
Proceedings of the 2005 Winter Simulation Conference
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

ADVANCED CONCEPTS IN LARGE-SCALE NETWORK SIMULATION

David M. Nicol
Michael Liljenstam

Coordinated Science Laboratory
University of Illinois, Urbana-Champaign

Urbana, IL 61801, U.S.A.

Jason Liu

Dept. of Math and Computer Sciences
Colorado School of Mines
Golden, CO 80401, U.S.A.
ABSTRACT

This tutorial paper reviews existing concepts and future di-
rections in selected areas related to simulation of large-scale
networks. It covers specifically topics in traffic modeling,
simulation of routing, network emulation, and real-time
simulation.

1 INTRODUCTION

Use of communication networks is pervasive, and is increas-
ing. The larger and more complex these networks become,
the harder it is to predict their behavior before deployment.
Analytic models often are useful for a coarse level of anal-
ysis, but are limited in the problems they can tractably
solve. Detailed discrete-event simulations remain a valu-
able tool for understanding and optimizing network designs.
Commercial network simulation tools have wide-spread use,
particularly in government. Simulation of large-scale net-
works poses some severe problems related to scale. In this
paper we consider work in three areas that address some of
these problems.

We first consider the area of modeling traffic. The
problems of scale here are simply that there is so much
traffic that it is computationally infeasible to simulate it
all at a fine degree of resolution. The work we describe
addresses this through abstraction, which (as we will see)
brings its own new set of problems to be solved. Next we
consider the simulation of routing protocols, particularly
the Border Gateway Protocol (BGP). Problems here arise
again because of scale—simulating all routers at a high
degree of resolution imposes a memory cost that grows
in the square of the number of routers. Here again one
may use abstraction and approximation to alleviate some
of these problems, but again the solutions create additional
problems to be considered. Finally we discuss use of
simulation in network emulation and real-time simulation.
The context here is integration of virtual representation of
systems with physically actual systems. One motivation to
15
relieve in part the burden of abstracting and modeling system
behavior within a simulator. Emulation gives analysts a
means of generating traffic by real applications, have that
traffic be managed (in part) by actual networking hardware,
but intersperse simulated elements in such a way that the
actual elements are unaware of interacting with a simulation.
We review current work and problems in that area.

We hope that this exposition of challenging problems
in large-scale network serves as a resource for those who
by choice or by context need to learn about it.

2 TRAFFIC MODELING IN LARGE-SCALE
IP NETWORKS

Models of network traffic drive virtually every conceivable
network simulation experiment. We want to use models
that faithfully represent behavior of real traffic, but may
encounter problems when simulating large networks that
carry IP traffic. The most straightforward approach is to
represent IP packets individually. Within the simulation
an event occurs when a packet arrives at a new device,
after having crossed a link. It is straightforward to see the
ramifications this has on the simulation workload. Suppose
the average link bandwidth in a model is b bits per second,
that the average link utilization is p, that an IP packet
uses 8000 bits, and that there are N links in the model.
Then N × b × u/8000 is a lower bound on the number of
events the simulation executes per simulation second. A
large capacity network may have OC-48 links, which carry
2400Gbps. Assuming link utilization of 10%, the lower
bound scales in N as 30N million events per second. A
highly tuned network simulator that runs on a workstation
might be able to execute 1M events per second; we see then
that a large-scale simulator that models IP packets directly
may advance simulation time at a rate that is considerably
slower than real-time. This limits the type of simulation
experiment that might be performed.

One can address the issue by abstracting the traffic, and
consider it as a “flow", not unlike fluid passing through a pipe.
3



Nicol, Liljenstam, and Liu
Flow formulations change the way we update the model,
and may offer computational advantages when the rate of
updates per unit simulation time is significantly smaller (Liu
et al. 1999, Liu et al. 2001). It is commonly the case that
we would like to use an abstracted traffic model to describe
so-called background traffic, and a detailed packet level
model to describe “foreground" traffic of particular interest.
The background traffic model paints a lower resolution
picture of what is happening in the network. Ideally it does
so in a way that can be interpreted by the simulator to
adequately represent the impact that background traffic has
on the foreground traffic behavior.

Some flow models describe how the flow changes in
time with differential equations, e.g., see Padhye et al.
(1998), Bu and Towsley (2001), Liu et al. (2004), Yan and
Gong (1998). The specifics of the equations capture how
protocols like TCP affect the offered load, and how things
like RED (Random Early Detection queue management)
and network bandwidth limitations affect the offered load.
These types of models express the behavior in terms of
coupled variables whose values are determined by numerical
integration of the equations. Some formulations allow one
to conceptually aggregate all TCP traffic streams that have
the same source and destination as a single mathematical
entity, and describe the interactions of those abstracted flows.
Models like these have proven their utility most impressively
for stationary models of TCP, where the variables are long-
term averages. Since TCP control actions occur at the time-
scale of a packet’s round-trip time across the network, “long-
term" means considerably longer than that. For this reason
(and others) these types of models are not well-suited for
simulations where the metrics of interest in the foreground
traffic are sensitive to variability in the background traffic.
Time-dependent differential equations can address this issue,
but the main limitation with existing approaches is their focus
on describing how all traffic is shaped by a specific protocol.
The state of the art does not yet support application in a
context where traffic is created and shaped by different
sources and protocols.

Models based on differential equations inherently take
a continuous view of the model state, and describe how that
state changes continuously. An alternative flow formulation
is inherently discrete event. In this Discrete Event Fluid
Flow (DEFF) formulation a flow’s rate at a point in the
network is assumed to have a mathematical form such that
given the flow rate at time s, in the absence of discrete events
it is simple to compute the flow rate at time t . Examples
of simple flow rate functions include constant flow rates, or
linear in time. The basic idea has been used for some time,
particularly using piece-wise constant flow rate functions,
e.g., see Kesidis et al. (1996), Nicol et al. (1999), Nicol
and Yan (2004), Nicol et al. (2003). The DEFF allows one
to cast flow state computations into the discrete domain,
using familiar techniques. For example, if a traffic source
15
injects flow into the network at a linearly increasing rate
until the rate exceeds the network ingress point’s ability to
absorb it, at time s one can compute the time t of saturation
and schedule a conditional event at t to deal with the model
state change induced by the saturation. Typically the effect
of processing such an event is to alter the rate parameters
of some flows. Of course, if the model state changes in
such a way to invalidate the conditional event at t , then the
event can be canceled.

The computational advantage of the DEFF approach
can be assessed by considering how many fewer events are
needed to maintain the model state. If a discrete-event fluid
formulation defines events at time s and t with no intervening
events, and if over that epoch the average flow rate is λ

packets per second, then the DEFF formulation represents
with one event state what the IP packet formulation takes
λ × (t − s) events. Clearly the computational savings can
be significant.

However, there can be complications which have no
parallel in the IP packet formulation. The usual model of
flows competing for a given link’s bandwidth assumes that
if there is congestion (e.g. more demand for bandwidth
than capacity), then each flow is allocated bandwidth in
proportion to the rate of its arrival to the link. Thus if
flow i arrives at rate λi , the available bandwidth is µ, and
� = ∑n

i=1 λi (assuming n flows), then when µ < � the
rate of the ith flow through the link is (µ/�)λi . However,
consider the ramifications. Suppose that flow i is defined
by a traffic source, and at some time t an event is executed
that changes λi . Suppose further that at time t the link
into which flow i is fed is congested. The change in λi

causes a change in �, which causes a change in the value
of every flow into the link. These flow rate changes have
to be propagated downstream; therefore the processing of
one event may induce many events.

One can intermix traffic that is represented by IP pack-
ets and traffic represented by flows, in the same model
(Nicol, Liu, Liljenstam, and Yan 2003). The issues include
determining how each type of representation affects the
other. For example, when a packet is scheduled to cross a
link, and there are flow representations also competing for
that link, the simulation model must determine what latency
to ascribe to the packet (latency is composed of queuing
time, transit time of the first bit, and bandwidth governing
the rate of bits being injected into the link.) The queueing
delay can be estimated by retaining a measure of the fluid
traffic buffered, and the explicit packets also buffered. The
transit time of the first bit is a function of the link itself,
and the bandwidth allocated is determined by subtracting
the bandwidth consumed by the fluid representation from
the link’s capacity. Conversely, IP packets can be made to
affect DEFF model state. One can estimate the rate of IP
packet arrivals at any place in the network, and represent the
packet stream as a flow in the computations that determine
4



Nicol, Liljenstam, and Liu
bandwidth allocation per flow. In this way the behavior
of the IP packet representation affects the behavior of the
DEFF model.

For a traffic stream between a given source and des-
tination, the rate at which the stream creates events is
proportional to the number of links in the path, divided by
the average link latency. For the corresponding DEFF for-
mulation it is harder to predict the rate of event generation,
because different DEFF flows can cause events for each
other by interaction through congested links. Ultimately
these interactions are a function of how the traffic load
at the edge of the network changes, how these changes
propagate through the interior of the network, and the mul-
tiplicative effect of these changes through congested links.
The natural time-scale of events for a flow model is derived
from the time-scale of load changes at the network edge.
Congestion related events can reduce that time-scale to that
of packets crossing a link, for that is the delay between a
congestion induced event and its downstream impact.

A different flow model is formulated to keep the overall
time-scale at the level of changes in the offered load (Nicol
and Yan 2005). In this model the offered load rate of each
flow is periodically and simultaneously updated, say every
�t seconds. It is assumed that �t is at a coarser time-scale
than the end-to-end network latency; �t needs to be large
enough so that one can think of the resulting flows out of the
network occurring more or less instantaneously. So viewed,
the function of the network model exists to transform the
offered rate of every flow into a delivered rate. Along the
way the transformation needs to identify, for each flow, what
the flow rate is at every point in the network. Then IP packet
models can be executed in conjunction with those flows in
much the same way as they are executed in conjunction
with DEFF formulations. The difference is that the flow
rates are assumed to be constant over the defining epoch of
�t time.

The transformation of offered rates to delivered rates
is accomplished by looking at where the rate of a given
flow changes. Suppose that a flow i directed through router
output port p arrives with rate λ

(in)
i,p and that λ

(out)
i,p defines

its rate onto the link fed by p. Furthermore suppose that
�p is the sum of all arrival rates into p, and that µp is the
link bandwidth of port p. Then formalizing what we have
said before, we define

λ
(out)
i,r =

{
λ

(in)
i,r if �p ≤ µp

(µp/�p)λ
(in)
i,r otherwise

. (1)

Now observe that for some router r ′, λ
(out)
i,r = λ

(in)

i,r ′ . Thus
we see that the output flow values we seek are found by
solving a large set of non-linear equations. These systems
usually have dependency cycles in them.
155
The solution investigated in (Nicol and Yan 2005) pro-
ceeds in three steps. In a first step the problem is aggres-
sively reduced by computing the final value of as many
flow variables as possible. This step uses upper bounds on
unknown flow variables to identify ports p where it can be
determined that �p ≤ µp, even if the exact value of �p is
unknown. A port for which this can be established is called
“transparent", and it is known that all flows through that
port pass through without changes in their flow rates. Once
the problem has been reduced the issue is of solving circu-
lar dependencies. The dependencies occur between ports
that may be congested; output flows (which are unknown
because the total rate of inputs to the port are unknown) are
inputs to other ports that may be congested, whose outputs
are unknown, and so on. The second step engages in an
iterative process to resolve the dependencies. Within each
iteration each flow variable starts with an estimated value.
Equation (1) is applied at any port that maybe congested, but
the updated output values are not considered as new input
values during that same iteration. At the end of the iteration
we ask whether any estimated value has changed enough to
warrant iterating again. The solution is considered to have
converged when further application of equation (1) does not
change any flow value by more than a tiny fraction of a
relative percent. The third stage of the algorithm consists
of taking the converged values and pushing them through
the rest of the network not involved in the cycles.

Experiments with this technique reveal the capability to
compute flow rates very fast on large networks. Challenges
remain however in effectively parallelizing the technique
for very large networks that must be simulated in faster
than real time.

3 SIMULATION OF ROUTING

As the size of the simulated network is scaled up, simulation
of routing becomes a critical problem. Consider the follow-
ing. The Internet routing system at the inter-domain level
is a distributed system of massive size, consisting at present
of more than 16,000 Autonomous Systems (independently
administrated networks). Some of these Autonomous Sys-
tems (ASes) have hundreds of inter-domain routers (devices
participating in the inter-domain routing system). Each AS
typically also contains a large number, sometimes thousands,
of additional routers for internal routing (intra-domain rout-
ing). During periods of rapid expansion of the Internet the
growth in size of routing tables has threatened to exhaust
the memory available in individual routers, particularly in
core routers in the large backbone Internet Service Provider
(ISP) networks that store routes to all destination networks
in the Internet. Consider then the implications for mem-
ory space demands of a simulation consisting of thousands
of such routers! Moreover, the computational time spent



Nicol, Liljenstam, and Liu
on generating the routes for a large-scale simulation can
quickly become a problem.

To some extent these issues can be alleviated through
parallelization of the simulation, mimicking the way that
the real system distributes storage space and computations.
However, alternative algorithmic techniques to reduce the
space and time complexity of simulation of routing can
produce large gains, with efficiencies beyond what is possible
to achieve through more hardware resources alone. There
has been a significant amount of work devoted to dealing
with the problem of simulating routing, and this section we
will review some of this work.

3.1 Internet Routing

For completeness we provide a very brief review of Internet
routing here. However, space constraints preclude more than
a high-level treatment. The Internet routing system is hierar-
chical and operates on two levels. Routes in a local network
under a single administrative control (intra-domain routes)
are computed based on shortest paths (weighted hop counts)
through protocols such as Open Shortest-Path First (OSPF),
Enhanced Interior Gateway Routing Protocol (EIGRP), and
the Routing Information Protocol (RIP) (Huitema 2000).
Link state protocols, such as OSPF, exchange topology in-
formation between routers so that all routers have a complete
view of the full (local) network topology and can indepen-
dently compute the shortest paths through the network. In
distance-vector protocols, such as RIP and EIGRP, on the
other hand, routers exchange information with their neigh-
bors on the shortest known path to a destination at the given
time (current preferred choice). The routing computation
eventually converges to a stable state as the best choices
stabilize. Links can be assigned weights so that the short-
est path computation can be controlled to, for instance,
steer traffic through higher capacity links, or balance traffic
volumes over different links (“traffic engineering”).

To provide global connectivity, multiple networks
(ASes) must collaborate in exchanging traffic. Two ASes
that agree to exchange traffic (inter-domain) do so by setting
up one or more peering points. Routing at the inter-domain
level (across ASes) is performed and controlled differently
from intra-domain routing. Traffic exchange between dif-
ferent networks is determined through business agreements,
and the routing protocol enforces certain constraints ac-
cording to those agreements through routing policies. For
instance, typical business relationships between networks
include customer/provider and peer/peer. A customer buys
Internet access from an ISP, implying that all routes learned
to other destinations in the Internet by the ISP should be
made available (be advertised) to the customer. Similarly,
routes to the customer networks will be advertised to the
rest of the Internet. In a peer/peer relationship, two net-
work operators decide that it would be mutually beneficial
156
to exchange traffic (thus generally without charging). For
instance, two regional ISPs, call them A and B, may directly
exchange traffic between their customers instead of passing
it to their upstream providers. In this situation A advertises
routes from its customers to B and accepts routes for B’s
customers re-advertising them to its customers. However,
A does not want to advertise routes learned from its up-
stream provider to B and does not advertise B’s routes to
its provider, since this would result in A providing transit
service for B. The Border Gateway Protocol (BGP) (Stew-
art 1998) is the de-facto standard for inter-domain routing
in the Internet,

and it allows the specification of routing policies to
control route preference, whether or not routes are permitted
to be used, and whether they are readvertised. BGP is a
path-vector protocol and its operation is similar to distance
vector protocols in that it works by exchanging information
on the preferred routes with its neighbors and has to converge
to a stable state. BGP routes thus advertised to neighbors
incorporate several route attributes, including the full AS
path traversed by the route, to be used by route filtering and
selection mechanisms in enforcing the configured routing
policies. At the inter-domain level, destinations are specified
in terms of subnetwork addresses, IP prefixes. The global
Internet routing table currently contains more than 160,000
such IP prefixes.

3.2 Incorporating Routing Protocols

Network simulators such as SSFNet (SSFNet 2000) include
detailed models of routing protocols like OSPF and BGP. By
incorporating all relevant details of the routing protocols, in-
cluding routing packet format/contents, routing information
storage, and the route computation/selection mechanisms
and timers in the protocol, a high fidelity model of the
routing protocol operations is achieved. Similar to this
approach is taking original routing code and porting it to
run in a network simulator, as described in (Dimitropoulos
and Riley 2003), where the Zebra open source routing soft-
ware was ported to run in the ns-2 simulator. This brings
the simulator to within a very close approximation of the
actual system. Such models capture not only the accurate
path choices but also the dynamics in adapting to topology
changes (e.g., device- or link failures), and the detailed
model in SSFNet has been used for instance to study the
convergence behavior of BGP (Griffin and Premore 2001,
Hao and Koppol 2003).

However, these approaches suffer from exactly those
scalability problems previously described. Typical imple-
mentations of the BGP protocol require storing not only
one routing table, but a complete Routing Information Base
(RIB), i.e. a full routing table, for each one of its peers
(neighbors) to keep track of routes learned from each one.
In fact, it generally requires a second RIB per peer to keep



Nicol, Liljenstam, and Liu
track of routes being advertised to that same neighbor. Con-
sequently, the storage requirements grow approximately as
O(n ·p · r), where n is the number of BGP routers, p is the
average number of peers and r is the number of prefixes
in the routing tables. A simulation of the Internet core in-
corporating thousands of routers, with perhaps ten or more
neighbors on average, and with full routing tables, requires
storing on the order of 1, 000 · 10 · 160, 000 = O(109)

routes.
Having a single global memory space for a simulation

can be exploited in the implementation to reduce the mem-
ory usage. Hao and Koppol (2003) describe modifications
to a BGP model, using a global RIB (for all routers in the
network) with pointers to shared instances of route repre-
sentations to remove redundancies in storage of AS path
information. In simulations of large AS topology graphs,
with a single BGP router representing an AS, they report
reducing memory usage by up to ≈ 75% (in converged
state) for synthetic topologies of 16,000 ASes.

3.3 Simulation Accuracy: Dimensions

All abstractions, and thus all simulation models, involve
some amount of approximations. Several studies have ex-
plored algorithmic techniques to reduce the cost of routing
in simulations, generally based on some form of approxi-
mation. We can consider fidelity along a few dimensions:

Fidelity of paths: or what we might call the routing
semantics. To what extent do the paths produced in
the simulation correspond to paths in reality? For
instance: i) completely accurate paths incorporat-
ing BGP policy decisions at the inter-domain and
shortest paths at intra-domain level, ii) only short-
est paths, or iii) approximations of shortest paths.
Note that to achieve completely accurate paths it
is necessary to not only have accurate models of
the routing system, but also of the policies, i.e.,
the link weights and BGP configuration policies.
This information is not generally known, although
some efforts have been made to infer it (Mahajan
et al. 2002, Gao 2001, Subramanian et al. 2002).

Dynamics: does the model include the convergence
behavior of the protocol? That is, does it model
when the routes become available (or the existence
of transient routes) as well as the resulting stable
routes?

Forwarding mechanism fidelity: some models modify
the forwarding mechanism used in order to achieve
efficiency gains.
15
3.4 Reducing the Cost of Shortest Path Routes

Several studies have, in particular, started from the assump-
tion of shortest path routes (used exclusively) and considered
ways of making this more efficient. If we can assume that:
i) the topology does not change (e.g., no device or link
failures) and ii) the routing dynamics are not of interest
or have negligible effect, then we may compute equivalent
routes through other mechanisms than the exact protocols
used in reality. For instance, using global topology knowl-
edge it is straightforward to implement a centralized shortest
path algorithm without exchange of routing state packets
in the model, which can save considerable simulation time.
However, the routing storage space requirements remain
high. A flat routing scheme requires O(N2) storage for
shortest path routes between all pairs of nodes. Hierarchical
schemes can reduce this, depending on the topology and
the number of levels of hierarchy.

Substantial savings can be obtained by recognizing that
in most scenarios only a small fraction of all the possible
routes that get computed actually get used by traffic. In other
words, concurrent all-to-all communication does not occur
in the Internet. (Certain kinds of malware propagation result
in widespread broadcasts of traffic, but will still be limited
by the software configurations that are not vulnerable to a
given attack.) Riley, Ammar, and Fujimoto (2000) made this
observation and proposed computing routes on-demand to
save routing storage space. In their Neighbor-Index vector
(NIx-vector) routing scheme, they compute shortest path
routes when they are needed and generate a source route
consisting of neighbor indexes (essentially pointers to the
next outgoing interface), thereby avoiding forwarding table
lookup costs. The source routes are cached at the source
nodes for reuse. With N nodes, k pairs communicating,
and an average node outdegree of d, the routing storage
requirements grows as O(kN log d). Hence, as long as k

is small (k � N ) and d � N we can get large savings.
However, in the worst case, i.e., for all-to-all communication,
it results in O(N2) storage, just as for full flat routing storage.
Implementing this scheme in the ns-2 simulator, they report
memory savings up to ≈ 90% on random “Transit-Stub”
network topologies generated by GT-ITM (Zegura et al.
1996).

If we allow ourselves to use approximations of shortest
path routes, other approaches are possible as well. Huang
and Heidemann (2001) devised a scheme (algorithmic rout-
ing) using a k-ary spanning tree, where route lookups are
made through a tree walk, to achieve O(N) storage for ap-
proximate shortest path routes. Briefly, the network topol-
ogy is mapped to a k-ary tree through a Breadth First
Search (BFS) traversal, during which the node addresses
are mapped to addresses giving their position in the tree.
This address mapping is the only storage required by the
algorithm and what gives it the O(N) space complexity.
7



Nicol, Liljenstam, and Liu
root

0

(A−1)/k

A

kA+1 kA+2

1 2 3

4

13 14

Figure 1: Example of k-ary tree for next hop computation.

One can then compute the next hop in the tree based only
on the new addresses of the current node and the destination
in O(logk N) time. Figure 1 illustrates a tertiary (3-ary)
tree. From an arbitrary node A, any destination node B

is reached through next hops (A − 1)/k (up towards the
root), kA+1 (down left), kA+2 (down middle), or kA+3
(down right). Starting from B, iteratively compute its par-
ent as (b − 1)/k, with initially b = B, moving towards
the root. If passing one of A’s children before reaching
the root, this is the next hop. Otherwise route towards the
root. Hence, each next hop is computed by traversing the
tree. Using random network topologies of up to 500 nodes
generated by GT-ITM, they report significant savings in
overall memory and simulation time in experiments, with
path length inflation errors below 10% for more than 80% of
the routes. However, the approximation occasionally leads
to significant errors.

By storing multiple spanning trees for a topology and
combining it with a negative cache for “exception routes”,
Chen et al. (2004) are able to avoid approximation errors
while still making large savings compared to O(N2) storage.
They use a heuristic based on regression modeling from
experimental results to determine the appropriate number
of trees resulting in a good balance between tree storage
and negative cache size. Using their ModelNet network
emulator, they report routing memory savings of up to 90%
for power-law network topologies generated by the BRITE
generator’s B-A algorithm implementation (Medina et al.
2001). They use pre-computed source routes to eliminate
forwarding table lookup costs and, to also keep route lookup
cost low they added a positive route cache which reduced
the memory savings somewhat. The flat routing structure
and use of source routes and caches thus resembles some
aspects of the implementation of the NIx-vector scheme.
15
3.5 Dealing with Inter-domain Routing Policies

As already described, using shortest path routes exclusively
in a model is an approximation of the two level hierarchical
routing system used in the Internet. Several Internet mea-
surement studies have studied the impact of policy based
routing in terms of the path inflation it causes, i.e. essen-
tially the sub-optimality in path length compared to shortest
hop-count routes (Tangmunarunkit et al. 2001, Spring et al.
2003) at the router adjacency level. They report that path
inflation due to inter-domain policies is significant, inflating
some 20% of the routes by 50% or more. A more complex
question is what the ultimate impact might be on the output
of a simulation from routing approximation, i.e. how do
path inaccuracies translate into errors in the output. For
instance, an unrealistic route leading to deviations in the
load on certain bottleneck links might be a greater concern
than differences in the length of the paths chosen. However,
this will depend on the particular scenario and since it is
difficult to predict the result of this type of deviations it is
desirable to avoid them.

BGP theory: Computing BGP (policy based) routes
is significantly more costly and a fundamentally different
problem from computing shortest path routes. The compu-
tation performed by a collection of BGP speaking routers is
fundamentally different because i) path ranking is not based
on any universal cost function and ii) policies may reject
paths (including the shortest path) (Griffin et al. 2002).
Instead, Griffin, Shepherd, and Wilfong (2002) model the
computation performed in BGP through what they call the
“Stable Paths Problem”. Varadhan, Govindan, and Estrin
(1996) showed that there exists combinations of policies
that can cause BGP to diverge, i.e. cause persistent route os-
cillations. Griffin, Shepherd, and Wilfong (2002) provided
conditions under which policy configurations are guaranteed
to converge, but also showed that determining whether a
given policy configuration will converge is an NP-complete
problem.

Consequently, if we try to compute routes on-demand,
for instance, divergence of the routing system would lead
to non-termination of the on-demand route computation
algorithm; clearly an unacceptable situation. However, Gao
and Rexford (2001) created a set of guidelines for the choice
of route preferences in BGP policies and showed that if these
guidelines are followed, convergence of the BGP routing
system will be guaranteed. They argued that their guidelines
conform to preferred policies from an economic perspective,
and conjectured that most network operators thus follow the
guidelines and this might be why there have not been any
major instability events observed in the Internet. A later
measurement study (Wang and Gao 2003) found support
for this conjecture by inferring policies from collected BGP
routing data.
8



Nicol, Liljenstam, and Liu
Simulation: Liljenstam and Nicol (2004) proposed
constraining the permitted policy configurations accord-
ing to Gao and Rexford’s guidelines and exploit the re-
sulting properties for efficient on-demand computation of
BGP consistent routes in simulations. Specifically, by us-
ing properties resulting from the guidelines it is possible
to compute the final converged BGP routes (on-demand)
without emulating the whole BGP convergence process.
We briefly describe their Policy-Aware On-demand Routing
(PAO-routing) scheme, which has been implemented in the
SSFNet (SSFNet 2000) and RINSE (iSSFNet) (Liljenstam
et al. 2005) network simulators.

As described in Section 3.1, customer/provider and
peer/peer are typical peering relationships between ASes
exchanging traffic. The simplest version of Gao and Rex-
ford’s guidelines, Guideline A, states that an AS must always
prefer to route traffic directly to its customer ASes before
its peers or providers. Consider the Directed Acyclic Graph
(DAG) formed by connecting customer ASes with directed
edges to their providers, as in Figure 2. Starting from a
destination customer AS, a in the figure; if route selections
are done in one AS at a time in an order that obeys the par-
tial order of the DAG, it can be guaranteed that the chosen
routes are stable and the choice not need to be changed. In
the example graph this means traversing ASes a, c, d. Once
the top-level provider(s) have been reached, this is the end
of phase 1 (outline in the figure). In phase 2, Peer/peer rela-
tionships (undirected edges) and provider/customer directed
edges are traversed from provider to customer (backwards),
so that the routing information will reach all ASes. The
second phase makes use of the same partial order, but in
the opposite direction. Peer/peer relationships have certain
properties related to their traffic restrictions (Section 3.1)
that make it possible to incorporate them in the scheme
although they contribute undirected edges.

AS a
AS b

AS c

AS d AS e

AS f

peer

phase 2

phase 1

customer

peer

provider

Figure 2: Example of AS relationship DAG.

The PAO-Routing algorithm exploits the partial ordering
to choose stable routes immediately, thus avoiding emulating
BGP convergence. However, there are many additional
details that are outside the scope of this paper. In addition
to traversing the ASes, the algorithm must compute intra-
15
domain routes on the fly as routing information is propagated
through the graph, and the internal exchange of BGP routes
inside ASes must be handled. Intra-domain routes are
computed using Dijkstra traversals of each AS graph from
the origin (destination) device or from each BGP router
(entry point) where external BGP routes enter the AS. Thus,
the internal routing distances can be computed as the BGP
routing information is propagated through the graph.

The algorithm was validated by comparing the routes it
produced with routes produced by SSFNet’s detailed BGP
model in AS topologies sampled from a model of the real AS
topology build from BGP routing data (University of Oregon
Route View Project 2004). Order of magnitude reductions
on memory and simultaneous gains in simulation time were
reported in experiments using sampled AS topologies and
a model of the U.S. Internet backbone (Liljenstam et al.
2003). As with other on-demand routing schemes the savings
depend on the traffic pattern (preferably significantly sparser
than all-to-all), and route caching techniques need to be
employed to avoid redundant recomputations.

3.6 Some Remaining Issues

Several of these techniques were based on the assumption
that the network topology is constant, i.e. there are no events
such as device or link failures that alter the connectivity
in the network during the simulation. This assumption can
be relaxed somewhat. Riley, Ammar, and Fujimoto (2000)
describe the possibility of using topology version numbers
in the NIx-vector scheme to keep track of which topology
a cached route was referring to. As topology changes take
place the topology version is updated and routes that are
found to be outdated need to be recomputed. However,
this essentially amounts to starting over with a clean slate
whenever a change occurs. If a link or device goes down it
is not difficult to determine which source routes make use
of the affected device and should thus be invalidated and
recomputed. On the other hand, if a previously “down”
device (or link) comes back up it is very hard to determine
which routes should be recomputed. Essentially, it requires
determining which routes should use a new more preferred
path. The PAO-routing mechanism in iSSFNet operates
accordingly. It selectively invalidates cached route entries
when devices go down, but invalidates all routes when a
device comes back up. Finding a more efficient way of
dealing with topology changes appears non-trivial and is an
open problem.

A related problem concerns accounting for routing dy-
namics in models that compute routes without simulating
the complete operations of the routing protocols. There will
be a delay from a topology change event until the routing
protocols can converge on new routes. In the meantime
traffic may be lost as it is forwarded along the old path.
If it is possible to estimate the convergence time of the
9



Nicol, Liljenstam, and Liu
protocol it could be useful in modeling the time until new
paths become available and the effects it has on the traf-
fic. However, efficient methods for coming up with such
estimates is currently also an open problem.

4 NETWORK EMULATION AND REAL-TIME
SIMULATION

Simulation provides a convenient test bench for future and
existing network protocols and services. However, several
important issues must be addressed properly for large-scale
network simulation to become an easily adopted tool for
network researchers. The first and foremost issue is to
contain the complexity of the simulation models. Although
this problem is partially solved by most network simulators
nowadays offering software modules that implement various
common network protocols and services, it is nonetheless a
daunting task when it comes to implementing new network
protocol or modifying an existing model. Creating a net-
work model that can deal with subtle treatment of protocol
specifications and provide a proper mix of various imple-
mentations as in the real world (e.g., different TCP versions)
is a non-trivial issue, letting alone that an implementation of
an advanced network protocol (such as the Border Gateway
Protocol) is typically quite an involved process itself. The
complexity of the models further aggravates the concern of
validity of those used in simulation. Validation of large-
scale network simulation models tends to be an elusive
undertaking—there are many model parameters and design
nuances that could potentially spoil the final simulation
outcome. Another important issue is the inspection of the
simulation result. As large network models generate large
amount of state information, it is extremely important to
allow the modelers to efficiently plough through the data and
filter out information necessary to make prompt decisions
on further simulation investigations.

Emulation and real-time simulation (with distinctions
described below) offer a solution. The major difference be-
tween network simulation and emulationis that the former
is purely virtual, whereas the latter focuses on real-time
interactions with real applications. A network simulation
contains only software modules representing various net-
work entities (routers, links, protocols, etc.). Network oper-
ations, such as packet forwarding, are logical operations, as
opposed to physically moving network packets from router
to router. More important, the time advancement in sim-
ulation bears no direct relationship to the wall-clock time.
Network emulation or real-time simulation, on the other
hand, focuses on interactions with real applications, such as
distributed network services, web servers and web clients,
and distributed database systems. These real applications,
for example, can generate real traffic on the virtual network,
where packet delays and losses are calculated as a function
of the simulated network condition. Because the virtual
16
network interfaces with real applications that operate in
real time, the network emulation and real-time simulation
must execute in real time.

Network emulation and real-time simulation provide a
certain degree of realism because a subsection of the system
involves real code, which in part lifts the concern about the
validity of simulation. In addition, as the system progresses
in real time, the modelers are given the opportunity to interact
with the network model on-line, by observing the system
state, tuning the model parameters, and further readjusting
the system from feedbacks—all in real time. This interactive
process is of important value to both network researchers
and network operators, who, for instance, want to study
the network responses to cascading network events such as
the effect of Internet worm propagation and the strength of
security counter measures.

4.1 Current State

Over the years, we have seen many network emulators with
varying degrees of complexity, ranging from single-link traf-
fic modulators to full-scale network emulation testbeds (Ahn
et al. 1995, Carson and Santay 2003, Davies et al. 1995,
Herrscher and Rothermel 2002, Huang et al. 1999, Peterson
et al. 2002, Raychaudhuri et al. 2005, Rizzo 1997, Vahdat
et al. 2002, White et al. 2002, Zheng and Ni 2003). In
general, the network emulators can be divided into three
categories: link-centric, node-centric, and network-centric,
although the borderline between them is not a clear-cut.
The link-centric network emulators are traffic modulators
particularly designed for a single communication link or
a small set of links. For example, in dummynet (Rizzo
1997), a link is represented as a finite queue that imposes
bandwidth limitations and communication delays. Packets
are intercepted at the protocol stack of the target host and
pushed through the finite queue to simulate desired link
state—packets may be reordered and dropped at random
to model the unreliability of the target link. Node-centric
network emulation focuses on kernel virtualization. For
example, ENTRAPID (Huang et al. 1999) provides a pro-
tocol development environment, in which a “virtualized”
networking kernel (including all essential networking ser-
vices of a BSD Unix kernel) is implemented in the user
space. In essence, ENTRAPID is a “network in a box”:
protocols are implemented in the user space interacting
with the standard network services for communication. In
a similar vein, Netbed (White et al. 2002), which is a de-
scendent of Emulab, provides an integrated environment for
network experimentation with necessary support for coor-
dinating and dedicating heterogeneous resources (including
both computers and network resources) to individual users
for distributed experiments. This kernel virtualization idea
is further extended in PlanetLab (Peterson et al. 2002), in
which a distributed resource management scheme is applied
0



Nicol, Liljenstam, and Liu
to select a set of distributed nodes (called a slice) that form
a global overlay network for each distributed application.
In addition, a resource control mechanism on each node en-
sures the application can receive the promised computation,
communication, and storage resources in a multiplexed oper-
ating environment. Using a similar idea for wireless mobile
networks, ORBIT (Raychaudhuri et al. 2005) provides a
software infrastructure to support experimental research on
an array of physical radios, deployed either as an indoor
radio grid or an outdoor field network. Network-centric
emulation focuses on the virtualization of the network. For
example, ModelNet (Vahdat et al. 2002) is an extension of
the dummynet that targets scalable emulation of a large-scale
network. Unmodified network applications are multiplexed
and mapped to physical edge nodes, which are connected
to the core nodes that emulate network operations.

Most of these network-centric emulators are time-
driven, which we simply refer to in this paper as network
emulation, as opposed to real-time simulation we describe
below. For example, ModelNet stores the network packets
in “pipes”—the packets move through the pipes representing
the network paths taken by the packets to travel from the
source of the transmission to the destination. These pipes
are sorted in the system according to the scheduled delivery
time of the earliest packets. The scheduler is invoked period-
ically (once every 100 µs) to emulate the packets passing
through the network. Some of these emulators, such as
ModelNet (Vahdat et al. 2002) and EMPOWER (Zheng
and Ni 2003), even support scalable emulation on parallel
computer platforms.

There are three main drawbacks associated with the
time-driven approach. First, the accuracy of the network
emulation depends on the time granularity of the sched-
uler. The scheduler, which must be executed periodically to
model network operations, is limited by the resolution (or
time quantum) of system interrupts, which in turn depends
on the target machine and the operating system. Second,
network emulation cannot be extended easily to model be-
haviors of low-layer protocols, such as MPLS on ATM. All
network emulators we encounter treat the IP packet from
real applications as an indivisible transmission unit. The
time-driven approach does not provide sufficient support
for the fine-grained time advancement necessary to model
the lower protocol layers. Last, to our knowledge, so far
there has not been a good model for background traffic in
network emulation. Background traffic has a strong effect
on the global network behavior and plays an important role
in determining the end-to-end behavior of the (foreground)
applications. The lack of a good background traffic model
can severely impair the accuracy of a network model.

Real-time network simulation, or simulation-based em-
ulation, which we define as an event-driven network-centric
emulation, offers both the flexibility of running detailed
network models and the capability of interfacing with real
161
applications. This technique enables us to study both ap-
plication and network behaviors with more realism. In the
same framework, one can both study the performance of net-
work applications, such as a high-performance middleware
that interconnects distributed applications, under control-
lable and repeatable networking conditions, and evaluate
the characteristics of network protocols and services under
realistic application traffic patterns. Existing real-time net-
work simulators include NSE (Fall 1999), IP-TNE (Bradford
et al. 2000, Simmonds and Unger 2003), MaSSF (Liu et al.
2003), and Maya (Zhou et al. 2004). NSE is an emulation
extension of the popular ns-2 simulator (Breslau et al. 2000)
with added support for connecting with real applications
and scheduling real-time events. IP-TNE is an emulation
extension of a parallel network simulator called IP-TN.
IP-TNE is the first simulator we know that applies parallel
discrete-event simulation techniques for large-scale network
emulations. MaSSF is built on DaSSF (Liu and Nicol 2002)
with emulation support for the grid computing environment.
Maya is an emulation extension of the commercial QualNet
simulator for wireless mobile networks (Scalable Network
Technologies 2000).

Both network emulation and real-time simulation need
to resolve two important and related issues: responsiveness
and timeliness. Responsiveness dictates that the emulation
system must be able to interact with real applications in
time. That is, the system interface should be able to receive
real-time events promptly and output them according to
the real-time deadlines. Timeliness refers to the system’s
ability to keep up with the wall-clock time. That is, the
simulation must be able to characterize the behavior of the
large-scale network, potentially with millions of network
entities and with representative network traffic, in real time.
Failing to do so will introduce timing faults, where the
simulation fails to process events before designated dead-
lines. An elevated occurrence of timing faults will cause
the simulator to become less responsive when interacting
with real applications. In the remainder of this section we
briefly describe techniques developed to factor out these
issues.

There are several ways to incorporate real applications
into the emulation environment, the decision of which to
use largely depends on where the interactions take place.
Several techniques can be applied to run unmodified soft-
ware, including kernel virtualization (Huang et al. 1999),
packet capturing (Bradford et al. 2001), dynamic linking
library (Liu et al. 2003), and binary executable modi-
fication (Varadarajan 2004). In certain cases, moderate
software modifications are necessary to allow direct exe-
cution. For example, Nsclick directly executes the Click
Modular Router inside the ns-2 network simulator (Neufeld
et al. 2002). Dimitropoulos and Riley (2003) incorporate
a public-domain implementation of BGP from the routing
software called Zebra into simulation. Liu et al. (2004)



Nicol, Liljenstam, and Liu
manage to run several routing algorithms inside a parallel
wireless network simulator called SWAN.

The performance of a large-scale network simulation
must be able to keep up with the wall-clock time so that the
system can interact with real applications in real time. To
this end, two techniques have been exploited: parallel and
distributed simulation (Liljenstam et al. 2005, Simmonds
and Unger 2003, Zhou et al. 2004) and multi-resolution
modeling (Kiddle et al. 2003, Nicol et al. 2003, Zhou
et al. 2004). Simmonds and Unger (2003) apply parallel
discrete event simulation to emulation and they observe that
only the components interacting with real applications are
subject to real-time constraints and the rest of the system
does not have to run as fast. The observation is important
as it leads to better synchronization algorithms that can take
advantage of the inherent asynchrony in the system. Our
RINSE simulator (Liljenstam et al. 2005) extends this idea
by enacting a priority-based scheduling policy to distinguish
between real-time and regular event processing in the parallel
simulation kernel. The multi-resolution modeling technique
can also be used to achieve real-time performance and is
described in more detail in section 2.

4.2 RINSE: A Real-Time Simulator for Network
Security Exercises

RINSE stands for Real-time Immersive Network Simulation
Environment and is being developed for large-scale network
security exercises and training purposes (Liljenstam et al.
2005). The idea behind RINSE is to have a virtual common
network playground for assessing community preparedness
and training against network failures and malicious attacks.
Participating organizations, which most likely are geograph-
ically distributed, monitor and control portions of the virtual
network. They can deploy security defense measures against
simulated network anomalies, such as a distributed denial
of service attack. This application highlights the need for
a scalable real-time simulation of large-scale networks: the
players participating in the security exercise and training
must be provided with a live feed of the network state, while
decisions must be made in real time to alter operations (such
as activating specific packet filters on routers) in the virtual
network.

In many aspects, RINSE epitomizes the state of real-
time network simulations. RINSE is built on a parallel
discrete-event simulation kernel, which is a C++ imple-
mentation of the Scalable Simulation Framework (Liu and
Nicol 2002). The parallel simulation kernel handles syn-
chronization and communication between instances of the
simulator running on a parallel and distributed environ-
ment. To enable interaction with real applications running
at the client sites (one for each participating organization
of the exercise), the simulation kernel is augmented to in-
clude real-time simulation support. In SSF, inChannel
162
and outChannel objects are defined as communication
end-points between entities: inChannel is used to receive
timestamped events from other entities, whileoutChannel
is used to send events to other entities. We extend the con-
cept to allow the simulator to send and receive events from
external physical devices. Packets are intercepted from a
real network application running at the client site (using
packet filters (McCanne and Jacobson 1993)) and sent to
the machine running the simulator. A reader thread converts
the packets to simulation events and injects them into the
simulator’s event-list using a well-defined function for the
inChannel object. When a network packet needs to be
exported to a real network application at the client, the
simulator hands the corresponding simulation event to the
outChannel object, which is responsible for converting
the event to a network packet and sending the packet back
to the client site upon a designated real-time deadline. The
real-time deadline is calculated from the virtual time of the
event and the emulation throttling speed, used for regulating
simulation execution speed with respect to the wall-clock
time. A writer thread is designated to deliver the packet
upon the deadline.

Inside the parallel simulation kernel, we use a priority-
based scheduling algorithm to process events—events with
real-time constraints (those that are imported from or about
to be exported to external physical devices) are given higher
priority over regular simulation events. Whenever a real-time
event is scheduled for execution, the scheduling algorithm
for logical processes interrupts the normal event processing
and makes a context switch to load the logical process
containing the real-time event and execute it.

Since real applications are running at the client side,
which are most likely distributed geographically, the network
latencies from the physical connections between the real
applications and the simulator must be properly accounted
for, especially for those applications (such as the ping
command) that are sensitive to such latencies—the latencies
may contribute a significant portion of the total round-trip
delay. Our solution is to hide the latencies inside the network
model. In simulation, delays are imposed upon simulated
network packets moving from one router to another along
the forwarding path. We modify the queuing behavior at
the link layer to compensate for the latencies by shortening
the packet’s expected queuing delay. If the latency cannot
be absorbed completely at the source router, the packet
continues to carry the remainder of the latency as a deficit
and tries to offset it at the next hop. The process continues
until either the deficit is reduced to zero or the packet reaches
its destination. Note that this scheme is an approximation,
because we do not roll back an erroneous execution (caused
by the simulator’s sending a packet before the packet with
a deficit arrives) if the deficit cannot be compensated at the
first hop. The method, however, plays an important role
for those latency-sensitive applications that require real-



Nicol, Liljenstam, and Liu
time interaction with the simulator. Future work is needed
to quantify the effect of such inaccuracies to the overall
simulation result.

We conclude this section by reflecting on a couple
of future directions for network emulation and real-time
simulation research. The ability of successfully schedul-
ing real-time tasks hinges upon the quality of the work-
load prediction of various models in simulation, particularly
those running on parallel platforms. This direction requires
closer inspection of the models, which may include both
packet-level and fluid traffic representations, as well as the
fix-point calculations of network background traffic. An-
other research direction is to make the system more robust
and more resilient in terms of keeping up with the real
time. One idea is to dynamically change the mixture of
modeling abstraction levels to avoid timing faults during
transient system overloads or computing resource shortfalls.
The ultimate goal of an emulation system like RINSE is to
provide an immersive network simulation testbed that cap-
tures important characteristics of the global network and
provides seamless interaction with distributed real network
applications.

5 SUMMARY

This tutorial paper highlights three problem areas of current
research interest in large-scale network simulation. We
discussed approaches to abstracting network traffic, with
attendant problems and solutions. We showed why routing
simulations have scaling problems, and discussed some ways
of alleviating the memory burden they impose. Finally, we
discuss problems in integrating simulated components with
real components. In all these areas we point out directions
for future research.

ACKNOWLEDGMENTS

This resesarch was supported underAward number 2000-DT-
CX-K001 from the U.S. Department of Homeland Security,
Science and Technology Directorate. Points of view in this
document are those of the author(s) and do not necessarily
represent the official position of the U.S. Department of
Homeland Security or the Science and Technology Direc-
torate. In addition this research was supported by SPAWAR
contract N66001-04-C-6013. Accordingly, the U.S. Govern-
ment retains a non-exclusive, royalty-free license to publish
or reproduce the published form of this contribution, or
allow others to do so, for U.S. Government purposes.

REFERENCES

Ahn, J. S., P. B. Danzip, Z. Liu, and L. Yan. 1995, August.
Evaluation of TCP Vegas: emulation and experiment. In
163
Proceedings of the 1995 ACM SIGCOMM Conference,
185–195.

Bradford, R., R. Simmonds, and B. Unger. 2000, August. A
parallel discrete event IP network emulator. In Proceed-
ings of the 8th International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommu-
nication Systems (MASCOTS’00), 315–322.

Bradford, R., R. Simmonds, and B. Unger. 2001. Packet
reading for network emulation. In Proceedings of the
9th International Symposium in Modeling, Analysis
and Simulation of Computer and Telecommunication
Systems (MASCOTS’01), 150–157.

Breslau, L., D. Estrin, K. Fall, S. Floyd, J. Heidemann,
A. Helmy, P. Huang, S. McCanne, K. Varadhan, Y. Xu,
and H.Yu. 2000. Advances in network simulation. IEEE
Computer 33 (5): 59–67.

Bu, T., and D. Towsley. 2001, June. Fixed point approx-
imations for TCP behavior in an AQM network. In
Proceedings of ACM SIGMETRICS 2001. Cambridge,
Massachusetts.

Carson, M., and D. Santay. 2003. NIST Net: a Linux-
based network emulation tool. SIGCOMM Computer
Communication Review 33 (3): 111–126.

Chen, J., D. Gupta, K. Vishwanath, A. Snoeren, and A. Vah-
dat. 2004. Routing in an Internet-scale network emu-
lator. In Symposium on Modeling, Analysis and Sim-
ulation of Computer and Telecommunication Systems
(MASCOTS).

Davies, N., G. S. Blair, K. Cheverst, and A. Friday. 1995. A
network emulator to support the development of adap-
tive applications. In Proceedings of the 2nd USENIX
Symposium on Mobile and Location Independent Com-
puting, 47–55.

Dimitropoulos, X., and G. Riley. 2003. Creating realistic
BGP models. In Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication
Systems (MASCOTS).

Fall, K. 1999, July. Network emulation in the Vint/NS
simulator. In 4th IEEE Symposium on Computers and
Communications (ISCC’99), 244–250.

Gao, L. 2001, Dec. On inferring automonous system rela-
tionships in the Internet. IEEE/ACM Transactions on
Networking 9 (6): 733–745.

Gao, L., and J. Rexford. 2001, Dec. Stable Internet routing
without global coordination. IEEE/ACM Transactions
on Networking 9 (6): 681–692.

Griffin, T., and B. Premore. 2001, November. An experi-
mental analysis of bgp convergence time. In 9th Inter-
national Conference on Network Protocols (ICNP).

Griffin, T., B. Shepherd, and G. Wilfong. 2002. The Stable
Paths Problem and Interdomain Routing. IEEE/ACM
Transactions on Networking 10 (2): 232–243.



Nicol, Liljenstam, and Liu
Hao, F., and P. Koppol. 2003. An Internet scale simulation
setup for BGP. Computer Communication Review 33
(3): 43–58.

Herrscher, D., and K. Rothermel. 2002, October. A dynamic
network scenario emulation tool. In Proceedings of the
11th International Conference on Computer Commu-
nications and Networks (ICCCN’02), 262–267.

Huang, P., and J. Heidemann. 2001. Minimizing Routing
State for Light-weight Network Simulation. 9th Inter-
national Symposium on Modeling, Analysis and Sim-
ulation on Computer and Telecommunication Systems
(MASCOTS), 108–116.

Huang, X. W., R. Sharma, and S. Keshav. 1999. The EN-
TRAPID protocol development environment. In Pro-
ceedings of the IEEE INFOCOM 1999, 1107–1115.

Huitema, C. 2000. Routing in the internet, 2nd ed. Prentice
Hall.

Kesidis, G., A. Singh, D. Cheung, and W. W. Kwok. 1996,
November. Feasibility of fluid-driven simulation for
atm network. In Proceedings of IEEE Globecom’96.
London, GB.

Kiddle, C., R. Simmonds, C. Williamson, and B. Unger.
2003. Hybrid packet/fluid flow network simulation. In
Proceedings of the 17th Workshop on Parallel and
Distributed Simulation (PADS’03), 143–152.

Liljenstam, M., J. Liu, and D. Nicol. 2003. Development of
an Internet Backbone Topology for Large-Scale Net-
work Simulations. 2003 Winter Simulation Conference,
ed. Smith, Peters, White, Wilson, 694–702. New Or-
leans, LA.

Liljenstam, M., J. Liu, D. Nicol, Y. Yuan, G. Yan, and
C. Grier. 2005. Rinse: the real-time immersive network
simulation environment for network security exercises.
In Proceedings of the 19th ACM/IEEE/SCS Workshop
on Principles of Advanced and Distributed Simulation
(PADS).

Liljenstam, M., and D. Nicol. 2004. On-demand compu-
tation of policy based routes for large-scale network
simulation. In Proceedings of the 2004 Winter Simula-
tion Conference, ed. R. G. Ingalls, M. D. Rossetti, J.
S. Smith, and B. A. Peters, 215–223. Piscataway, New
Jersey: Institute of Electrical and Electronics Engineers.

Liu, B., D. R. Figueiredo, Y. Guo, J. Kurose, and D. Towsley.
2001. A study of networks simulation efficiency: Fluid
simulation vs. packet-level simulation. In Proceedings
of IEEE Infocom’01. Anchorage, Alaska.

Liu, B., Y. Guo, J. Kurose, D. Towsley, and W. Gong. 1999.
Fluid simulation of large scale networks: Issues and
tradeoffs. In Proceedings of the International Confer-
ence on Parallel and Distributed Processing Techniques
and Applications. Las Vegas, Nevada.

Liu, J., and D. M. Nicol. 2002. Dartmouth Scalable Simu-
lation Framework (DaSSF). <http://alamode.-
164
mines.edu/˜xliu/projects/dassf/-
index.html>.

Liu, J., Y. Yuan, D. M. Nicol, R. S. Gray, C. C. Newport,
D. F. Kotz, and L. F. Perrone. 2004. Simulation valida-
tion using direct execution of wireless ad-hoc routing
protocols. In Proceedings of the 18th Workshop on
Parallel and Distributed Simulation (PADS’04), 7–16.

Liu, X., H. Xia, and A. Chien. 2003. Network emulation
tools for modeling grid behavior. In 3rd IEEE/ACM
International Symposium on Cluster Computing and
the Grid (CCGrid’03).

Liu, Y., F. L. Presti, V. Misra, D. Towsley, and Y. Gu.
2004. Scalable fluid models and simulations for large-
scale ip networks. ACM Transactions on Modeling and
Computer Simulation 14 (3): 305–324.

Mahajan, R., N. Spring, D.Wetherall, and T.Anderson. 2002.
Inferring link weights using end-to-end measurements.
In IMW ’02: Proceedings of the 2nd ACM SIGCOMM
Workshop on Internet measurment, 231–236. NewYork,
NY: ACM Press.

McCanne, S., and V. Jacobson. 1993. The BSD packet
filter: a new architecture for user-level packet capture.
In Proceedings of the 1993 Winter USENIX Conference,
259–269.

Medina, A., A. Lakhina, I. Matta, and J. Byers. 2001.
Brite: An approach to univeral topology generation.
9th International Symposium on Modeling, Analysis
and Simulation on Computer and Telecommunication
Systems (MASCOTS).

Neufeld, M., A. Jain, and D. Grunwald. 2002. Nsclick:
bridging network simulation and deployment. In Pro-
ceedings of the 5th ACM International Workshop on
Modeling Analysis and Simulation of Wireless and Mo-
bile Systems (MSWiM’02), 74–81.

Nicol, D., M. Goldsby, and M. Johnson. 1999. Fluid-based
simulation of communication networks using SSF. In
Proceedings of the 1999 European Simulation Sympo-
sium. Erlangen, Germany.

Nicol, D. M., J. Liu, M. Liljenstam, and G. Yan. 2003.
Simulation of large-scale networks using SSF. In Pro-
ceedings of the 2003 Winter Simulation Conference,
ed. S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Mor-
rice, 650–657. Piscataway, New Jersey: Institute of
Electrical and Electronics Engineers.

Nicol, D., and G.Yan. 2004. Discrete event fluid modeling of
background TCP traffic. ACM Transactions on Modeling
and Computer Simulation 14:1–39.

Nicol, D., and G. Yan. 2005. Simulation of network traf-
fic at coarse time-scales. In Proceedings of the 19th
ACM/IEEE/SCS Workshop on Principles of Advanced
and Distributed Simulation (PADS), 141–150.

Padhye, J., V. Firoiu, D. Towsley, and J. Kurose. 1998. Mod-
eling TCP throughput: A simple model and its empiri-



Nicol, Liljenstam, and Liu
cal validation. In Proceedings of ACM SIGCOMM’98.
Vancouver, CA.

Peterson, L., T. Anderson, D. Culler, and T. Roscoe. 2002.
A blueprint for introducing disruptive technology into
the Internet. In Proceedings of the 1st Workshop on Hot
Topics in Networking (HotNets-I).

Raychaudhuri, D., I. Seskar, M. Ott, S. Ganu, K. Ramachan-
dran, H. Kremo, R. Siracusa, H. Liu, and M. Singh.
2005. Overview of the ORBIT radio grid testbed for
evaluation of next-generation wireless network proto-
cols. In Proceedings of the IEEE Wireless Communi-
cations and Networking Conference (WCNC 2005).

Riley, G., M. Ammar, and R. Fujimoto. 2000. Stateless Rout-
ing in Network Simulations. 8th International Sympo-
sium on Modeling, Analysis and Simulation on Com-
puter and Telecommunication Systems (MASCOTS),
524–531. San Francisco, CA.

Rizzo, L. 1997. Dummynet: a simple approach to the evau-
lation of network protocols. ACM SIGCOMM Computer
Communication Review 27 (1): 31–41.

Scalable Network Technologies 2000.
<http://scalable-networks.com/>.

Simmonds, R., and B. Unger. 2003. Towards scalable net-
work emulation. Computer Communications 26 (3):
264–277.

Spring, N., R. Mahajan, and T. Anderson. 2003. Quantify-
ing the Causes of Path Inflation. Proceedings of ACM
SIGCOMM’03.

SSFNet 2000. Available online at <www.ssfnet.org>
[accessed July 10, 2005].

Stewart, J. 1998. BGP4: Inter-Domain Routing in the In-
ternet. Reading, MA: Addison-Wesley.

Subramanian, L., S. Agarwal, J. Rexford, and R. Katz. 2002.
Characterizing the Internet Hierarchy from Multiple
Vantage Points. IEEE INFOCOM, 618–627.

Tangmunarunkit, H., R. Govindan, S. Shenker, and D. Estrin.
2001. The Impact of Routing Policy on Internet Paths.
IEEE INFOCOM, 736–742.

University of Oregon Route View Project 2004.
<http://www.routeviews.org/>.

Vahdat, A., K. Yocum, K. Walsh, P. Mahadevan, D. Kostic,
J. Chase, and D. Becker. 2002. Scalability and accuracy
in a large scale network emulator. In Proceedings of
the 5th Symposium on Operating Systems Design and
Implementation (OSDI’02).

Varadarajan, S. 2004. The Weaves runtime framework. In
Proceedings of the 18th International Parallel and Dis-
tributed Processing Symposium (IPDPS’04) - Workshop
10, 197b.

Varadhan, K., R. Govindan, and D. Estrin. 1996. Persis-
tent Route Oscillations in Inter-domain Routing. Univ.
of Southern California Information Sciences Institute,
Marina del Rey, CA, ISI Tech. Rep. 96-631.
165
Wang, F., and L. Gao. 2003. Inferring and Characterizing
Interent Routing Policies. ACM SIGCOMM Conference
on Internet Measurement, 15–26.

White, B., J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. 2002.
An integrated experimental environment for distributed
systems and networks. In Proceedings of the 5th Sympo-
sium on Operating Systems Design and Implementation
(OSDI’02), 255–270.

Yan, A., and W. B. Gong. 1998. Time-driven fluid simula-
tion for high-speed networks with flow-based routing.
In Proceedings of the Applied Telecommunications Sym-
posium’98. Boston, MA.

Zegura, E. W., K. Calvert, and S. Bhattacharjee. 1996. How
to model an internetwork. IEEE INFOCOM.

Zheng, P., and L. M. Ni. 2003. EMPOWER: a network emu-
lator for wireline and wireless networks. In Proceedings
of the IEEE INFOCOM 2003, Volume 3, 1933–1942.

Zhou, J., Z. Ji, M. Takai, and R. Bagrodia. 2004. MAYA:
integrating hybrid network modeling to the physical
world. ACM Transactions on Modeling and Computer
Simulation (TOMACS) 14 (2): 149–169.

AUTHOR BIOGRAPHIES

DAVID M. NICOL is Professor of Electrical and Com-
puter Engineering at the University of Illinois, Urbana-
Champaign, and member of the Coordinated Sciences Lab-
oratory. He is co-author of the textbook Discrete-Event
Systems Simulation, and served as Editor-in-Chief at ACM
TOMACS from 1997-2003. He was the General Chair of
the 2005 Conference on Principles of Advanced and Dis-
tributed Simulation, and the General Chair of the 2006
Winter Simulation Conference. From 1996-2003 he served
as the Editor-in-Chief of the ACM Transactions on Modeling
and Computer Simulation. He has a B.A. in mathematics
from Carleton College (1979), an M.S. (1983) and Ph.D.
(1985) in computer science from the University of Virginia.
His research interests are in high performance computing,
performance analysis, simulation and modeling, and net-
work security. He is a Fellow of the IEEE. His e-mail
address is <nicol@crhc.uiuc.edu>.

MICHAEL LILJENSTAM is a Visiting Research Assistant
Professor at the Coordinated Science Laboratory, Univer-
sity of Illinois at Urbana-Champaign. From 2000–2003
he was a Research Associate at the Institute for Secu-
rity Technology Studies and Computer Science Department,
Dartmouth College. He has served on the program com-
mittee for the International Symposium on Modeling Anal-
ysis and Simulation of Computer and Telecommunication
Systems (MASCOTS) and the Conference on Principles
of Advanced and Distributed Simulation (PADS). His re-
search interests include large-scale network simulation, se-



Nicol, Liljenstam, and Liu
curity, routing, and modeling and simulation of wireless
networks. He received his M.Sc. (1993) and Ph.D. (2000)
from the Royal Institute of Technology, Stockholm, Swe-
den. His e-mail address is <mili@crhc.uiuc.edu>
or <michael.liljenstam@acm.org>, and his web
page is <www.crhc.uiuc.edu/˜mili>.

JASON LIU has been Assistant Professor of Computer
Science at the Colorado School of Mines since 2004. Prior
to that he was a post-doctoral student at the Coordinated
Sciences Laboratory, at the University of Illinois, Urbana-
Champaign. His research focuses on parallel discrete-event
simulation, performance modeling and simulation of com-
puter systems and communication networks, and large-scale
simulation of wireless ad hoc networks. He received the
B.A. in Computer Science from Beijing Polytechnic Uni-
versity in China in 1993, M.S. in Computer Science from
College of William and Mary in 2000, and Ph.D. in Com-
puter Science from Dartmouth College in 2003. His e-mail
address is <xliu@mines.edu>.
166


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print



