χS  is the set of states, *S: χχχγ Σ→  is the 

structure function, *
χΣ  is the set of network structures, and 
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χχχχδ SXQ: b
,ext b →× , χχχδ SS:int, →  and 

χχχχδ SXS: b
,conf b →×  are the executive model’s 

external, internal, and confluent transition functions.   
)}s(te0,Ss/)e,s{(Q a χχχχχ ≤≤∈=  is the total state 

set, with e the time elapsed since the last state change. 
+ℜ→χχ

S:ta  and bYS: χχχλ →  are the executive 

model’s time advance and output functions. In effect, the 
state of the executive model describes the network 
structure. Structure changes can occur when the executive 
model changes its state. This work of MAS bears a close 
relationship to the work presented in this paper. Especially 
the executive model is directly corresponding to the 
couplingManager in our architecture. Specifications of the 
structure change and the couplingManager model in our 
architecture can be derived from the ones developed in 
DSDEVS and MAS.  

Specifications for the cellular space model can be 
achieved through (Wainer and Giambiasi, 2001) or (Muzy, 
et al., 2004). These works are based on DEVS. 
Furthermore, the cellular space model that we employ is 
derived from an existing model developed in (Ntaimo, et 
al., 2004). Formal specification of this model has been 
developed in (Ntaimo and Zeigler, 2004). A specification 
of our cellular space model can be derived from this formal 
specification by expanding it to account for the interactions 
with agents that move in the cellular space.  

Several works have been developed that are related to 
the specification of mobile agents for fire suppression. For 
example, a specification of fire suppression was developed 
in (Ameghino et al., 2001) using the Cell-DEVS 
formalism. Recently, a DEVS specification of an atomic 
fire fighting model was developed in (Ntaimo and Zeigler, 
2005). Unlike a mobile agent, this atomic model is coupled 
to a single cell and can not move in the cellular space. In 
(Duboz et al., 2004), mobile agents are specified as 
dynamic structure networks. These specifications can be 
described through the level of Coupled System 
specification of the System Specification Hierarchy 
discussed in (Zeigler, et al., 2000). Considering that we are 
still at an initial stage to define agents and their interactions 
with the cellular models, we choose to specify an agent at a 
more abstract level, the I/O Behavior level. The I/O 
Behavior specification defines a system’s behavior from 
the input/output (blackbox) point of view. This leaves 
spaces for different low-level specifications and detailed 
implementations (the example presented in the next section 
shows one implementation). After we understand more 
about the nature of these agents, a formal specification at 
the Coupled System level will be developed.  

To specify an agent at the I/O Behavior level, we can 
define an agent’s behavior using a set of rules. For 
demonstration purpose, below we (informally) show a set 
of sample rules that an agent may follow. These rules are 
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partially derived from (Andrews 1986) and (Rothermel and 
Rinehard 1983). The inputs of the agent model are forest 
cell’s state (cell_state), fireline intensity or flame length 
(fln). The outputs of the agent model are fire fighting 
actions (ffc = {null, direct attack, indirect attack}) and 
movement (move). With these inputs and outputs, the rules 
are presented below.  

 
1. If cell_state is “burning” or “burning_wet” and fln 

< 2.4 meters, agent stops move and carries out fire 
fighting action using direct attack method 

2. If cell_state is “burning” or “burning_wet” and fln 
≥ 2.4 meters, agent stops move and carries out fire 
fighting action using indirect attack method. 

3. If cell_state is not “burning” and “burning_wet” 
(meaning the cell is not burnable or already 
burned out), agent’s fire fighting action is null and 
it moves with a pre-defined speed and direction.  

4 A PROTOTYPE FIRE SPREAD AND 
SUPPRESSION EXAMPLE  

Based on the architecture presented in Section 3, we have 
implemented a prototype fire spread and suppression 
example. This example is implemented in the DEVSJAVA 
modeling and simulation environment (Zeigler and 
Sarjoughian, 2003). Figure 3 shows the model of this 
prototype system with the agent locating at Cell_0_0. In 
this system, there is one agent, one couplingManager, and 
900 (30×30) cell models. Note that for simplicity, Figure 3 
displays only two cell models: Cell_0_0, and Cell_1_0. 
The fire manager model is not implemented. Furthermore, 
since this example is only for demonstration purpose, 
implementation of the fireFightingAgent model is very 
primitive. However, this implementation can be extended 
to account for more complex simulations.  
 

 
 
Figure 3: System Model of the Fire Spread and 
Suppression Example 
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4.1 The Cellular Space Model 

The cellular space model is expanded from the cellular 
DEVS fire spread model developed in (Ntaimo et al., 
2004). In this model, the actual forest is modeled as a cell-
space and is divided into forest cells. Each cell is coupled 
to its eight neighbors. Figure 3 shows the couplings 
between Cell_0_0 and Cell_1_0. Fire spread is abstracted 
and modeled within a forest cell as follows. First, a one-
dimensional maximum rate of fire spread and direction is 
computed using Rothermel’s mathematical model for fire 
spread. This model is valid under the assumption of 
uniform conditions within the forest cell and takes in as 
input the forest cell fuel properties, topography, wind 
speed and direction. After the maximum rate of spread and 
direction are determined, a decomposition algorithm is 
applied to calculate two-dimensional fire spread in the 
eight major directions: N, NE, E, SE, S, SW, W, NW. Fire 
spread is modeled as spreading from the center of an 
ignited cell towards the neighbor cells. A cell is ignited 
when it receives a message from a neighbor cell and its 
fireline intensity is greater than a given threshold for the 
forest cell fuel model to catch fire. A cell is burned out if 
the fire spreading on all eight directions reaches its 
neighboring cell centers.  

Following the same approach of (Ntaimo and Zeigler, 
2005), we model an agent’s fire suppression effort using a 
random duration. This duration is determined by the agent 
and is passed on to the cell model. The cell model transitions 
to appropriate states based on the fire spreading speed and 
fire suppression durations. More description about this 
approach can be found at (Ntaimo and Zeigler, 2005). 

4.2 The Agent Model  

The agent model controls the agent to move in the cellular 
space and to take fire fighting actions if the corresponding 
cell is burning. In this implementation, we model the agent 
model, fireFightingAgent, as a DEVS coupled model that 
has two atomic model components: agent_fireFighting and 
agent_Moving. The agent_fireFighting model is 
responsible for fire fighting and the agent_Moving model 
is responsible for the agent’s movement.  Figure 4 shows 
this agent model. 
 

 
 

Figure 4: The Agent Model 
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In our implementation, the agent_Moving model 
employs a time-based method to update its position. A time 
step of 1s is chosen and the agent’s speed is set to 2m/s. 
Note that these values are arbitrarily chosen only for 
demonstration purpose. The time-based method to update 
the agent’s position will be replaced by an event-based 
method later. Such a replacement will only affect the 
agent_Moving model and should not affect the 
agent_fireFighting model. 

 Model agent_fireFighting follows after (Ntaimo and 
Zeigler, 2005) and employs the three rules described in 
Section 3.2 for fire suppression. Based on these rules, this 
simple agent_fireFighting model consists of three basic 
states: passive, direct-attack, and indirect-attack. The 
model is initialized in the passive state. It transitions to 
direct-attack state if rule 1 and rule 2 are satisfied. It 
transitions to indirect-attack state if rule 3 is satisfied. For 
both of these two states, a random duration is used to 
represent the time to perform the suppression effort. The 
agent_fireFighting model can control the agent’s 
movement by sending a speed parameter message to the 
agent_Moving model. In our implementation, it sets the 
moving speed to 0 when it transits to state direct-attack or 
indirect-attack.  Otherwise, it sets the moving speed to a 
predefined value with a random angular direction.  

4.3 The couplingManager Model 

The couplingManager model is responsible to change the 
couplings between the agent and corresponding cells. As 
described in previous sections, it takes the position 
information from the agent and computes the 
corresponding cell. If this cell is different from the old cell, 
couplings related to the old cell will be removed and new 
couplings related to the new cell will be added. The 
external transition function of coouplingManager that 
contains the pseudo code for dynamic coupling change is 
given in Figure 5. 
 
public void deltext(double e,message x){

if (somethingOnPort(x, "agentPos")) {
newPos = Get agent’s new position( );
newCellID = Find corresponding cell (newPos);
if(newCellID != oldCellID){

removeCoupling( oldCell, “stateOut", agent, "cellState");
removeCoupling( agent , "ffAction", oldCell, "inFireFight");
removeCoupling( this,"query", oldCell, "queryState");
oldCellID = newCellID;
addCoupling( newCell, “stateOut", agent, "cellState");           
addCoupling(agent , "ffAction", newCell, "inFireFight");
addCoupling(this,"query", newCell, "queryState");
holdIn("Query", 0);

}
}

}  
Figure 5: Pseudo Code for Dynamic Coupling Change 
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5 CONCLUSION 

This paper presented the feasibility of a DEVS-based 
hybrid agent-cellular space modeling approach for fire 
spread and suppression simulation. Several design 
considerations of this hybrid approach are discussed. A 
system architecture is presented and a prototype example is 
implemented. As compared to the general approach of 
forest fire simulation where fire suppression activities are 
incorporated into each forest cell, this alternative approach 
explicitly separates the concerns of fire spread from fire 
suppression. It represents a more intuitive and faithful way 
by modeling the behaviors of fire fighters and air-tankers 
as mobile agents. The advantages of this hybrid approach 
become important as fire spread behaviors and fire 
suppression rules becomes more and more complex. One 
concern of this approach is that the simulation may become 
“slower” because couplings are dynamically added and 
removed between agents and cells. However, since the 
number of agents is typically much smaller than the 
number of cells, this influence in simulation performance 
is tolerable in most cases. 

Future work of this research includes extending this 
initial work and applying it to more complex simulations. 
To improve simulation performance, we will design 
advanced simulation engines to exploit the spatial and 
temporal heterogeneity of this hybrid model. Meanwhile, 
we will research stochastic optimization techniques and 
integrate it into the system (such as the fire manager 
model). This integration of discrete event simulation and 
stochastic programming promises a powerful tool for fire 
management prediction and decision making. We note that 
while this paper focuses on the forest fire application, the 
hybrid agent-cellular space approach also has the potential 
to be applied to other complex spatial systems. Integration 
of this kind of systems will necessitate a sound formal 
description of agents. Special attentions will be paid to the 
modeling of agents’ behavior and perception. To achieve 
this purpose (Duboz et al., 2004) can be used as a starting 
point. 
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