Proceedings of the 2005 Winter Simulation Conference

M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

FAST RANDOM NUMBER GENERATORS BASED ON LINEAR RECURRENCES MODULO 2:
OVERVIEW AND COMPARISON

Pierre L’Ecuyer
Francois Panneton

Département d’Informatique et de Recherche Opérationnelle
Université de Montréal, C.P. 6128, Succ. Centre-Ville
Montréal, H3C 3J7, CANADA

ABSTRACT

Random number generators based on linear recurrences
modulo 2 are among the fastest long-period generators
currently available. The uniformity and independence of
the points they produce, over their entire period length, can
be measured by theoretical figures of merit that are easy
to compute, and those having good values for these figures
of merit are statistically reliable in general. Some of these
generators can also provide disjoint streams and substreams
efficiently. In this paper, we review the most interesting
construction methods for these generators, examine their
theoretical and empirical properties, and make comparisons.

1 INTRODUCTION

Given that computers work in binary arithmetic, if we want
fast uniform random number generators (RNGs), it seems
natural to define them so that they can be implemented in the
computer by few elementary operations on bit strings, such
as shifts, rotations, exclusive-or’s (xor’s), and bit masks.
Very fast RNGs with huge period length can indeed be con-
structed this way. Among them, we find the Tausworthe or
linear feedback shift register (LFSR), generalized feedback
shift register (GFSR), twisted GFSR (TGFSR), Mersenne
twister, the WELL, and xorshift generators (Tezuka 1995,
L’Ecuyer 1996, Matsumoto and Nishimura 1998, L’Ecuyer
and Panneton 2002, L’Ecuyer 2004b, Panneton, L’Ecuyer,
and Matsumoto 2005, Panneton and L’Ecuyer 2004a, Pan-
neton 2004). They will be described later in the paper. An
important property of all these generators is that they are
special cases of a general class of generators whose state
evolves according to a (matrix) linear recurrence modulo 2
and the bits that form the output are also determined by a
linear transformation modulo 2 applied to the state. Since
doing arithmetic modulo 2 can be interpreted as working
in the finite field [, of cardinality 2, with elements {0, 1},
we shall refer to this general class as F»-linear generators.

110

Several widely-used RNGs of this form are nor sta-
tistically reliable, but some well-designed ones are good,
reliable, and fast. Which ones? What defects do the
others hide? What mathematical tools can be used to
analyze and practically assess their quality from a theo-
retical viewpoint? Is it easy to jump ahead quickly in
their sequence in order to split their period into mul-
tiple streams and substreams? (Such multiple streams
and substreams are now commonly available in the best
simulation software and are very convenient, e.g., to ob-
tain parallel RNGs and to support the implementation
of variance reduction methods; see Law and Kelton 2000,
L’Ecuyer, Simard, Chen, and Kelton 2002.)

These questions are answered in the remainder of this
paper, where we summarize the recent developments (over
the past 10 years or so) in that area. In the next section,
we give a general framework that covers all these [F»-linear
generators. We also provide a simple way to jump ahead
with these generators and explain how different [F,-linear
generators can be combined (via a bitwise xor) to construct
larger (and often better-behaved) [»-linear generators. In
Section 3, we discuss the theoretical measures of uniformity
and independence that are typically used in practice as figures
of merit to assess their quality. These RNGs turn out to
have a lattice structure in spaces of polynomials and formal
series over ;. There are counterparts in those spaces of
the spectral test, and other lattice-based tests and properties
that have been developed for linear congruential generators.
Interestingly, these tests are strongly linked with computing
the measures of uniformity of IF;-linear generators. Section4
briefly outlines this theory. In Section 5, we describe several
types of [F»-linear generators proposed over the years, show
how they fit the general framework, and summarize what we
know about their strengths and weaknesses. In Section 6,
we compare specific implementations in terms of their speed
and (theoretical) figures of merit, and discuss their behavior
in empirical statistical tests. Compared with the most widely
used RNG that offers multiple streams and substreams in

L’Ecuyer and Panneton

simulation software, the best FF-linear RNGs are faster by
a factor of 2 to 3. Section 7 concludes the paper.

2 T,-LINEAR GENERATORS
2.1 General Framework

Consider an RNG defined by a matrix linear recurrence
over the finite field [, as follows:

Xy = AXyq, (1)

Yn = BX}’Z’ (2)
w

Up = Z yn,é—lz_e = Yn,0 Yn,1 Yn,2 ", 3)
=1

where x, = (x50, ..., xn,k_l)t € IE"; is the k-bit state vector
atstep 1, Yo = (Yn.05 - - - yn,w_l)t € Y is the w-bit output
vector at step n, k and w are positive integers, A is a k X k
transition matrix with elements in Fo, B is a w x k output
transformation matrix with elements in Fp, and u; € [0, 1)
is the output at step n. All operations in (1) and (2) are
performed in F5, i.e., modulo 2. This setting was adopted
in L’Ecuyer and Panneton (2002).
The characteristic polynomial of the matrix A is

P(z)=detzl —A) =K —o " ' — o — 1z — o,

where I is the identity matrix and each ¢ is in IF>. This P(z)
is also the characteristic polynomial of the linear recurrence

“

and it is well-known (Niederreiter 1992, L’Ecuyer 1994)
that when the x,’s obey (1), the sequence {x ;, n > 0}
follows the linear recurrence (4) for each j. The sequences
{yn,j, n >0}, for0 < j < w, also obey the same recurrence
(although they may follow recurrences of shorter order in
certain situations, depending on B). In this paper, we
assume that o = 1, so that the recurrence (4) has order
k and is purely periodic. Its period length is 28 — 1 (i.e.,
maximal) if and only if P(z) is a primitive polynomial over
[, (Niederreiter 1992, Knuth 1998).

Several popular classes of RNGs fit this framework as
special cases, by appropriate choices of the matrices A and
B. Many will be described in Section 5.

Xn,j = (@1Xp—1,j + -+ AXp—k,j) mod 2

2.2 Jumping Ahead

Jumping ahead directly from x, to x,4, for a very large
integer v is easy in principle with this type of generator. It
suffices to precompute the matrix A¥ mod 2 (this can be done
in O(k3logv) operations by a standard method) and then

111

multiply x, by this binary matrix, modulo 2. The latter step
requires O (k) operations in general. This approach works
fine for relatively small values of k (e.g., up to 100 or so),
but becomes excessively slow when k is large. For example,
the Mersenne twister of Matsumoto and Nishimura (1998)
has k = 19937 and the above method is impractical in that
case.

For this reason, it is not a good idea in our opinion to
construct F>-linear generator with such (excessively) large
periods and values of k. One way to make the jumping-ahead
easier is to adopt a combined generator (see Subsection 2.3),
for which the v-step jumping-ahead is done separately for
each component.

2.3 Combined FF,-Linear Generators

A very simple way of combining Fj-linear generators is
as follows. For some integer C > 1, consider C distinct
recurrences of the form (1)-(2), where the cth recurrence
has parameters (k, w, A, B) = (k., w, A, B.) and state X,
at step n, for c = 1,..., C. The output of the combined
generator at step n is defined by

Bix1,® - @ Bcxca,

w

—¢
Zyn,£—12 ,
¢=1

where @ denotes the bitwise exclusive-or (xor) operation.
One can show (Tezuka and L’Ecuyer 1991, Tezuka 1995)
that the period length p of this combined generator is
the least common multiple of the period lengths p. of its
components and that this combined generator is equivalent
to the generator (1)-(3) with k = ky + --- + k¢, A
diag(Al, e Ac), and B = (B], e Bc).

With this method, by selecting the parameters care-
fully, the combination of F,-linear generators with char-
acteristic polynomials Pi(z),..., Pc(z) gives yet an-
other F,-linear generator with characteristic polynomial
P(2) Pi(z)--- Pc(z) and period length equal to
the product of the period lengths of the components
(Tezuka and L’Ecuyer 1991, Wang and Compagner 1993,
L’Ecuyer 1996, Tezuka 1995).

So why would we want to combine these generators?
We already gave one good reason in the previous subsection:
efficient jumping-ahead is easier for a combined generator of
order k having several components than for a non-combined
generator with the same k. Another important reason is that
matrices A that give very fast implementations typically lead
(unfortunately) to poor quality RNGs from the statistical
viewpoint, because of a too simplistic structure. Combined
generators provide a way out of this dilemma: select simple
components that allow very fast implementations and such
that the corresponding combined generator has a more com-

Yn

Up

L’Ecuyer and Panneton

plicated structure, good figures of merit from the theoretical
viewpoint, and good statistical properties. Many of the best
F,-linear generators are defined via such combinations. We
will give specific examples later.

3 QUALITY CRITERIA

In general, good RNGs must have a long period p (say,
o~ 2200 o more), must run fast, should not waste memory
(the state should be represented in no more than roughly
log, p bits of memory), be repeatable and portable (able
to reproduce exactly the same sequence in different soft-
ware/hardware environments), and allow efficient jumping-
ahead in order to obtain multiple streams and substreams.
But these properties do not suffice to imitate independent
random numbers.

Recall that a sequence of random variables
Uo, Uy, Uy, ... are iid. U0, 1) if and only if for all
integers i > 0 and t > 0, the vector (Uj, ..., Ujt;—1) is
uniformly distributed over the ¢-dimensional unit hypercube
[0, 1). Of course, this cannot hold for algorithmic RNGs
that have a finite period length. For RNGs that fit our -
linear framework, any vector of ¢ successive output values
of the generator belongs to the finite set

W, = {(uo, ..., ur1) : Xo € F5},
i.e., the set of output points obtained when the initial state
runs over all possible k-bit vectors.

This set W, always has cardinality 2¢ when viewed as
a multiset (i.e., if the points are counted as many times as
they appear).

If x¢ is drawn at random from the set of k-bit vectors IF’E,
with probability 2~k for each bit vector, then (uq, . .., us_1)
is a random vector having the uniform distribution over ;.
Thus, to approximate well the uniform distribution over
[0, 1)!, W, must cover the hypercube [0, 1)’ very uniformly
(L’Ecuyer 1994, L’Ecuyer 2004b). More generally, we may
also want to measure the uniformity of sets of the form

Wy = {(uiy, .- ui) | %0 € F3),
where I = {iy, --- , i;} is a fixed set of non-negative integers
such that 0 < iy < --- < i;. For I ={0,...,t — 1}, we
recover ¥, = ¥y

The wuniformity of W; is wusually assessed by

measures of discrepancy between the empirical
distribution of its points and the uniform distri-
bution over [0,1)’ (Hellekalek and Larcher 1998,

L’Ecuyer and Lemieux 2002, Niederreiter 1992). These
measures can be defined in many ways and they are in
fact equivalent to goodness-of-fit tests for the multivariate
uniform distribution. They must be computable without
enumerating the points, because the cardinality of W,

112

makes the enumeration practically infeasible when the
period is large enough. For this reason, the uniformity
measures are usually tailored to the general structure of
the RNG. Measures that are commonly used for [F,-linear
RNGs will be described in a moment. The selected
discrepancy measure can be computed for each set I in
some predefined class .7, then these values can be weighted
or normalized by factors that may depend on I, and the
worst-case (or average) over J can be adopted as a figure
of merit used to rank RNGs. The choice of 7 and of the
weights are arbitrary. Typically, J would contain sets [
such that ¢ and i; — i; are rather small. We generally try to
optimize this figure of merit when searching (by computer)
for concrete RNG parameters.

For [Fy-linear generators, the uniformity of the point
sets Wy is typically assessed by measures of equidistribution
defined as follows (L’Ecuyer 1996, L’Ecuyer and Panneton
2002, L’Ecuyer 2004a, Tezuka 1995). For an arbitrary
vector q = (q1, ..., q;) of non-negative integers, partition
the unit hypercube [0, 1)" into 2%/ intervals of the same
length along axis j, for each j. This determines a partition
of [0, 1)! into 291 T4 rectangular boxes of the same size
and shape. If a given set W; has exactly 29 points in each
box of this partition, for an integer g that must satisfy
k—q =q1+--+q:, we say that V; is q-equidistributed.
This means that among the 2k points (u;,, ..., u;) of Wy,
if we consider all (k — g)-bit vectors formed by the g; most
significant bits of u;; for j =1,...,7, each of the 2k—q
possibilities occurs exactly the same number of times. Of
course, this is possible only if g < k.

If Uyis (¢, ..., £)-equidistributed for some £ > 1, it is
called (t, £)-equidistributed (L'Ecuyer 1996). The largest
value of ¢ for which this holds is called the resolution
of the set Wy and is denoted by ¢;. It cannot exceed
£f = min(|k/t], w). We define the resolution gap of ¥,
as 8y = ¢ — £;. Possible figures of merit can then be
defined by

and

Agq= Z 31,

A 7 oo = max
1eJ ler

where J is a preselected class of index sets 1.

We also denote by ¢, the largest dimension ¢ for which
W, is (¢, £)-equidistributed, and define the dimension gap
for £ bits of resolution as

S[ZtZ—tg,

where ¢ = |k/€] is an upper bound on f,. We may
then consider the worst-case dimension gap and the sum of
dimension gaps, defined as

Aso = max dy
1<t<w

w
and Al = ZS@,
=1

L’Ecuyer and Panneton

as alternative figures of merit for our generators.

When Aoo Al = 0, the RNG is said to be
maximally equidistributed (ME) or asymptotically ran-
dom for the word size w (L’Ecuyer 1996, Tezuka 1995,
Tootill, Robinson, and Eagle 1973). This property ensures
perfect equidistribution of all sets W;, for any partition of
the unit hypercube into subcubes of equal sizes, as long as
£ < w and the number of subcubes does not exceed the
number of points in W;. Large-period ME (or almost ME)
generators can be found in L’Ecuyer (1999b), L’Ecuyer
and Panneton (2002), Panneton and L’Ecuyer (2004b), and
Panneton, L’Ecuyer, and Matsumoto (2005), for example.

The (k — g)-bit vectors involved in assessing the q-
equidistribution of W; can be expressed as a linear function of
the k-bit initial state Xo, that is, as Mgxo for some (k—q) xk
binary matrix Mg. Clearly, ¥; is gq-equidistributed if and
only if Mgy has full rank k —¢q. Thus, q-equidistribution can
easily be verified by constructing this matrix My and check-
ing its rank via (binary) Gaussian elimination (Fushimi 1983,
L’Ecuyer 1996, Tezuka 1995). This is a major motivation
for adopting this measure of uniformity.

For very large values of k, the matrix Mg is expensive
to construct and reduce, but a more efficient method based
on the computation of the shortest nonzero vector in a
lattice of formal series (see Section 4), as explained in
Couture and L’Ecuyer (2000), can be used in that case to
verify (z, £)-equidistribution.

The figures of merit defined above look at the most
significant bits of the output values, but give little impor-
tance to the least significant bits. We could of course extend
them so that they also measure the equidistribution of the
least significant bits, simply by using different bits to con-
struct the output values and computing the corresponding
q-equidistributions. But this becomes quite cumbersome and
expensive to compute in general because there are too many
ways of selecting which bits are to be considered. Certain
classes of [Fp-linear generators (e.g., the Tausworthe/LFSR
RNGs defined in Subsection 5.1) have the interesting prop-
erty that if all output values are multiplied by a given power
of two, modulo 1, all equidistribution properties remain
unchanged. In other words, they enjoy the nice property
that their least significant bits have the same equidistribu-
tion as the most significant ones. We call such generators
resolution-stationary.

Aside from excellent equidistribution, good [F»-linear
generators are also required to have characteristic polyno-
mials P(z) whose number of nonzero coefficients is not too
far from half the degree, i.e., near k/2 (Compagner 1991,
Wang and Compagner 1993). In particular, generators
for which P(z) is a trinomial or a pentanomial, which
have been widely used in the past, must be avoided.
They fail rather simple statistical tests (Lindholm 1968,
Matsumoto and Kurita 1996). So the fraction of nonzero

113

coefficients in P(z) can be used as a secondary figure of
merit.

Other measures of uniformity are popular in
the context where k is small and the entire
point set W, is used for quasi-Monte Carlo inte-

gration (Niederreiter 1992, Hellekalek and Larcher 1998,
L’Ecuyer and Lemieux 2002); for example the smallest g
for which ¥; is a (q, k, t)-net, the P, measure and its
weighted versions, the diaphony, etc. However, no one
knows how to compute these measures efficiently when
k > 50 (say), which is always the case for good [F»-linear
RNGs.

4 LATTICE STRUCTURE IN SPACE
OF FORMAL SERIES

The lattice structure of linear congruential generators
(LCGs) is well-known in the simulation community
(Law and Kelton 2000, Knuth 1998). F;-linear RNGs do
not have a lattice structure in the real space, but they do
have a similar form of lattice structure in a space of for-
mal series (Couture and L’Ecuyer 2000, L’Ecuyer 2004a,
Lemieux and L’Ecuyer 2003, Tezuka 1995), which we now
outline. In comparison with the lattices of LCGs, the real
space R is replaced by the space L, of formal power series
with coefficients in Fa, of the form Y72 x¢z~* for some
integer w, and the integers are replaced by polynomials over
Fs.

The sequence of values taken by the jth bit of the
output has generating function

o
Gj(z) = yo,/z_l + y1,jZ_2 +.= Zyn—l,jz_”.
n=1

When multiplying this formal series by P(z), we obtain the
polynomial g;(z) = G(z) P(z) in F2[z]/ P (z) (the space of
polynomials of degree less than k, with coefficients in [y),
because the successive terms of the series satisfy a recurrence
with this characteristic polynomial. For £ =1, ..., w, let
GY@) = (Go(@). ..., Ge-1(2)).

If P(z) is an irreducible polynomial and Go(z) # 0,
then go(z) has an inverse modulo P(z). In this case, there
is an initial state of the RNG that corresponds to the vector

GY () g (2Ge(z)

(1, g ' @812, ... g (Dge-1)/P(2).

When the latter holds, we have the following.

Let Lo = F2((z™")) the space of formal series of the
form fo:l d,_1z77" wherei € Z and d,_; € [, for each n.
Let Ly o those series for which i > 1. Suppose that the first
£ lines of the matrix B are linearly independent. Then the
vectors vi(z) = GO(2), v2(2) = e2(2), ..., Ve(2) = ex(2)

L’Ecuyer and Panneton

form a basis of a lattice Ly in L,, defined by

4
v(z) =) _hj(x)v;(z) such that h;(z) € F,[z]
j=1

Ly

This lattice is called the £-bit resolution-wise lattice associ-
ated with the RNG. The matrix V whose lines are the v;’s
has an inverse W = V~! whose columns

wi(z) = (P(2),0,...,0)
W) = (—g1@),1,...,0% -,
wi(z) = (—ge-1(2),0,..., D

form a basis of the dual lattice
L; ={h(z) € L! : h(z) - v(z) € Falz] for all v(z) € Ly},

where h(z) - v(z) = Zj=1 hj(z)v;(z) (the scalar product).
This resolution-wise lattice fully describes all the possible

output sequences of the RNG via the following:
Theorem (Couture and L’Ecuyer 2000). We have

LeNLy o = {(g0(), - .-, ge—1(2))/ P(2) : go(z) € F2[z]/(P(2))}.

For any h(z) = (h1(2), ..., he(2)) € (F2[z])¢, we may
define the length of h(z) by [|0]] = 0 and

log, |h(2)| = lrgjai(lz degh;(z) for h(z) #0.

Theorem (see Tezuka 1995,
Couture and L’Ecuyer 2000, L’Ecuyer 2004a). W,
is (¢, £)-equidistributed if and only if

min lo h@)| > £.
o i lozs 1h@)]

This theorem shows that checking equidistribution
amounts to computing a shortest nonzero vector in the
dual lattice L7, just like the spectral test commonly applied
to LCGs but with a different lattice. As it turns out, very
similar algorithms can be used to compute the shortest vector
in both cases (Couture and L’Ecuyer 2000). This approach
is more efficient than applying Gaussian elimination to the
matrix Mg (see Subsection 3) when ¢ is large.

Some F;-linear RNGs (e.g., the LFSR generators) also
have a dimension-wise lattice structure where the lattice
contains vectors of 7-dimensional formal series, whose co-
ordinate j is the generating function for the binary ex-
pansion of the jth output value, for a given initial state
(Tezuka and L’Ecuyer 1991, L’Ecuyer 1994, Tezuka 1995,
Lemieux and L’Ecuyer 2003). This lattice can also be used
to study equidistribution. However, it only applies to a sub-
class of [Fp-linear RNGs.

114

5 SPECIFIC CLASSES OF GENERATORS
5.1 The LFSR Generator

The Tausworthe or linear feedback shift register (LFSR)
generator (Tausworthe 1965, L’Ecuyer 1996, Tezuka 1995)
is defined by a linear recurrence modulo 2, from which a
block of w bits is taken every s steps, for some positive
integers w and s:

Xp = a1xp—1+---+akx,—x mod 2, 5
w
Up = ans+l—127£- (6)
=1
where ay,...,a; are in F and a; = 1. This fits our

framework by taking A = (Ag)® (in Fy) where
1

Ao = , %)

1
al

ak dkg—1

and blank entries in this matrix are zeros. The matrix
B contains the first w lines of the k x k identity matrix,
assuming that w < k.

Note that P(z) is the characteristic polynomial of
the matrix A = (Ap)®, not that of the recurrence (5),
and the choice of s is important for determining the
quality of this generator. A frequently encountered
case is when a single a; is nonzero in addition to ay;
then, P(z) is a trinomial and we say that we have a
trinomial-based LFSR generator. Typically, s is small
to make the implementation efficient. These trinomial-
based generators are known to have important statistical
weaknesses (Matsumoto and Kurita 1996, Tezuka 1995)
but they can be used a components of combined RNGs
(Tezuka and L’Ecuyer 1991, Wang and Compagner 1993,
L’Ecuyer 1996). They also enjoy the important properties
of being resolution-stationary.

Tables of specific parameters for maximally equidis-
tributed combined LFSR generators, together with concrete
implementations for 32-bit and 64-bit computers, can be
found in L’Ecuyer (1999b). These generators are among
the fastest ones currently available.

5.2 The GFSR, Twisted GFSR, and Mersenne Twister

Here we take A as the pg x pg matrix

1, S

Ip

L’Ecuyer and Panneton

for some positive integers p and g, where I, is the p x p
identity matrix, S is a p x p matrix, and the matrix I,
on the first line is in columns (r — 1)p + 1 to rp for
some positive integer r. Often, w = p and B contains the
first w lines of the pg x pq identity matrix. If S is also
the identity matrix, this generator is the trinomial-based
generalized feedback shift register (GFSR), for which x,
is obtained by a bitwise exclusive-or of X, , and X, 4
(Lewis and Payne 1973). This provides an extremely fast
RNG. However, its period length cannot exceed 29 — 1,
because each bit of x,, follows the same binary recurrence
of order k = ¢, with characteristic polynomial P(z) =
29—z — 1.

More generally, we can define x, as the bitwise
exclusive-or of X,_;,Xy—rp, ..., Xp—r, Where rg = ¢, so
that each bit of x,, follows a recurrence in IF, whose charac-
teristic polynomial P (z) has d + 1 nonzero terms. However,
the period length is still bounded by 29 — 1, whereas con-
sidering the pg-bit state, we should expect a period length
close to 2P9. This was the main motivation for the rwisted
GFSR (TGFSR) generator. In the original version intro-
duced by Matsumoto and Kurita (1992), w = p and the
matrix S is defined as the transpose of Ag in (7), with k
replaced by p. The characteristic polynomial of A is then
P(z) = Ps(z9+7™), where Ps(¢) = (P —apcP~ 1= —ay
is the characteristic polynomial of S, and its degree is
k = pq. If the parameters are selected so that P(z) is
primitive over [F,, then the TGFSR has period length 2F — 1.
Matsumoto and Kurita (1994) pointed out important weak-
nesses of the original TGFSR and proposed an improved
version that uses a well-chosen matrix B whose lines differ
from those of the identity. The operations implemented
by this matrix are called fempering and their purpose is to
improve the uniformity of the points produced by the RNG.

The Mersenne twister (Matsumoto and Nishimura 1998,
Nishimura 2000) is a variant of the TGFSR where £ is slightly
less than pg and can be a prime number. A specific in-
stance proposed by Matsumoto and Nishimura (1998) and
named MT19937 is fast, has the huge period length
of 219937 _ 1, and has become quite popular. A
weakness of this RNG is underlined and illustrated in
Panneton, L’Ecuyer, and Matsumoto (2005): if the gener-
ator starts in (or reaches) a state that has very few ones,
it may take up to several hundred thousands steps be-
fore the ratio of ones in the output and/or the average
output value are approximately 1/2. For example, for
MT19937, if we average the output values at steps n + 1
to n + 100 (a moving average) and average this over all
19937 initial states X¢ that have a single bit at one, then
we need at least n > 700,000 before the average gets
close to 1/2 as it should be (this is graphically illustrated
in Panneton, L’Ecuyer, and Matsumoto 2005). Likewise, if
two states differ by a single bit, or by only a few bits, a
very large number of steps are required on average before

115

the states or the outputs differ by about half of their bits.
The source of the problem is that this RNG has a (huge)
19937-bit state and few of these bits are modified from one
step to the next. In the terminology of cryptologists, the
recurrence has low diffusion capacity. This may be linked
to the fact that its characteristic polynomial has only 135
nonzero coefficients out of 19938. Moreover, the figure of
merit A| takes the large value 6750 for this generator.

It has been proved that the TGFSR and Mersenne twister
construction methods used in Matsumoto and Kurita (1994),
Matsumoto and Nishimura (1998) cannot provide ME gen-
erators in general. They typically have large equidistribution
gaps. But combining them via a bitwise xor can yield gen-
erators with the ME property. Concrete examples of ME
combined TGFSR generators with period lengths around
2466 and 2120 are given in L’Ecuyer and Panneton (2002).
These generators have the additional property that the res-
olution gaps §; are also zero for a class of index sets [
of small cardinality and whose elements are not too far
apart. These RNGs are of course somewhat slower than
their original (uncombined) counterpart.

5.3 The WELL RNGs

These RNGs were developed by Panneton (2004) and are
described by Panneton, L’Ecuyer, and Matsumoto (2005).
The idea was to “sprinkle” a small number of very simple
operations such as xor, shift, bit mask, etc., into the matrix
A in a way that the resulting RNG has maximal period and
runs about as fast as the Mersenne twister, but also has
(under these constraints) the best possible equidistribution
properties, and a characteristic polynomial with around 50%
nonzero coefficients.

The state x,, = (VL’O, .. .,V}”_l)t is comprised of r
blocks of w = 32 bits v,_;, and the recurrence is defined by a
set of linear transformations that apply to these blocks, as de-
scribed in Panneton, L’Ecuyer, and Matsumoto (2005). Es-
sentially, the transformations modify v, o and v, ; by using
several of the other blocks. They are selected so that P(z),
a polynomial of degree k = rw — p, is primitive over F».
The output is defined by y, = v, 0.

The authors list specific parameters for WELL genera-
tors with period lengths ranging from 2312 — 1 to 244497 1,
Many of them are ME and the others are nearly ME.
Their characteristic polynomials have nearly 50% coeffi-
cients equal to 1. These RNGs have much better diffusion
capacity than the Mersenne twister and have comparable
speed.

5.4 Xorshift Generators
Marsaglia (2003) has proposed a class of very fast RNGs

whose recurrence can be implemented by a small number of
xorshift operations only, where a xorshift operation consists

L’Ecuyer and Panneton

in replacing a w-bit block in the state by a (left or right)
shifted version of itself (by a position, where 0 < a < w)
xored with the original block. The constant w is the com-
puter’s word size (usually 32 or 64). The specific generators
he proposed in his paper use three xorshift operations at
each step. As it turns out, xorshifts are linear operations so
these generators fit our F»-linear setting.

Panneton and L’Ecuyer (2004a) analyzed the theoret-
ical properties of a general class of xorshift generators
that contains those proposed by Marsaglia. They studied
maximal-period conditions, limits on the equidistribution,
and submitted xorshift generators to empirical statistical
testing. They concluded that three-xorshift generators are
unsafe and came up with generators based on 7 and 13
xorshifts, whose speed is only 20% slower than those with
three xorshifts to generate U (0, 1) real numbers. Aside
from the tests that detect Fj-linearity, these RNGs pass
other standard statistical tests.

5.5 Linear Recurrences in Fyw

Fix a positive integer w (e.g., w = 32) and let ¢ = 2".
Panneton (2004) and Panneton and L"Ecuyer (2004b) con-
sider fast RNGs based on recurrences in the finite field IFy,
which can be written as

mpy bmuy_1+---+bmy_,

for some integer r, where the arithmetic is performed in
F,. The maximal period p = 2"* — 1 is reached if and
only if P(z) =2 —b1z" ' =+ —b,_1z—b, is a primitive
polynomial over FF,.

To implement this recurrence, these authors select an
algebraic element ¢ of F,, take {1,¢,..., g“”]} as a ba-
sis of F, over IF;, and represent the elements m, =
Upo +vp 18 + -+ vn,w,lcw_l of F, by the bit vec-
tors v, = (Un,0, Un,1s---» vn,w_l)t. The state of the RNG
is thus represented by a rw-bit vector and the output is
constructed as in (3), from the bits of v,. This construc-
tion fits our [Fp-linear framework (1-3) and generalizes the
TGFSR generators. Panneton and L’Ecuyer (2004b) call
them LFSR generators in Fouw.

The same authors also propose a slightly different con-
struction called polynomial LCG in Fpw, and based on the
recurrence

dn(2) = zqu-1(z) mod P(z)

in Fy[z] (the ring of polynomials with coefficients in IF,),
where P(z) € Fy(z] is a primitive polynomial. To imple-
ment this, each coefficient of g, (z) is represented by a w-bit
vector just as for m,, and the output is defined in a similar
way. Again, this fits the F,-linear framework (1-3).

116

Panneton (2004) (see also
Panneton and L’Ecuyer 2005) goes further by prov-
ing certain properties of the equidistribution of these
RNGs. For instance, he shows that if f’(z) is irreducible
over I, and can be written as

P(2) = po(2) +¢p1(2) + -+ ¢ py(@)

where each p;(z) is in F,[z], then the RNG cannot be
(t, £)-equidistributed if + > r and £ > y. As a special
case, since the TGFSR has P(z) = po(z) + ¢p1(2), it
cannot be equidistributed with more than a single bit of
resolution in any dimension ¢ > r. He also shows that if
P(z) is irreducible over F, and has at least three nonzero
coefficients, then among the 2"* — 1 two-dimensional point
sets Wyo,j; where 1 < j < 2]‘“’, exactly 2% — 1 are not
(2, w)-equidistributed. For example, if w = 32 and r = 25
(so k = 800), only one two-dimensional projection out of
2768 is not equidistributed!

Panneton (2004) and Panneton and L’Ecuyer (2004b)
propose tables of good parameters for LFSRs and polyno-
mial LCGs in ;. These parameters were found by computer
searches based on the figure of merit A;. They also provide
concrete implementations in the C language. These imple-
mentations are fast, comparable to the Mersenne twister for
instance, but one drawback is that they use precomputed
multiplication tables that require a non-negligible amount
of memory. (In the case of multiple streams, a single copy
of the tables is shared by all the streams.) The output
transformation by a non-trivial matrix B is integrated into
these multiplication tables to improve the efficiency.

6 PERFORMANCE

Table 1 reports the speed of some RNGs available in the
SSJ simulation package (L’Ecuyer and Buist 2005). These
timings are for the Java implementations, running on a 2.4
GHz 64-bit computer with SUN’s JDK 1.5. The first and
second columns give the generator’s name and its approxi-
mate period length. Column 3 gives the CPU time (sec) to
generate 10° random numbers and add them up, whereas
column 4 gives the CPU time needed to jump ahead 10°
times by a very large number of steps (to get a new stream).
The first five RNGs are [F,-linear and the last two are
combined multiple recursive generators (MRGs). The first
two are combined LFSRs proposed by L'Ecuyer (1999b)
for 32-bit and 64-bit computers, with four and five compo-
nents, respectively. The two WELL RNGs are proposed in
Panneton, L’Ecuyer, and Matsumoto (2005). Other WELL
generators with much longer periods (up to nearly 244497)
proposed in that paper have approximately the same speed
as those given here to generate random numbers, but are
slower for jumping ahead because of their larger value
of k. For the Mersenne twister MT19937, proposed

L’Ecuyer and Panneton

Table 1: CPU Time (sec) to Generate 10° Random
Numbers, and CPU Time to Jump Ahead 100
Times, with Some RNGs Available in SSJ

RNG p = gen. time jump time
LFSR113 2113 31 0.1
LFSR258 2258 35 0.2
WELL512 | 2512 33 234
WELL1024 | 21024 34 917
MT19937 | 219937 36 —
MRG31k3p | 2! 51 0.9
MRG32k3a | 2191 70 1.1

by Matsumoto and Nishimura (1998), jumping ahead is
just too slow to be useful. All these [F»-linear RNGs
have roughly the same speed for generating random num-
bers. Other good ones with about the same speed
are also proposed by Panneton and L’Ecuyer (2004b) and
Matsumoto and Kurita (1994), e.g., with period lengths
near 2800,

The timings of the two MRGs in the table are re-
ported for comparison. The first one (MRG31k3p) was
proposed by L’Ecuyer and Touzin (2000) while the second
one (MRG32k3a) was proposed by L’Ecuyer (1999a) and
is used in several simulation packages to provide multiple
streams and substreams. This latter RNG has been heavily
tested over the years and is very robust. On the other hand,
the [F»-linear generators are definitely faster.

Other timings are reported in Panneton, L’Ecuyer, and
Matsumoto (2005), this time on a 2.8 GHz 32-bit computer
using the C language. In that setting, the [F»-linear RNGs
have roughly the same speed (they all require between 30
and 43 CPU seconds to generate 10° random numbers)
whereas MRG32k3a needs nearly 100 seconds.

All the RNGs discussed above have been submitted
to empirical statistical testing using the batteries Small-
crush, Crush, and Bigcrush of the TestU01 package
(LEcuyer and Simard 2002). They passed all the tests in
these batteries with the following notable exceptions: All
[F»-linear generators fail the tests that look for linear rela-
tionships in the sequences of bits they produce, namely the
matrix-rank test (Marsaglia 1985) for huge binary matrices
and the linear complexity tests (Erdmann 1992). The rea-
son for this general failure is obvious: We know from their
definitions that these generators produce bit sequences that
obey linear recurrences, so they cannot have the linear com-
plexity of a truly random sequence. Should this be viewed
as a strong limitation of these RNGs for simulation? In my
opinion, this is very unlikely to cause a problem in practice,
unless the system we simulate has a lot to do with linear
dependencies among bits. To make these RNGs safer for
such applications without slowing them down too much, we
could either combine them with a generator from another
class (such as an MRG, for instance), or combine them with

117

a small nonlinear RNG implemented via precomputed tables
as suggested by L’Ecuyer and Granger-Piché (2003), or add
a nonlinear output transformation that is fast to compute.

7 CONCLUSION

[F,-linear RNGs are convenient for simulation because they
are fast and the high-dimensional uniformity of their point
sets can be measured by theoretical figures of merit that
can be computed efficiently. Combined [F»-linear generators
with relatively small components have the important advan-
tage of faster jumping-ahead, because the (smaller) com-
ponents can be dealt with separately. Some F,-linear gen-
erators proposed in the literature have huge period lengths,
but it is not always true that larger is better. A huge state
has the disadvantages that it uses more memory (this can
be important when there is a large number of streams in
a simulation), makes jumping ahead much slower, and re-
quires more operations to modify a large fraction of the
bits in the state. Of course, very long bit sequences pro-
duced by these generators will always fail statistical tests
that measure their linear complexity. This can be viewed
as a weak limitation, which could be overcome by adding a
nonlinear output transformation or combining the [F»-linear
RNG with a generator from another class.

ACKNOWLEDGMENTS

This work has been supported by NSERC-Canada grant No.
ODGPO0110050 and a Canada Research Chair to the first
author. The paper was written while the first author was
enjoying the hospitality of Peter Hellekalek at the University
of Salzburg, Austria. Much of it was actually written in late
evening at Riedel Weinbar, where everything from water to
Beerenauslese is served in the world-famous Riedel glasses!

REFERENCES

Compagner, A. 1991. The hierarchy of correlations
in random binary sequences. Journal of Statistical
Physics 63:883-896.

Couture, R., and P. L’Ecuyer. 2000. Lattice computations
for random numbers. Mathematics of Computation 69
(230): 757-765.

Erdmann, E. D. 1992. Empirical tests of binary keystreams.
Master’s thesis, Department of Mathematics, Royal
Holloway and Bedford New College, University of
London.

Fushimi, M. 1983. Increasing the orders of equidistribu-
tion of the leading bits of the Tausworthe sequence.
Information Processing Letters 16:189—-192.

Hellekalek, P., and G. Larcher. (Eds.) 1998. Random and
quasi-random point sets, Volume 138 of Lecture Notes
in Statistics. New York: Springer.

L’Ecuyer and Panneton

Knuth, D. E. 1998. The art of computer programming, vol-
ume 2: Seminumerical algorithms. Third ed. Reading,
Mass.: Addison-Wesley.

Law, A. M., and W. D. Kelton. 2000. Simulation modeling
and analysis. Third ed. New York: McGraw-Hill.
L’Ecuyer, P. 1994. Uniform random number generation.

Annals of Operations Research 53:77-120.

L’Ecuyer, P. 1996. Maximally equidistributed combined
Tausworthe generators. Mathematics of Computation 65
(213): 203-213.

L’Ecuyer, P. 1999a. Good parameters and implementations
for combined multiple recursive random number gen-
erators. Operations Research 47 (1): 159-164.

L’Ecuyer, P. 1999b. Tables of maximally equidistributed
combined LFSR generators. Mathematics of Computa-
tion 68 (225): 261-269.

L’Ecuyer, P. 2004a. Polynomial integration lattices. In
Monte Carlo and Quasi-Monte Carlo Methods 2002,
ed. H. Niederreiter, 73-98. Berlin: Springer-Verlag.

L’Ecuyer, P. circa 2004b. Uniform random number gener-
ation. In Stochastic Simulation, ed. S. G. Henderson
and B. L. Nelson, Handbooks of Operations Research
and Management Science. Elsevier Science. chapter 3,
to appear.

L’Ecuyer, P., and E. Buist. 2005. Simulation in Java with
SSJ. In Proceedings of the 2005 Winter Simulation
Conference.

L’Ecuyer, P., and J. Granger-Piché. 2003. Combined gener-
ators with components from different families. Mathe-
matics and Computers in Simulation 62:395-404.

L’Ecuyer, P, and C. Lemieux. 2002. Recent advances in
randomized quasi-Monte Carlo methods. In Modeling
Uncertainty: An Examination of Stochastic Theory,
Methods, and Applications, ed. M. Dror, P. L’Ecuyer,
and F. Szidarovszky, 419-474. Boston: Kluwer Aca-
demic Publishers.

L’Ecuyer, P., and F. Panneton. 2002. Construction of equidis-
tributed generators based on linear recurrences modulo
2. In Monte Carlo and Quasi-Monte Carlo Methods
2000, ed. K.-T. Fang, F. J. Hickernell, and H. Nieder-
reiter, 318-330. Berlin: Springer-Verlag.

L’Ecuyer, P, and R. Simard. 2002. TestUOI: A software
library in ANSI C for empirical testing of random
number generators. Software user’s guide. Available at
<www.iro.umontreal.ca/ lecuyer>.

L’Ecuyer, P., R. Simard, E. J. Chen, and W. D. Kelton. 2002.
An object-oriented random-number package with many
long streams and substreams. Operations Research 50
(6): 1073-1075.

L’Ecuyer, P., and R. Touzin. 2000. Fast combined multiple
recursive generators with multipliers of the form a =
429427, In Proceedings of the 2000 Winter Simulation
Conference, ed. J. A. Joines, R. R. Barton, K. Kang,

118

and P. A. Fishwick, 683-689. Pistacaway, NJ: IEEE
Press.

Lemieux, C., and P. L’Ecuyer. 2003. Randomized poly-
nomial lattice rules for multivariate integration and
simulation. SIAM Journal on Scientific Computing 24
(5): 1768-1789.

Lewis, T. G., and W. H. Payne. 1973. Generalized feedback
shift register pseudorandom number algorithm. Journal
of the ACM 20 (3): 456-468.

Lindholm, J. H. 1968. An analysis of the pseudo-randomness
properties of subsequences of long m-sequences. IEEE
Transactions on Information Theory IT-14 (4): 569-
576.

Marsaglia, G. 1985. A current view of random number gen-
erators. In Computer Science and Statistics, Sixteenth
Symposium on the Interface, 3—10. North-Holland, Am-
sterdam: Elsevier Science Publishers.

Marsaglia, G. 2003. Xorshift RNGs. Journal
of Statistical Software 8 (14): 1-6. See
<www.jstatsoft.org/v08/il4d/xorshift.
pdf>.

Matsumoto, M., and Y. Kurita. 1992. Twisted GFSR gener-
ators. ACM Transactions on Modeling and Computer
Simulation 2 (3): 179-194.

Matsumoto, M., and Y. Kurita. 1994. Twisted GFSR gener-
ators II. ACM Transactions on Modeling and Computer
Simulation 4 (3): 254-266.

Matsumoto, M., and Y. Kurita. 1996. Strong deviations from
randomness in m-sequences based on trinomials. ACM
Transactions on Modeling and Computer Simulation 6
(2): 99-106.

Matsumoto, M., and T. Nishimura. 1998. Mersenne twister:
A 623-dimensionally equidistributed uniform pseudo-
random number generator. ACM Transactions on Mod-
eling and Computer Simulation 8 (1): 3-30.

Niederreiter, H. 1992. Random number generation and
quasi-Monte Carlo methods, Volume 63 of SIAM
CBMS-NSF Regional Conference Series in Applied
Mathematics. Philadelphia: SIAM.

Nishimura, T. 2000. Tables of 64-bit Mersenne twisters. ACM
Transactions on Modeling and Computer Simulation 10
(4): 348-357.

Panneton, F. 2004, August. Construction d’ensembles de
points basée sur des récurrences linéaires dans un
corps fini de caractéristique 2 pour la simulation Monte
Carlo et Uintégration quasi-Monte Carlo. Ph. D. the-
sis, Département d’informatique et de recherche opéra-
tionnelle, Université de Montréal, Canada.

Panneton, F., and P. L’Ecuyer. 2004a. On the xorshift random
number generators. ACM TOMACS, to appear.

Panneton, F., and P. L’Ecuyer. 2004b. Random number gener-
ators based on linear recurrences in Fpw. In Monte Carlo
and Quasi-Monte Carlo Methods 2002, ed. H. Nieder-
reiter, 367-378. Berlin: Springer-Verlag.

<www.iro.umontreal.ca/~lecuyer>
http://www.iro.umontreal.ca/~lecuyer
<www.jstatsoft.org/v08/i14/xorshift.
http://www.jstatsoft.org/v08/i14/xorshift.pdf
pdf>
http://www.jstatsoft.org/v08/i14/xorshift.pdf

L’Ecuyer and Panneton

Panneton, F., and P. L’Ecuyer. 2005. Infinite-dimensional
highly-uniform point sets defined via linear recurrences
in Fpw.In Monte Carlo and Quasi-Monte Carlo Methods
2004, ed. H. Niederreiter and D. Talay. To appear.

Panneton, F., P. L’Ecuyer, and M. Matsumoto. 2005. Im-
proved long-period generators based on linear recur-
rences modulo 2. ACM Transactions on Mathematical
Software. to appear.

Tausworthe, R. C. 1965. Random numbers generated by
linear recurrence modulo two. Mathematics of Compu-
tation 19:201-209.

Tezuka, S. 1995. Uniform random numbers: Theory and
practice. Norwell, Mass.: Kluwer Academic Publishers.

Tezuka, S., and P. L’Ecuyer. 1991. Efficient and portable
combined Tausworthe random number generators. ACM
Transactions on Modeling and Computer Simulation 1
(2): 99-112.

Tootill, J. P. R., W. D. Robinson, and D. J. Eagle. 1973. An
asymptotically random Tausworthe sequence. Journal
of the ACM 20:469-481.

Wang, D., and A. Compagner. 1993. On the use of reducible
polynomials as random number generators. Mathemat-
ics of Computation 60:363-374.

AUTHOR’S BIOGRAPHIES

PIERRE I’ECUYER is Professor in the Département
d’Informatique et de Recherche Opérationnelle, at the Uni-
versité de Montréal, Canada. He holds the Canada Re-
search Chair in Stochastic Simulation and Optimization.
His main research interests are random number genera-
tion, quasi-Monte Carlo methods, efficiency improvement
via variance reduction, sensitivity analysis and optimiza-
tion of discrete-event stochastic systems, and discrete-event
simulation in general. He is an Area/Associate Editor for
ACM TOMACS, ACM TOMS, and Statistics and Computing.
He obtained the prestigious E. W. R. Steacie fellowship in
1995-97 and a Killam fellowship in 2001-03. His recent
research articles are available on-line from his web page:
<www.iro.umontreal.ca/ lecuyer>.

FRANCOIS PANNETON received his PhD from the the
Université de Montréal in 2004. A large part of his thesis
was on the topics discussed in this paper. His main research
interests are random number generation, the construction
of highly-uniform point sets for quasi-Monte Carlo, and
computational finance. He now works at the Caisse Centrale
Desjardins, a major financial institution in Montreal.

119

<www.iro.umontreal.ca/~lecuyer>
http://www.iro.umontreal.ca/~lecuyer

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

