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ABSTRACT

This tutorial discusses some statistical procedures for select-
ing the best of a number of competing systems. The term
“best” may refer to that simulated system having, say, the
largest expected value or the greatest likelihood of yielding
a large observation. We describe various procedures for
finding the best, some of which assume that the underly-
ing observations arise from competing normal distributions,
and some of which are essentially nonparametric in nature.
In each case, we comment on how to apply the above
procedures for use in simulations.

1 INTRODUCTION

Experiments are often performed to compare two or more
system designs in order to determine which scenario is the
best. The statistical methods of screening, selection, and
multiple comparisons are applicable when we are interested
in making comparisons among a finite, possible large, num-
ber of scenarios. The particular method that is appropriate
depends on the type of comparison desired and properties
of the data under study. For instance, are we interested
in comparing means or quantiles? Are the available data
independent or correlated within and/or among systems?

In this review, the term “best” may refer to that simulated
system having, say, the largest expected value or the greatest
likelihood of yielding a large observation. We will typically,
but not always, regard the best population as the one having
the largest expected value.

We describe a number of procedures for finding the best,
some of which assume that the underlying observations arise
from competing normal distributions, and some of which
are essentially nonparametric in nature. In each case, we
comment on how to apply the above procedures for use in
simulations.

To get things going, the next section will give some ad-
ditional low-level background on screening, selection, and
multiple comparisons procedures. Section 3 establishes rel-
evant notation and ground rules, while Section 4 presents
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some very basic methods for purposes of motivating the
upcoming procedures. Section 5 discusses three normal
means procedures for selecting the best (or nearly the best)
scenario. Of the normal procedures, the first is a screen-and-
select procedure for finding the population with the largest
expected value; in this procedure, inferior competitors are
screened out after an initial stage of sampling. The second
is a sequential procedure that can eliminate inferior choices
at any stage and uses the common random numbers variance
reduction technique in which we intentionally induce posi-
tive correlation between scenarios. The third is an efficient
two-stage procedure that also uses common random num-
bers. Section 6 deals with three nonparametric procedures.
Of these procedures, the first is a single-stage procedure
for finding the most probable multinomial cell, the second
is sequential, and the third is a clever augmentation that
makes more efficient use of the underlying observations.
We give conclusions in Section 7.

There are a number of general references for the inter-
ested reader in this area of selection of the best. Gibbons,
Olkin, and Sobel (1977) and Bechhofer, Santner, and Golds-
man (1995) give presentations from a statistical point of
view, while Goldsman and Nelson (1998) and Kim and Nel-
son (2005a) devote a great deal of effort to the simulation
side of the story.

2 BACKGROUND

We will usually assume that the observations coming from
a particular scenario are independent and identically dis-
tributed (i.i.d.). Since this is never the case when dealing
with simulation output (which is, for instance, almost always
serially correlated), we will make appropriate comments to
show how to apply the above procedures for use in simu-
lations.

What are screening, selection, and multiple comparisons
procedures? Screening and selection procedures (SSPs) are
statistical methods designed to find the “best” (or “nearly the
best”) system from among a collection of competing alter-
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natives. For example, such procedures could be efficacious
in any of the following practical situations:

• Find the normal population with the largest mean:
A manufacturer would like to know which of three
potential plant layouts will maximize expected rev-
enues.

• Find the most probable multinomial cell: A polling
service wishes to determine the most popular can-
didate before a certain election.

• Find the Bernoulli population having the largest
success parameter: A medical research team con-
ducts a clinical study comparing the success rates
of five different drug regimens for a particular
disease.

Informally speaking, SSPs are used to

• screen the competitors in order to find a small subset
of those systems that contains the best system (or
at least a “good” one).

• select outright the best system.

In practice, we could invoke a screening procedure to pare
down a large number of alternatives into a palatable num-
ber; at that point, we might use a selection procedure to
make the more fine-tuned choice of the best. Provided
that certain assumptions are met, SSPs usually guarantee a
user-specified probability of advertised performance—i.e.,
with high probability, a screening procedure will choose
a subset containing the best (or a good) alternative, and a
selection procedure will pick the best.

Multiple-comparison procedures (MCPs) treat the com-
parison problem as an inference problem on the performance
parameters of interest. MCPs account for the error that arises
when making simultaneous inferences about differences in
performance among the systems. Usually, MCPs report
to the user simultaneous confidence intervals for the dif-
ferences. Recent research has shown that MCPs can be
combined with SSPs for a variety of problems—including
the manufacturing, medical, and polling examples outlined
above. In fact, the field has progressed steadily over the
last twenty years, particularly in the simulation community.

What is especially nice about SSPs and MCPs is that
they are relevant, easily adaptable, and statistically valid in
the context of computer simulation because the assumptions
behind the procedures can frequently be satisfied: For ex-
ample, these procedures sometimes require normality of the
observations, an assumption that can often be secured by
batching large numbers of (cheaply generated) outputs. In-
dependence can be obtained by controlling random-number
assignments. And multiple-stage sampling—which is re-
quired by some methods—is feasible in computer simulation
because a subsequent stage can be initialized simply by re-
taining the final random-number seeds from the preceding
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stage. As a bonus, it is possible to enhance (in a theoretically
rigorous way) the performance of some of the procedures
through the use of common random numbers, a popular
variance reduction technique sometimes used in simulation.

3 SOME NOTATION

To facilitate what follows we define some notation: Let Yij

represent the j th simulation output from system design i,
for i = 1, 2, . . . , k alternatives and j = 1, 2, . . . . For fixed
i, we will always assume that the outputs from system i,
Yi1, Yi2, . . ., are i.i.d. These assumptions are plausible if
Yi1, Yi2, . . . are outputs across independent replications, or
if they are appropriately defined batch means from a single
replication after accounting for initialization effects. Let
μi = E[Yij ] denote the expected value of an output from
the ith system, and let σ 2

i = Var[Yij ] denote its variance.
Further, let

pi = Pr

{
Yij > max

��=i
Y�j

}

be the probability that Yij is the largest of the j th out-
puts across all systems when Y1j , Y2j , . . . , Ykj are mutually
independent.

The methods we describe make comparisons based on
either μi or pi . Although not a restriction on either SSPs
or MCPs, we will only consider situations in which there
is no known functional relationship among the μi or pi

(other than
∑k

i=1 pi = 1). Therefore, there is no potential
information to be gained about one system from simulating
the others—such as might occur if the μi were a function
of some explanatory variables—and no potential efficiency
to be gained from fractional-factorial experiment designs,
group screening designs, etc.

4 MOTIVATION AND APPROACHES

In this section, we begin with a motivational example and
then go over the approaches that are relevant to the goal of
selecting the best. Sections 5 and 6 outline procedures that
are appropriate for real-world application.

Example 1 Simulation models of 25 different in-
ventory policies have been developed for potential imple-
mentation at a large distribution/warehouse center. The
single measure of system performance is the expected profit
achieved while a particular policy is in effect. Differences
between different policies’expected profits of less than about
$10,000 are considered practically equivalent.

We discuss briefly the three approaches employed
here—subset selection (screening), indifference-zone selec-
tion (choosing the single best), and multiple comparisons
(inference). For purposes of motivation, the simple pro-
cedures outlined in this section will all assume that the
underlying data are normally distributed.
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4.1 Subset Selection

The subset selection approach is a screening device that
attempts to select a (random-size) subset of the k = 25
competing designs of Example 1 that contains the design with
the greatest expected profit. Gupta (1956, 1965) proposed
a single-stage procedure for this problem that is applicable
in cases when the data from the competing designs are
balanced (i.e., have the same number of observations from
each contender) and are normal with common (unknown)
variance σ 2. Nelson, et al. (2001) handle more general
cases—in particular, that in which the unknown variances
σ 2

i , i = 1, 2, . . . , k, are not necessarily equal.
It is worthwhile to illustrate the concept of subset

selection on the simplest possible case—that in which the
observations Yij are independent and normally distributed
with known, common variance σ 2. For ease of exposition,
suppose that (unknown to us), μk ≥ μk−1 ≥ · · · ≥ μ1, so
that system k is the best system. Further suppose that we
have n outputs from each of the systems. Our goal is to
use this data to obtain a subset I ⊆ {1, 2, . . . , k} such that

Pr{k ∈ I } ≥ 1 − α, (1)

where 1/k < 1 − α < 1 for some user-specified α. Ideally
|I | is small, the best case being |I | = 1. Gupta’s solution
was to include in the set I all systems � such that

Ȳ�(n) ≥ max
i �=�

Ȳi(n) − hσ

√
2

n
, (2)

where Ȳi (n) is the sample mean of the (first) n outputs from
system i, and h is a constant whose value will depend on
k and 1 −α. The proof that rule (2) provides guarantee (1)
is instructive and shows what the value of h should be:

Pr{k ∈ I } = Pr

{
Ȳk(n) ≥ max

i �=k
Ȳi(n) − hσ

√
2

n

}

= Pr

{
D̄ik(n) − μik

σ
√

2/n
≤ h − μik

σ
√

2/n
, ∀i �= k

}
≥ Pr {Zi ≤ h, i = 1, 2, . . . , k − 1} = 1 − α,

where we define D̄ik(n) = Ȳi (n) − Ȳk(n) and μik = μi −
μk for all i �= k, and where (Z1, Z2, . . . , Zk−1) have a
multivariate normal distribution with means 0, variances
1, and common pairwise correlations 1/2. Therefore, to
provide the guarantee (1), h needs to be the 1−α quantile of
the maximum of such a multivariate normal random vector,
a quantile that turns out to be relatively easy to approximate
numerically (see, e.g., Bechhofer, Santner, and Goldsman
1995) or via simulation. Notice the inequality in the final
step where we make use of the fact that μk ≥ μi .
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A theme that runs throughout much of the literature is to
first use appropriate standardization of estimators and then
bound the resulting probability statements in such a way
that a difficult multivariate probability statement becomes
one that is readily solvable.

4.2 Indifference-Zone Selection

A disadvantage of the subset-selection procedure in Sec-
tion 4.1 is that the retained set I may, and likely will,
contain more than one system. However, there is no pro-
cedure that can guarantee a subset of size 1 and satisfy (1)
for arbitrary n. Even when n is under our control, as it
is in computer simulation, the appropriate value will de-
pend on the true differences μk − μi, ∀i �= k. To attack
this problem, Bechhofer (1954) suggested the following
compromise: guarantee to select the single best system,
k, whenever μk − μk−1 ≥ δ, where δ > 0 is the smallest
difference the experimenter feels is worth detecting—this
“practically significant” difference is called the indifference
parameter.

Specifically, the procedure should guarantee

Pr{select system k|μk − μk−1 ≥ δ} ≥ 1 − α, (3)

where 1/k < 1 − α < 1. If there are systems whose
means are within δ of the best, then the experimenter is
“indifferent” to which of these is selected, leading to the
term indifference-zone (IZ) formulation. In the motivational
example, the indifference parameter is δ = $10000. Law
and Kelton (2000) describe a number of IZ procedures that
have proven useful in simulation, while Bechhofer, Santner,
and Goldsman (1995) provide a comprehensive review of
SSPs to that date.

Bechhofer’s procedure is as follows: From each system,
take

n =
⌈

2h2σ 2

δ2

⌉
(4)

outputs, where h is an appropriate constant (determined
below) and 	x
 means to round x up; then select the
system with the largest sample mean as the best. Assuming
μk − μk−1 ≥ δ and recalling our definitions D̄ik(n) =
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Ȳi (n) − Ȳk(n) and μik = μi − μk for all i �= k, we have

Pr{select k} = Pr
{
Ȳk(n) > Ȳi(n), ∀i �= k

}
= Pr

{
D̄ik(n) − μik

σ
√

2/n
< − μik

σ
√

2/n
, ∀i �= k

}

≥ Pr

{
D̄ik(n) − μik

σ
√

2/n
<

δ

σ
√

2/n
, ∀i �= k

}

≥ Pr

{
D̄ik(n) − μik

σ
√

2/n
< h, ∀i �= k

}
= Pr {Zi < h, i = 1, 2, . . . , k − 1} = 1 − α,

where again (Z1, Z2, . . . , Zk−1) has a multivariate normal
distribution with means 0, variances 1, and common pairwise
correlations 1/2, implying h needs to be the 1 −α quantile
of the maximum of such a multivariate normal random
vector. Notice that the first inequality results from the
assumption that μk − μk−1 ≥ δ, while the second occurs
because

√
n ≥ √

2hσ/δ. Both of these tricks are standard:
the first frees the probability statement of dependence on
the true means, while the second frees it of dependence on
the value of the variance.

It is worth noting that, over all configurations of the
true means such that μk − μk−1 ≥ δ, the configuration
μi = μk − δ, for all i �= k, minimizes the probability of
correct selection; it is therefore known as the least-favorable
configuration (LFC). In this paper we break from the
statistics literature in that we will not be concerned with
identifying the LFC; our only interest is insuring that (3)
is met.

Bechhofer’s procedure is essentially a power calcula-
tion: how large a sample is required to detect differences
of at least δ? When true differences are greater than δ,
Bechhofer’s n may be much larger than needed. By taking
observations and making decisions sequentially, it is often
possible to reach an earlier decision. Although the roots of
sequential selection procedures can be traced back at least
to Wald (1947), the first procedure directly designed for
selection purposes is due to Paulson (1964). That proce-
dure takes observations fully sequentially—meaning one at
a time—and eliminates systems from continued sampling
when it is statistically clear that they are inferior. Thus, a
problem with a single dominant alternative may terminate
very quickly. See Section 5.2.1 for a simple sequential
procedure that is easily adopted for use in simulation.

4.3 Multiple Comparisons

MCPs approach the comparison problem by providing simul-
taneous confidence intervals on selected differences among
the systems’parameters. Hochberg and Tamhane (1987) and
Hsu (1994, 1996) are good references on the topic. As noted
by Hsu (1996, pp. 100–102), the connection between SSPs
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and MCPs comes through the problem of multiple com-
parisons with the best (MCB). MCB forms simultaneous
confidence intervals for μi − max��=i μ�, i = 1, 2, . . . , k,
the difference between each system and the best of the rest.
Specialized to the known-variance case, the intervals take
the form

μi − max
��=i

μ� ∈
[
−
(

Ȳi (n) − max
��=i

Ȳ�(n) − hσ

√
2

n

)−
,

(
Ȳi (n) − max

��=i
Ȳ�(n) + hσ

√
2

n

)+]
, (5)

where h is the same critical value used in Bechhofer’s and
Gupta’s procedures, −x− = min{0, x} and x+ = max{0, x}.
Under our assumptions these k confidence intervals are
simultaneously correct with probability ≥ 1 − α.

Consider the set I containing the indices of all systems
whose MCB upper confidence bound is greater than 0. Thus,
for i ∈ I ,

Ȳi (n) > max
��=i

Ȳ�(n) − hσ

√
2

n
,

meaning these are the same systems that would be re-
tained by Gupta’s subset-selection procedure. Since
μk − max��=k μ� > 0, and these intervals are simultane-
ously correct with probability ≥ 1 − α, system k will be
in the subset identified by the MCB upper bounds with the
required probability.

Now suppose that n has been selected such that n ≥
2h2σ 2/δ2, implying that

hσ

√
2

n
≤ δ

as in Bechhofer’s procedure. Let B be the index of the
system with the largest sample mean. Then the MCB lower
bounds guarantee with probability ≥ 1 − α that

μB − max
��=B

μ� ≥ −
(

ȲB(n) − max
��=B

Ȳ�(n) − hσ

√
2

n

)−

≥ −δ.

The final inequality follows because ȲB(n) −
max��=B Ȳ�(n) ≥ 0 by the definition of B, and hσ

√
2/n ≤ δ

because of our choice of n. As noted by Nelson and
Goldsman (2001), this establishes that the system selected
by Bechhofer’s procedure is guaranteed to be within δ

of the true best under any configuration of the means.
Further, if μk − μk−1 > δ, then Pr{B = k} ≥ 1 − α as
required.
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As a consequence of this analysis both Bechhofer’s and
Gupta’s procedures can be augmented with MCB confidence
intervals “for free,” and Bechhofer’s procedure is guaranteed
to select a system within δ of the best. Nelson and Matejcik
(1995) establish very mild conditions under which these
results hold for far more general SSPs.

The procedure we display below in Section 5.1 is a
combined subset, indifference-zone selection, and MCB
procedure. The advantage of a combined procedure is that
we not only select a system as best, we also gain information
about how close each of the inferior systems is to being
the best. This information is useful if secondary criteria
that are not reflected in the performance measure (such as
ease of installation, cost to maintain, etc.) may tempt us to
choose an inferior system if it is not deficient by much.

5 NORMAL MEANS PROCEDURES

With the motivation from the previous section in mind, we
now present three procedures for finding the best (largest
mean) normal distribution. The first is a combined screen-
select-infer procedure for finding the population with the
largest expected value; in this procedure, which uses all
three of the approaches outlined in Sections 4.1–4.3, infe-
rior competitors are screened out after an initial stage of
sampling. The second is a sequential procedure that can
eliminate inferior choices at any stage and uses the common
random numbers variance reduction technique in order to
make more precise (and therefore efficient) comparisons
among the competing populations. The third is an effi-
cient two-stage procedure that also uses common random
numbers.

5.1 Subset + Rinott + MCB Procedure

The combined procedure that follows uses a sampling strat-
egy in which the normal observations between scenarios are
independent, i.e., Yij is independent of Yi′,j for all i �= i′ and
all j . Nelson, et al. (2001) show how to combine a simple
subset (screening) procedure with a two-stage indifference-
zone selection procedure due to Rinott (1978). After the fact,
MCB confidence intervals are then provided for free. The
procedure simultaneously guarantees a probability of correct
selection and confidence-interval coverage probability of at
least 1 − α under the stated assumptions. This combined
procedure is of great utility when the experimenter is initially
faced with a large number of alternatives—the idea is for
the subset procedure to pare out non-contending systems,
after which Rinott selects the best from the survivors.

Procedure Subset + Rinott + MCB

1. Specify the overall desired probability of correct
selection 1 − α, the indifference-zone parameter
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δ, a common initial sample size from each sce-
nario n0 ≥ 2, and the initial number of competing
systems k. Further, set

t = t
1−(1−α/2)

1
k−1 ,n0−1

,

where tγ,ν is the upper-γ quantile of a t-distribution
with ν degrees of freedom, and let h solve the
following integral,

1 − α

2

=
∫ ∞

0

⎡
⎢⎣∫ ∞

0
�

⎛
⎜⎝ h√

ν( 1
x + 1

y )

⎞
⎟⎠ fν(x) dx

⎤
⎥⎦

k−1

fν(y) dy,

where �(·) is the standard normal cumulative distri-
bution function and fν(·) is the probability density
function of the χ2-distribution with ν = n0 − 1
degrees of freedom. The FORTRAN program
rinott in Bechhofer, Santner, and Goldsman
(1995) calculates values of h, or one can use the
tables in Wilcox (1984) or Bechhofer, Santner, and
Goldsman (1995).

2. Take an i.i.d. sample Yi1, Yi2, . . . , Yin0 from each of
the k normal populations, obtained independently.

3. Calculate the first-stage sample means Ȳ
(1)
i =∑n0

j=1 Yij /n0, and marginal sample variances

S2
i =

∑n0
j=1(Yij − Ȳ

(1)
i )2

n0 − 1
,

for i = 1, 2, . . . , k.
4. Calculate the quantity

Wij = t

(
S2

i + S2
j

n0

)1/2

for all i �= j . Form the screening subset I , con-
taining every alternative i such that 1 ≤ i ≤ k

and

Ȳ
(1)
i ≥ Ȳ

(1)
j − (Wij − δ)+ for all j �= i.

5. If I contains a single index, then stop and return
that system as the best. Otherwise, for all i ∈ I ,
compute the second-stage sample sizes

Ni = max
{
n0,

⌈
(hSi/δ)

2
⌉}

.
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6. Take Ni − n0 additional i.i.d. observations from
all systems i ∈ I , independently of the first-stage
sample and the other systems.

7. Compute the overall sample means ¯̄Yi =∑Ni

j=1 Yij /Ni for i ∈ I .

8. Select the system with the largest ¯̄Yi as best.

9. With probability at least 1 − α, we can claim that

• For all i ∈ I c, we have μi < maxj �=i μj (i.e.,
the systems excluded by the screening are not
the best), and

• If we define Ji = {j : j ∈ I and j �= i}, then
for all i ∈ I ,

μi − max
j∈Ji

μj ∈
[
−
(

¯̄Yi − max
j∈Ji

¯̄Yj − δ

)−
,

(
¯̄Yi − max

j∈Ji

¯̄Yj + δ

)+]
.

(Thus, these confidence intervals bound the
difference between each alternative and the
best of the others in I .)

5.2 Common Random Numbers

A fundamental assumption of the previous Sub-
set+Rinott+MCB procedure is that the k systems are simu-
lated independently (see Step 2 in that procedure). In prac-
tice this means that different streams of pseudo-random
numbers are assigned to the simulation of each system.
However, under fairly general conditions, assigning com-
mon random numbers (CRN) to the simulation of each
system decreases the variances of estimates of the pairwise
differences in performance. Unfortunately, CRN also com-
plicates the statistical analysis when k > 2 systems are
involved. The following procedures from Kim and Nelson
(2001) and Nelson and Matejcik (1995) provide (almost) the
same guarantees as procedure Subset+Rinott+MCB under
a more complex set of conditions, but have been shown to
be quite robust to departures from those conditions. And
unlike Subset+Rinott+MCB, they are designed to exploit
the use of CRN to reduce the total number of observations
required to make a correct selection.

5.2.1 Procedures that Allow Common Random Numbers

We next examine a sequential procedure due to Kim and
Nelson (2001) that can eliminate inferior choices at any
stage. This procedure uses a sampling strategy in which
the normal observations may be dependent due to the use
of common random numbers.

The KN procedure is a bit more complicated to im-
plement than the vanilla Rinott (1978) procedure, but it
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has several distinct advantages. First, once an initial set
of n0 observations is collected from each treatment, KN is
parsimonious in taking additional observations in that they
are added one-at-a-time and the data are examined to deter-
mine if sufficient information has been collected to stop. In
contrast, Rinott and its enhancements take potentially large
groups of observations. Second, KN allows treatments to
be discarded before the final decision; those treatments that
appear inferior can legitimately be dropped from further
consideration. See Kim and Nelson (2001, 2005b) and
Goldsman, et al. (2002) for more details.

Procedure KN

1. Specify the overall desired probability of correct
selection 1 − α, the indifference-zone parameter
δ, a common initial sample size from each sce-
nario n0 ≥ 2, and the initial number of competing
systems k. Calculate the constant

η = 1

2

[(
2α

k − 1

)−2/(n0−1)

− 1

]
.

Further, set I = {1, 2, . . . , k} and let h2 = 2η(n0−
1).

2. Take a random sample of n0 observations Yij (1 ≤
j ≤ n0) from population i, i = 1, 2, . . . , k. For
treatment i compute the sample mean based on
the n0 observations, Ȳi (n0) = ∑n0

j=1 Yij /n0, i =
1, 2, . . . , k. For all i �= �, compute the sample
variance of the difference between treatments i

and �,

S2
i� = 1

n0 − 1

n0∑
j=1

(
Yij − Y�j − [Ȳi (n0) − Ȳ�(n0)]

)2

and set

Ni� =
⌊
h2S2

i�/δ
2
⌋

,

where 
·� is the floor (integer round-down) function.
Finally, for all i set

Ni = max
��=i

Ni�.

If n0 > maxi Ni , then stop and select the popu-
lation with the largest sample mean Ȳi (n0) as the
one having the largest mean. Otherwise, set the
sequential counter r = n0 and go to the Screening
phase of the procedure.
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3. Screening: Set I old = I and re-set

I = {i : i ∈ I old and Ȳi (r) ≥ Ȳ�(r) − Wi�(r),

for all � ∈ I old, � �= i},

where

Wi�(r) = max

{
0,

δ

2r

(
h2S2

i�

δ2 − r

)}
.

4. Stopping Rule: If |I | = 1, then stop and select the
treatment with index in I as having the largest mean.
If |I | > 1, take one additional observation Yi,r+1
from each treatment i ∈ I . Increment r = r + 1
and go to the screening stage if r < maxi Ni +1. If
r = maxi Ni +1, then stop and select the treatment
associated with the largest Ȳi (r) having index i ∈ I .

The following two-stage procedure due to Nelson and
Matejcik (1995) is similar to Subset+Rinott+MCB, but dif-
ferent in that it purposefully sets out to exploit the use
of common random numbers. This is accomplished via a
common sample variance estimator that is calculated using
observations between alternatives as well as within.

Procedure NM + MCB

1. Specify the constants δ, α, and n0 ≥ 2. Let
g = T

(α)
k−1,(k−1)(n0−1),0.5, an equicoordinate critical

point of the equicorrelated multivariate central t-
distribution; this constant can be found in Hochberg
and Tamhane (1987), Appendix 3, Table 4; Bech-
hofer, Santner, and Goldsman (1995); or by using
the FORTRAN program AS251 of Dunnett (1989).

2. Take an i.i.d. sample Yi1, Yi2, . . . , Yin0 from each
of the k systems using CRN across systems.

3. Compute the approximate sample variance of the
difference of the sample means

S2 = 2
∑k

i=1
∑n0

j=1

(
Yij − Ȳi· − Ȳ·j + Ȳ··

)2

(k − 1)(n0 − 1)
,

where Ȳi· = ∑n0
j=1 Yij /n0, Ȳ·j = ∑k

i=1 Yij /k, and

Ȳ·· = ∑k
i=1

∑n0
j=1 Yij /kn0.

4. Compute the final sample size

N = max
{
n0,

⌈
(gS/δ)2

⌉}
.

5. Take N − n0 additional i.i.d. observations from
each system, using CRN across systems.

6. Compute the overall sample means ¯̄Yi =∑N
j=1 Yij /N for i = 1, 2, . . . , k.
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7. Select the system with the largest ¯̄Yi as best.
8. Simultaneously form the MCB confidence intervals

μi − max
j �=i

μj ∈

[
−
(

¯̄Yi − max
j �=i

¯̄Yj − δ

)−
,

(
¯̄Yi − max

j �=i

¯̄Yj + δ

)+]

for i = 1, 2, . . . , k.

5.3 Simulation Considerations

As we have already mentioned, the methods described in this
section all rely on our ability to generate i.i.d. normal obser-
vations within each scenario. (We may or may not want the
observations to be independent between systems, especially
if we are thinking of using common random numbers.)
Of course, data from a simulation are rarely i.i.d. normal.
Luckily, we can achieve approximate normality by taking
sample averages of contiguous observations (batching); and
we can achieve independence by running independent repli-
cations. Moderate departures from normality do not really
pose a problem, since all of the procedures appear to be
robust in that sense (see Bechhofer, Santner, and Goldsman
1995 or Goldsman, et al. 2002). But one really ought to
make sure that the Yij are indeed independent within each
scenario, for procedure performance seriously deteriorates
when that assumption fails.

6 MULTINOMIAL PROCEDURES

This section begins with a version of the motivational ex-
ample from Section 4, but with a slightly different criterion
for describing the best alternative. We then describe three
procedures to achieve the new goal of finding the best.

Example 2 Simulation models of 25 different inven-
tory policies have been developed for potential implemen-
tation at a large distribution/warehouse center. The goal
now is to select the system that is most likely to have the
largest actual profit (instead of the largest expected profit).

6.1 Setup

We define pi as the probability that design i will pro-
duce the largest profit from a given vector-observation
Y j = (Y1j , Y2j , . . . , Ykj ). The goal now is to select the
design associated with the largest pi-value. This goal is
equivalent to that of finding the multinomial category having
the largest probability of occurrence; and there is a rich
body of literature concerning such problems. In fact, we
make almost no assumptions on the underlying distributions
4
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of the competing populations—thus, the procedures to be
discussed below are, in a sense, nonparametric.

More specifically, suppose that we want to select the
correct category with probability 1 − α whenever the ratio
of the largest to second largest pi is greater than some user-
specified constant, say θ > 1. The indifference constant θ

can be regarded as the smallest ratio “worth detecting.”

6.2 The Procedures

This subsection describes three nonparametric procedures.
The first is a single-stage procedure for finding the most
probable multinomial cell, the second is a sequential proce-
dure, and the third is a clever augmentation of the first that
makes more efficient use of the underlying observations.

6.2.1 Single-Stage Procedure

The following single-stage procedure was proposed by Bech-
hofer, Elmaghraby, and Morse (1959) to guarantee the above
probability requirement.

Procedure BEM

1. For the given k, and (α, θ) specified prior to the
start of sampling, find n from the tables in Bech-
hofer, Elmaghraby, and Morse (1959), Gibbons,
Olkin, and Sobel (1977), or Bechhofer, Santner,
and Goldsman (1995).

2. Take a random sample of n observations
Yi1, Yi2, . . . , Yin from each alternative i, i =
1, 2, . . . , k. Turn these into n independent multi-
nomial observations, Xj = (X1j , X2j , . . . , Xkj ),
j = 1, 2, . . . , n, by setting

Xij =
{

1, if Yij > max��=i{Y�j }
0, otherwise,

where we assume (for notational convenience) that
there are never ties for the maximum observation
within a particular vector Y j .

3. Let Wi = ∑n
j=1 Xij for i = 1, 2, . . . , k. Select

the design that yielded the largest Wi as the one
associated with the largest pi (where we simply
randomize in the case of ties).

6.2.2 Sequential Procedure

A more efficient procedure, due to Bechhofer and Golds-
man (1986), uses closed, sequential sampling; that is, the
procedure stops when one design is “sufficiently ahead” of
the others.
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Procedure BG

1. For the given k, and (α, θ) specified prior to the start
of sampling, find the truncation number (i.e., an up-
per bound on the number of vector-observations) n0
from the tables in Bechhofer and Goldsman (1986)
or Bechhofer, Santner, and Goldsman (1995).

2. At the mth stage of experimentation (m ≥ 1),
take the random multinomial observation Xm =
(X1m, X2m, . . . , Xkm) (defined above) and calcu-
late the ordered category totals

W[1]m ≤ W[2]m ≤ · · · ≤ W[k]m;

also calculate

Zm =
k−1∑
i=1

(1/θ)(W[k]m−W[i]m).

3. Stop sampling at the first stage when either

Zm ≤ α/(1 − α)

or m = n0

or W[k]m − W[k−1]m ≥ n0 − m,

whichever occurs first.
4. Let N (a random variable) denote the stage at

which the procedure terminates. Select the design
that yielded the largest WiN as the one associated
with the largest pi (randomize in the case of ties).

6.2.3 Augmentation of Procedure BEM

Miller, Nelson, and Reilly (1998) present a remarkably ef-
ficient procedure that directly uses the original Yij observa-
tions (instead of the 0-1 Xij , which lose information). Their
procedure AVC, based on all possible vector comparisons
of the observations, always results in an increased proba-
bility of correct selection when compared to the analogous
implementation of the Bechhofer, Elmaghraby, and Morse
(1959) procedure.

Procedure AVC

1. For the given k, and (α, θ) specified prior to the
start of sampling, use the same n as in procedure
BEM.

2. Take a random sample of n observations
Yi1, Yi2, . . . , Yin from each alternative i, i =
1, 2, . . . , k. Consider all nk vectors of the form
Y

′
j = (Y

′
1j , Y

′
2j , . . . , Y

′
kj ), j = 1, 2, . . . , nk , where
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A

Y
′
ij is one of the n observations from alternative

i. Turn these into nk (non-independent) multi-
nomial observations, X

′
j = (X

′
1j , X

′
2j , . . . , X

′
kj ),

j = 1, 2, . . . , nk , by setting

X
′
ij =

{
1, if Y

′
ij > max��=i{Y ′

�j }
0, otherwise,

where we again assume that there are never ties
for the maximum observation within a particular
vector Y

′
j .

3. Let W
′
i = ∑nk

j=1 X
′
ij for i = 1, 2, . . . , k. Select

the design that yielded the largest W
′
i as the one

associated with the largest pi (randomize in the
case of ties).

7 FINAL THOUGHTS

Space limitations preclude detailed discussion, but we also
mention a number of additional interesting topic areas that
are presently enjoying a great deal of attention. For example,

• New sequential procedures have appeared recently
in the “traditional” statistics literature.

• Decision-theoretic perspectives on the selection-
of-the best problem.

• Combined selection + optimization procedures in
the stochastic environment.

• Optimal sampling budget allocation strategies.
• Combined variance estimation + selection for sta-

tionary processes.

The bottom line is that SSPs and MCPs are useful and effi-
cient tools for practical problems; and the potential benefits
continue to accrue in this varied and active area of research.
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