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ABSTRACT 

Metamodels provide estimates of simulation outputs as a 
function of design parameters.  Often in the design of a 
system or product, one has performance targets in mind, 
and would like to identify system design parameters that 
would yield the target performance vector.  Typically this 
is handled iteratively through an optimization search pro-
cedure.  As an alternative, one could map system perform-
ance requirements to design parameters via an inverse 
metamodel.  Inverse metamodels can be fitted ‘for free,’ 
given an experiment design to fit several forward models 
for multiple performance measures. This paper discusses 
this strategy, and some of the issues that must be resolved 
to make the approach practical. 

1 MOTIVATION 

The design of manufacturing, service and business proc-
esses is aided by the availability of discrete-event simula-
tion models of these processes.  The models permit rapid 
inexpensive evaluation of alternative process or system de-
signs, permitting artificial experimentation to a degree well 
beyond what might be practical for real systems. 

Although less expensive to evaluate than the real sys-
tems they represent, simulation models can sometimes re-
quire extensive computational time.  Using design of ex-
periments methods, simulationists can build metamodels:  
fast-running approximations to the input-output relations 
exhibited by the original simulation (Kleijnen 1975).   

If we represent the output of the simulation model as 
the random vector Y, then the key output characteristics are 
generally statistical functions of Y, often the expected 
value.  In this common case, the input-output relations of 
interest are represented by the vector-valued function f: 

 
 f(x) = E(Y), (1) 
 
where x is the k-dimensional deterministic vector of design 
parameters and Y is the p-dimensional random vector of 
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simulation outputs. Using an N-row matrix X, row i of 
which is a vector of design parameter values used in the ith 
original model run, and a matrix Y, each row of which cor-
responds to a run and each column to a particular compo-
nent of the output performance vector, a (vector-valued) 
approximation model mf is fitted.  The objective is to have 
mf(x) ≈ f(x) for any x in the prediction region Rx.  The runs 
used to fit mf(x) are restricted to a space Cx.  Often Rx = Cx. 

 This metamodeling strategy has many benefits, in-
cluding improved ability of designers to find good designs 
interactively (Barron et al. 2004).  Unfortunately, the direc-
tion of this map (that is, from x-space to y-space) is oppo-
site that of decision-making for customer-driven design.  
This approach was developed by the Japanese, and de-
scribed in Hauser and Clausing (1988) in their paper on 
Quality Function Deployment (QFD).  Figure 1 shows a 
simplified representation of the second house in the four-
house representation of QFD.  The objective at this stage is 
to map customer-driven technical specifications for the 
process into particular values for process design parame-
ters. 

 

 
Figure 1: Mapping Directions for the Second House in QFD 
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This customer-driven view can also be seen as a per-
formance-driven view, and is at the core of Nam Suh’s 
Axiomatic Design (Suh 1998).  For the great majority of 
engineering simulation models (discrete-event, finite-
element, circuit analysis, etc.), the mapping is from design 
parameters to performance, rather than vice versa.  That is, 
we have maps y = f(x) but the customer-driven design para-
digm requires the map x = f-1(ydesired).  One would ideally 
map from customer needs through to design parameters 
through to the implications for manufacturing and delivery 
that would result (Aungst, Barton, and Wilson 2003). 

Product and process design typically involve multiple 
performance objectives, rather than just one.  For example, 
cost, quality and responsiveness (speed of service) are 
three general classes of performance measures affecting the 
design of a service process, and each of these may have 
several subcategories.  There may be additional perform-
ance measures (e.g., hours per server) that are used in de-
sign constraints (e.g. work rules).  On the one hand, these 
multiple performance measures make design complicated.  
On the other, the multiple components of Y in Equation (1) 
are what provide the hope of an inverse map. 

Metamodels play a key role in the development of in-
verse mappings, to further enrich the design assistance that 
can be provided by simulation.  Under certain conditions, 
the same set of run matrices (X, Y) used to estimate mf can 
be used as (Y, X) to fit mf-1.  Suh (1998) imposed the condi-
tions that i) a set of target customer attributes (pre-y’s) can 
be mapped to certain performance targets (for y’s), which 
in turn can be mapped to design parameter values (x’s), 
and ii) that the corresponding (metamodel) mapping func-
tions are linear.  One can extend Suh’s strategy and con-
sider higher order polynomials as mapping functions, or 
more general classes of metamodels (Barton 1992), and try 
to understand process design situations where the design 
targets may not be obvious. 

There are a number of issues that must be resolved in 
order to take advantage of metamodel-based inverse maps. 

 
1. When the target point ydesired occurs at the local 

minimum or maximum of one or more elements 
of f, the function may not be (locally) invertible. 

2. When the dimension of y does not match the di-
mension of x, how can an inverse function be es-
tablished? 

3. How can one find an ‘optimal’ experiment design 
for simultaneously fitting mf and mf-1? 

4. What is the relationship between (mf)-1 and mf-1? 
5. How can constraints on x and y be included in the 

experiment design methodology? 
 
These issues are discussed in more detail in the fol-

lowing sections.  Section 2 presents a network design ex-
ample that is used throughout the discussions.  Section 3 
discusses the issue of invertibility, and strategies to de-
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velop invertible maps.  The section also gives an example 
of how invertible maps can be developed when the dimen-
sions of the design and performances spaces don’t match.  
Section 4 discusses previous work in optimal design, de-
scribes how this work can be applied to simultaneous de-
sign for forward and inverse metamodels, and describes 
prior work in combined forward-inverse designs.  The sec-
tion includes brief discussions of issues 4. and 5. as well.  
Finally, the last section summarizes the importance of this 
area and the research opportunities that it presents. 

2 NETWORK DESIGN EXAMPLE 

Consider a simple network design situation.  Imagine a 
communication system in which one must choose routing 
percentages to a particular destination.  Suppose that there 
are three routes (networks) that might be used.  One must 
choose P1 (the percent to network 1) and P2 (percent of the 
remaining information packets that go to network 2) to 
minimize costs. Costs are composed of $.005/time unit 
each packet is in the system, plus a per-packet processing 
cost ci that varies by network: $.03 for network 1, $.01 for 
network 2 and $.005 for network 3.  An Arena model for 
this system is shown in Figure 2.  Suppose that 1000 in-
formation packets must be processed, and that packet in-
terarrival times have an exponential distribution with mean 
= 1/λ = 1 time unit.  Suppose that network transit times 
have triangular distributions with mean E(S) and limits +/- 
.5 with E(S) = 1, 2, and 3 for networks 1, 2, and 3 respec-
tively.  
  

 
Figure 2:  Arena Model of Network Design Example 
 
In terms of the general notation of this paper, x = (P1, 

P2)′, and f will have components related to expected delay 
costs and network use costs.  We wish to explore the im-
plications that particular delay and network use costs have 
on choices of routing probabilities. 

3 INVERTIBILITY OF THE SIMULATION 
MAPPING 

To be locally invertible, the function f must be 1-1.  
Smooth maps will be invertible locally if and only if the 
matrix of first derivatives, the Jacobian matrix, J = [∂fi/∂xj] 
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evaluated at that point is invertible (full rank, i.e. have 
nonzero Jacobian determinant).  For the mapping to be 
globally invertible, the Jacobian determinant must be non-
zero everywhere (Chichilnisky 1998).  Checking this con-
dition globally is not possible, but a local minimum or 
maximum for a coordinate function of f implies that all 
partial derivatives of that coordinate function at that point 
are zero, and so the Jacobian matrix has a row of zeroes 
and a zero determinant.   

One practical strategy to check for invertibility might 
be to use a preliminary fitted (forward) metamodel m, and 
check the Jacobian determinant of m either randomly, over 
a grid, or via a minimization search method to check for 
locations with Jacobian values of small magnitude. 

A practical implication is the need to select the coor-
dinate functions of f carefully, to avoid where possible lo-
cal minima or maxima, for example.  Each fi should be a 
monotonic function of the x variables on which it depends.  
This argues for the decomposition of a total cost function, 
for example, into separate investment cost and delay cost 
elements.  The separate pieces are monotonically increas-
ing and decreasing, respectively, and both functions of in-
vestment (an x), but the sum likely has a minimum at the 
optimal level of investment (all other design variables held 
fixed) and so would not be monotonic. 

This is illustrated for the network design example in 
Figures 3 and 4.  Figure 3 shows the image of a rectangular 
grid of x1 x2 values in y1, y2 space, where y1 = total delay 
cost, y2 = total network use cost and (x1, x2) = (P1, P2).  In 
this case, delay cost is a sum of delay costs on all three 
networks.  Since P2 adjusts the relative fraction of traffic 
between network 2 and network 3, there will be an optimal 
balance in terms of total delay, resulting in a minimum for 
y2 as a function of P2.  Figure 3 shows grid lines that dou-
ble back on each other, indicating that the map is not 1-1.  

 

Figure 3:  Image of (P1, P2) Grid in (Delay cost, Net-
work Use Cost) Space 
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Figure 4 shows a mapping of a (P1, P2) grid into total 
costs for traffic on network 1 and total costs for traffic on 
network 2.  In this case, both the fixed charge per message 
and the delay cost are increasing functions of the routing 
percentage, and the plot shows an invertible structure.  As 
for Figure 3, expected costs were estimated using steady 
state M/G/1 approximations.   

Figure 4:  Image of (P1, P2) Grid in (Network 1 Total 
Cost, Network 2 Total Cost) Space 

 
This structure involves only two of the three network 

costs, however.  How can one include the costs associated 
with use of network 3?  Let S = {(s1, s2, s3)} represent the 
space of network costs where si is the total cost for traffic 
using network i.  Since the x-space has dimension 2 (i.e., 
(P1, P2)), the map from (x1, x2) to (s1, s2, s3) generates a sur-
face in S.  If the functions are monotonic, any point on this 
surface can be identified uniquely using the pair (s1, s2), 
with s3 determined by some function g with s3 = g(s1, s2).  
One could imagine a user interface that allowed the de-
signer to highlight a point on the (s1, s2) plane (below the 
surface), with the corresponding point on the (s1, s2, s3) sur-
face immediately identified.  Using mf-1, the corresponding 
design (P1, P2) could be identified simultaneously in an ac-
companying plot. 

4 DESIGN OF EXPERIMENTS ISSUES 

To fit mf and mf-1 one must choose a set of simulation runs.  
There has been a great deal of research on the optimal 
choice of simulation run conditions to fit metamodels.  
Some of this work is of general applicability to experimen-
tal settings, not just simulation.  See for example Silvey 
(1980), Box and Draper (1987), Atkinson and Donev 
(1992), Pukelsheim (1993), Myers and Montgomery 
(1995), and Khuri and Cornell (1996).  Other develop-
ments have been specific for experimentation with dis-
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crete-event dynamic simulation models.   For computer 
simulation experiments see Kleijnen (1987, 1998, 2005), 
Santner, Williams, and Notz (2003) and the review in Law 
and Kelton (2000) that describes many other results.  Be-
fore discussing possible strategies for designing experi-
ments to fit mf and mf-1 it will be helpful to review the well-
known experiment design strategies for multiple regression 
and other types of metamodels. 

4.1 Optimal Design for (Forward) Regression Models 

The development of optimal design strategies is most ex-
tensive for the standard multiple regression case.  The stan-
dard multiple regression model captures the following un-
derlying relation: 
 
 f(x) = Σβqφq(x) + ε, ε ~ i.i.d. N(0, σ2). (2) 
 

The response function is modeled as a linear combina-
tion of r functions of the k input variables (q = 0, ..., r) plus 
an intercept, with additive, independent homogeneous 
Gaussian perturbations.  For a first order polynomial 
model, r = k, φq(x) = xq, and φ0(x) = 1.  For general multiple 
regression, there are no restrictions on the form of the φq 
functions.  For example, φq(x) = x5

2,  φq(x) = ln(x3), φq(x) = 
1/x4 are candidate functions for multiple regression models.  
The coefficients βq and random perturbations represented 
by ε are unknown and are estimated using least-squares or 
other methods. 

The multiple regression metamodel that is constructed 
assuming a true response of the form shown in Equation  
(2) is mf(x) = φ(x)'b.  Note that φ, x and b are vectors, and 
in this case, mf(x) is a scalar.  For the multiple regression 
model there is a single response.  When there are multiple 
responses, the fitting process can be extended as discussed 
below.  The b vector is calculated using an existing set of 
(X, y) data, where xij is the value of the jth design parameter 
(j = 1, 2, ..., k) in the ith run of the system (i = 1, 2, ..., N).  
Let xi denote the vector of values for the ith run. Finally, yi 
is the (univariate) value of the response in the ith run of the 
system.  Then the least-squares equations can be written in 
matrix form as 
 
 b = (D'D)-1D'y, (3) 
 
where D is the N x r matrix whose (i, q)th entry is the value 
of φq(xi).  The matrix D is called the design matrix which is 
often represented by the letter X in the design of experi-
ments literature.  We avoid this notation (and avoid the use 
of the index j for its columns) due to the obvious confusion 
with the matrix of design parameter values used in the fit-
ting runs.  Even for a first-order (linear) polynomial regres-
sion, D and X are not the same; D is augmented with an 
initial column of ones for the intercept term. 
212
                                    

Of course, for many simulation situations, the assump-
tion ε ~ i.i.d. N(0, σ2) does not hold.  In many cases this is 
because the variance increases with the mean. In some 
cases it is by deliberate intent, through the use of common 
and antithetic random numbers, for example.  In this case 
one has ε ~ N(ΣY, σ2), where ΣY is the variance-covariance 
matrix for the ε values.  The vector β can then be estimated 
using weighted least squares with W = (ΣY

 ) -1: 
 

 b = (D'WD)-1D'Wy. (4) 
 
Alternatively, it is sometimes possible to identify a 

transformation of the response that produces approximately 
i.i.d. error. See for example Kleijnen (1987), Cheng, Klei-
jnen, and Melas (2000), and Chapter 3 of Montgomery 
(2001).  For the remainder of the discussion in this section, 
the i.i.d. characterization is assumed, permitting estimation 
using Equation (3) rather than (4). 

The form of the model in Equation (2) implies that b 
can be characterized as a random variable with E(b) = β.  
Since b is a vector, it has a variance-covariance matrix, 
given by 
 
 Σb = σ2(D'D)-1 (5) 
 
and with variance of a predicted value at x0 of b: 
 
 Var(mf(x0)) = σ2φ(x0)'(D'D)-1φ(x0), (6) 
 
with the reminder that the discussion still focuses on a re-
gression metamodel for a single response and so m is not 
bolded.   

In this setting, many characterizations of experiment 
design goodness minimize some measure associated with 
(5) or (6).  For example, a confidence ellipsoid for the true 
vector β has a form based on (5), (β - b)'(D'D)(β - b) = Kα , 
where the constant Kα depends on the confidence level de-
sired, 100(1-α)%.  Minimizing the volume of this ellipsoid 
corresponds to maximizing the determinant of (D'D), 
which motivates D-optimality: 
 
 D-optimality:  (choose X to) maximize det(D'D), or, 
equivalently, minimize det(D'D)-1. 
 

The optimum design depends on the nature of the 
functions φq being fitted and the design points chosen, but 
surprisingly not on the unknown values of the coefficients.  
If the optimal design problem is defined as choosing the 
optimal continuous weighting function on Cx, the optimum 
can always be achieved using a finite number of distinct x 
values, at most r(r + 1)/2, and often as few as r.  This is 
called the continuous design problem (Atkinson and Donev 
1992 p. 93).  The weights for the points need not be integer 
or rational so an integer numbers of runs at each point may 
not be able to match the optimal weights.  If the number of 
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runs at each point must be an integer, the problem is an ex-
act design problem.  In this case, D-optimal designs are so-
lutions to (generally) difficult integer programming prob-
lems.  These are usually solved approximately using the 
heuristic methods described in Section 4.5.  Similar strate-
gies are employed for other design optimality definitions, 
including the following. 
 
 G-optimality:  minimize (max {φ(x0)'(D'D)-1φ(x0)}), 
where the maximum is over x ∈ Rx. 
 

Again, Rx and Cx are not necessarily the same.  The 
minimization requires x to be in Cx, but the maximization 
is over x in Rx.  N is fixed.  For the continuous design for-
mulation, D- and G-optimal criteria give the same designs, 
but for the exact design formulation they can differ.  A 
third form minimizes the average variance of the compo-
nents of b. 
 
 A-optimality:  minimize (Σ(1/λq)), where λq, q = 1, ..., 
r are the eigenvalues of (D'D). 
 

A fourth form minimizes the variance of any combina-
tion a'b with Σaq = 0 and a'a = 1. 
 
 E-optimality:  minimize (max {1/λq }) where the 
maximum is over q = 1, ..., r. 

 
The previous development was for univariate re-

sponses.  Since f(x) and mf(x) are vector-valued functions, 
β and its estimate b are matrices, with one column for each 
performance measure.  We change the notation, replacing b 
with B, and y with the matrix, say Y.  The least-squares 
equation, (3), requires little modification: 
 
 B = (D'D)-1D'Y. (7) 
 
When the same types of functions (e.g., second-order 
polynomials in the design variables) are used to approxi-
mate each component of the performance vector, then the 
matrix D has the same form as in the description accompa-
nying Equation (3).  Statistical dependencies among com-
ponents of Y complicate the development of optimal de-
signs.  For a discussion of model fitting strategies in this 
case, see del Castillo, Montgomery, and McCarville 
(1996).  Assuming statistical independence of the ε terms 
for different Y components and using the same fitting func-
tions for each component of Y puts D-optimality in the 
same form as for the single performance measure case. 

Even with a single response, various definitions of de-
sign optimality can lead the experimenter to face a multi-
objective decision.  With multiple responses this is an issue 
of greater significance.  Wong (1999) reviews multi-
objective methods for optimal design.  Approaches include 
i) creating an overall objective that is a weighted sum of 
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the individual measures, ii) developing a utility function of 
more complex form, iii) creating a related ‘desirability’ 
function (del Castillo, Montgomery, and McCarville 1996; 
Kim and Lin 2000), or iv) framing one measure as the ob-
jective and the others as constraints.  Multiple objectives 
are also an issue for robust design.  Murphy, Tsui, and Al-
len (2005) discuss a variety of approaches, including utility 
functions, desirability functions, and as a compromise de-
cision support problem, a specific mathematical program-
ming representation. 

4.2 Other Kinds of Model-Based Design Optimality 

Since all of the optimality measures described above use D 
in their formulation, we refer to them as model-based 
measures of design optimality.  Because they are based on 
D, their direct application is limited to fitting standard mul-
tiple regression metamodels.  There are other approaches 
to optimal design that address the quality of the metamodel 
approximation but do not focus solely on the information 
matrix D'D or its inverse, and so can be used with other 
metamodel types.  For example, the Integrated Mean 
Squared Error (IMSE) criterion is intended to include both 
errors of variability and errors of bias caused by assuming 
the incorrect model form in Equation (2).  To create IMSE-
optimal designs, one must propose an alternative “true” re-
sponse model, e.g. fitting a first-order model when the true 
response is quadratic.  In fact, one must estimate the value 
of the unknown coefficients of the extra (e.g., quadratic) 
terms.  Mean squared prediction error criteria also have 
been used for experiment designs to fit spatial correlation 
models (Sacks et al. 1989; Currin et al. 1991; Kleijnen and 
van Beers 2004; van Beers and Kleijnen 2005). 

4.3 Model-Free Measures of Design Optimality 

Optimal designs based on mean squared error can require 
extensive numerical calculations.  Further, they depend on 
knowledge of the form of the true response function f.  

When the model form is uncertain, other measures of 
design optimality have been developed, in order to gener-
ate what are referred to as model-robust designs.  This 
situation (as for any model-based experiment design situa-
tion) can be approached using decision theory (Berger 
1996; Raiffa and Schlaifer 2000).  When alternate model 
forms are postulated, Bayesian priors may be assigned to 
the form of the correct model.  Reviews and algorithms are 
presented by Heredia-Langner et al. (2004) and Murphy, 
Tsui, and Allen (2005). 

Other model-free design construction strategies focus 
on the geometric spatial characteristics of the location of 
the design points in Cx.  These include the latin hypercube 
designs (McKay et al. 1979), orthogonal arrays (Owen 
1992), minimax/maximin designs (Johnson, Moore, and 
Ylvisaker 1990) and uniform designs (Fang and Lin 2003). 
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4.4 Design Optimality for Forward-Inverse Designs 

Design optimality for forward-inverse designs can be based 
on any of the optimality criteria and approaches described 
above.  For model-based optimality criteria the problem will 
be multi-objective, since two metamodels are being fitted 
simultaneously, each with multiple responses.  The forward 
and inverse metamodels will each require a separate fitting 
operation, because in general, mf -1(y) ≠ (mf)-1(y), even for 
first-order linear regression metamodels.  Equality holds for 
the special case of orthogonal regression metamodels - see 
Frank (1971), pp. 38-42.  Designs based on spatial optimal-
ity may be multi-objective as well, since the optimality 
measure in x-space may not be directly comparable with the 
y-space measure. 

4.5 Algorithms for Constructing Optimal Forward 
Designs 

Before describing strategies for finding optimal forward-
inverse designs, we review construction methods for de-
signs to fit forward-only metamodels.  Fundamentally, the 
alphabetic-optimal designs in section 4.1 can be described 
as (nonlinear) integer programming problems for the exact 
design problem and can be formulated as nonlinear pro-
grams for the continuous problem.  Solution methods gen-
erally use heuristics such as exchange methods (Meyer and 
Nachtsheim 1995) and genetic algorithms (Hamada et al. 
2001; Heredia-Langner et al. 2004).  One of the first algo-
rithms for exact D-optimal designs was DETMAX 
(Mitchell 1974), which used a given set of candidate de-
sign points and an exchange heuristic to approximate a so-
lution to the IP. 

Spatial designs are constructed in a number of ways, 
but the approaches are generally constructive.  That is, an 
algorithm for generating a set of design points is proved to 
provide good spatial characteristics.  For example, quasi-
Monte Carlo methods have been proposed to generate low-
discrepancy uniform designs (Fang and Lin 2003).  A grid-
ding and random selection procedure generates latin hy-
percube designs (McKay, Conover, and Beckman 1979).  
For both of these approaches the design space is expected 
to be cuboidal or at least (hyper-) rectangular.  

These construction algorithms address designs for fit-
ting a single response function, but can be modified to ad-
dress the fitting of multiple responses (see Murphy, Tsui, 
and Allen 2005). 

All of these algorithms generate a simultaneous de-
sign, a design that is constructed before any experimental 
runs are conducted.  A potentially more effective (but more 
difficult) strategy is a sequential design, which adds runs 
sequentially as more is learned about the response func-
tion.  We will see that this is a critical feature for many 
forward-inverse design problems. 
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A number of interesting algorithms for sequential de-
sign of experiments were developed to help discriminate 
between two or more candidate model forms.  Hill (1978) 
gives a review of these early methods.  A simple but effec-
tive design strategy was proposed by Hunter and Reiner 
(1965).  At the completion of n experimental runs, choose 
the (n +1)st run at the point x* that has the greatest differ-
ence in predicted value between the two models, i.e. that 
maximizes (ma(x)- mb(x))2. 

Santner, Williams, and Notz (2003) developed sequen-
tial experiment designs for computer experiments.  More 
recently, Kleijnen and van Beers (2004, 2005) have devel-
oped sequential experiment design strategies for discrete-
event simulation experiments.  Both methods begin with an 
initial “pilot” experiment design.  In their 2004 paper, they 
used cross-validation on the pilot design (excluding verti-
ces) to provide jackknife estimates of variance at a set of 
(untested) candidate points, and selected the next run at the 
candidate point with the highest jackknife variance.  In 
their 2005 paper, the prediction variance is estimated by 
bootstrap-resampling the simulation outputs, refitting the 
metamodel, and computing the bootstrap variance of the 
predicted values at each candidate point.  Again, the candi-
date point with the highest variance is selected as the new 
candidate. 

4.6 Algorithms for Constructing Optimal Forward-
Inverse Designs 

Optimal design for fitting forward-inverse is complicated 
by four factors: 

 
1. There are multiple responses. 
2. The design spaces in general cannot be repre-

sented as rectangular. 
3. The design points in X and Y are functionally re-

lated and so cannot be chosen independently. 
4. It generally will not be possible to evaluate f-1 di-

rectly. 
 

The first point complicates model-based design strategies, 
the second complicates spatial design strategies, and the 
others affect both.  The third and fourth factors in particu-
lar suggests use of sequential design strategies. 

4.6.1 Existing Methods 

Barton, Meckesheimer, and Simpson (2000, 2001) pro-
posed one simultaneous and two sequential design methods 
for finding D-optimal designs for quadratic polynomial 
forward and inverse models.  Method 1, the simultaneous 
design, allocates half of the N experiment runs in x-space 
based on the forward D-optimality measure, and half 
placed in y-space based on the inverse D-optimality meas-
ure.  The metamodel mf was fitted using the N/2 X results 



Barton 

 
from the N/2 forward design points in x-space and the im-
ages in y-space, plus any of the y-space points whose in-
verse images fell within Cx.  The metamodel mf-1 was fitted 
using the N/2 D-optimal points in y-space and their corre-
sponding function values (under f-1) in x-space, plus any of 
the x-space design points whose images fell within Cy. 

For Method 1, the authors assumed that both forward 
and inverse models were available, but for the case where 
the inverse function was not explicitly available, a two-
stage sequential strategy (Method 2) was developed based 
on the same idea.  At the first stage of Method 2, the N/2 
forward and N/2 inverse points would be determined based 
on the D-optimality criterion and the design space con-
straints Cx and Cy.  The N/2 forward design points would 
be used to compute mf, and the same set of (X, Y) data used 
to fit a preliminary version of mf-1.  In Stage 2 this prelimi-
nary metamodel was used to find points in x-space corre-
sponding to each of the identified D-optimal points in y-
space.  The original (forward) simulation code was evalu-
ated these additional N/2 inverse image points, resulting in 
different set of N/2 (X, Y) used to fit the final inverse meta-
model mf-1. 

Note that for the first two methods, the run budget 
must be such that N/2 runs are sufficient for fitting the pro-
posed forward and inverse metamodel types.  Method 3 al-
lowed simultaneous fitting of both forward and inverse 
models with fewer runs by recognizing the design contri-
bution of the forward images to the inverse design.  The 
method used an initial set of N0 (generally < N/2) runs, de-
termined based on D-optimality, to fit preliminary forward 
and inverse metamodels.  The remaining N – N0 runs were 
chosen in y-space to augment the existing images of the 
first N0 runs in a D-optimal way. 

As expected, the sequential approaches dominated the 
first method in terms of prediction performance, and for 
the simple quadratic example, Method 3 required fewer 
experiment runs than Methods 1 or 2. 

 Barton, Meckesheimer, and Simpson (2000, 2001) as-
sumed invertibility for the forward-inverse pair.  Lu et al. 
(1999) developed a forward-inverse fitting method that 
used a recursive decomposition method to split the design 
region into invertible subregions, each with the response 
approximated by a different linear function.  Each subre-
gion is characterized by its distribution of performance y-
values.  Backward mapping is accomplished by first identi-
fying a subregion whose performance distribution is com-
patible with the given ydesired, and then using the linear in-
verse map for that region to determine the x. 

4.6.2 New Optimal Design Strategies 

The work of Lu et al. (1999) did not identify the experi-
ment design strategy for fitting the metamodels, and the 
existing work by Barton, Meckesheimer and Simpson only 
considered D-optimality as the criterion for forward-
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inverse design.  There are many opportunities for other ap-
proaches to fitting forward and inverse metamodels.  This 
section discusses some promising approaches that should 
be investigated. 

First, Methods 1, 2, and 3 can be extended to other al-
phabetic optimality criteria, and via the multicriteria ap-
proaches described earlier, to combinations of A-, D-, E-, 
optimality.  Second, Method 3 might be extended to be 
fully sequential, say Method 4.  Rather than use the first-
phase inverse metamodel to determine the inverse images 
of y-space locations of the optimal augmenting runs, the 
inverse metamodel might be updated after each augment-
ing run, and the remaining augmenting locations recom-
puted.  The issue of which point to choose first might be 
handled by a jackknife or bootstrap approach like that of 
Kleijnen and van Beers (2004) or van Beers and Kleijnen 
(2005). 

More general metamodel forms such as splines and 
kriging models are typically fitted with spatially optimal 
designs.  Sequential forward-inverse design algorithms can 
be developed for these kinds of designs as well.  For uni-
form designs, this would require research on an appropriate 
discrepancy function for non-rectangular design regions 
(see the y-space regions in Figures 3 and 4).  For minimax 
and maximin designs, the extensions to Model 4 (described 
above) would be straightforward. 

Finally, model-based sequential optimal designs can 
be used with these more general metamodel forms using 
sequential design strategies.  Building on Model 4, after a 
first phase fitting design, new points could be added in ei-
ther forward or inverse space based on bootstrap or cross 
validation/jackknife estimates of prediction variance.  Any 
new method should address both forward and inverse op-
timality measures using multicriteria strategies such as 
those in Murphy, Tsui, and Allen (2005). 

5 CONCLUSIONS 

Computer simulation models play a key role in the design 
of products and processes.  These models generally pro-
vide a map from product/process design variables to prod-
uct/process performance space.  In cases where perform-
ance targets are known, it is more convenient to work with 
the reverse mappings.  Metamodeling can provide both 
forward and inverse approximations from one set of ex-
perimental data, but the choice of response variables and 
the design of the experiment require special considerations.  
The work in this area has just begun:  there are great op-
portunities to identify effective methods and model types 
for combined forward-inverse metamodel fitting. 
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