
Proceedings of the 2005 Winter Simulation Conference
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

THE OPTIMIZING-SIMULATOR: MERGING SIMULATION AND OPTIMIZATION
USING APPROXIMATE DYNAMIC PROGRAMMING

Warren B. Powell

Department of Operations Research and Financial Engineering
Princeton University

Princeton, NJ 08544, U.S.A.
ABSTRACT

There has long been a competition between simulation and
optimization in the modeling of problems in transporta-
tion and logistics, machine scheduling and similar high-
dimensional problems in operations research. Simulation
strives to model operations, often using rule-based logic.
Optimization strives to find the best possible solution, min-
imizing costs or maximizing profits. In this tutorial, we
show how these two modeling technologies can be brought
together, combining the flexibility of simulation with the
intelligence of optimization.

1 INTRODUCTION

There is a broad range of problems that arise under the
umbrella of dynamic resource allocation in which there is
a healthy debate: should we optimize or simulate? This
question has been particularly prominent in the transportation
and logistics community where optimization has been the
favored strategy of academics, while many practitioners
prefer simulation. In this paper, we propose that these
problems can be best modeled using a hybrid that we refer
to as the “optimizing-simulator.”

A nice illustration of the debate is the modeling of
military airlift operations. The analysis group at the Airlift
Mobility Command (AMC), which plans the movements of
cargo aircraft for the U.S. air force, has long used simulation,
originally in a model called “MASS” and more recently in
a rewritten model called “AMOS.” The model simulates
the movement of a variety of cargo aircraft (e.g. C-5,
C-17, C-141, Boeing 747, KC-10 and KC-135) to move
“requirements” that consist of a mixture of freight and
passengers. The demands on the system are captured using
a “TPFDD” file (time-phased, force deployment dataset) that
specifies what freight and passengers have to be moved,
including origin and destination, time of availability and the
characteristics of the freight. Schank et al. 1991 provides
a review of simulation models for military airlift.
96
Competing against AMOS is a series of optimization-
based models such as CONOP (Killingsworth and Melody
1997), THRUPUT II (Rosenthal et al. 1997), and most
notably NRMO (Baker et al. 2002). These models represent
the movement of aircraft and requirements (NRMO also
models pilots at a simple level) as a linear (integer) program
which is solved using a commercial solver such as Cplex.
The most common criticism of these models by practitioners
is that they assume too much about what is known when
making a decision (decisions at time t “see” information
about the future that would not occur in practice). In
addition, these models are not able to handle any of the
many sources of uncertainty (last minute customer requests,
weather delays, equipment failures). Often unstated but just
as important is the difficulty of handling complex system
dynamics (for example, an aircraft failure may block a
runway at a small airbase if the refueling station is located
near the runway).

The issues that arise in the modeling of military airlift
also arise in a variety of problems in transportation and
logistics, supply chain management and even certain types
of manufacturing operations such as flexible flow shops.
The problem is that we are managing multiple resources
which have to be assigned to various tasks where we have
flexibility in the assignment of which resource should be
assigned to each task. These are often referred to as dynamic
assignment problems, where we have to assign resources
to tasks over time in the presence of different types of
uncertainty. We have to decide which resource is best for
each task, recognizing that serving a task not only occupies
the resource for a period of time, but also changes the
attributes of the resource (an aircraft moving a load of
freight, a machine that has to incur a setup to handle a
particular job).

The case for using simulation is that it easily handles
uncertainty and the modeling of complex system dynamics.
A problem that simulation modelers face is the dimension-
ality of the decision vectors. Most simulation models either
do not require simulating decisions (when a job finishes

Powell
machine i, it goes to machine j with probability pij) or
use fairly simple rules (when the job finishes machine i,
assign it to machine j1 if the queue is less than n, otherwise
assign it to machine j2, . . .). By contrast, an optimization
model can formulate the problem of assigning resources to
tasks and solve it as a linear program. However, standard
practice (this is especially true in the transportation and
logistics community) is to then formulate the entire prob-
lem (over time) as a single, large optimization problem.
In between are simulation models that solve a sequence of
smaller optimization problems at each point in time. These
models typically ignore the impact of decisions now on the
future.

Often overlooked in the debate is the property that the
behavior of a simulation is guided by user-specified rules,
while the behavior of an optimization model is determined
by a cost function (as well as the constraints). Each approach
brings specific strengths. If the behavior of a simulation
model is judged (typically by a domain expert) to be incor-
rect, it can be modified by changing the relevant rules. By
contrast, tuning an optimization model requires changing
the costs and hoping that the resulting change produces the
desired behavior. Designing a cost model which produces
the desired behavior can be difficult and time-consuming.

In this paper, we argue that optimization and simula-
tion can be merged, producing a technology that handles
the randomness and complexities of simulation with the
intelligence of optimization. Unlike simulations that solve
sequences of myopic optimization models, we propose a
strategy that optimizes over time, and show that for some
problem classes, the result is solutions that can compete
with an optimization problem. At the same time, we wish
to retain at least some of the ability possessed by simulation
models where we can modify the behavior of the system by
changing rules, rather than by explicitly tuning the costs.

Our presentation begins in section 2 with an introduction
to the military airlift problem which has seen considerable
attention from the simulation and optimization communities.
We use this setting to introduce a mathematical model that
forms the basis for the rest of the presentation. Section 3
then presents two types of myopic policies: one that uses
rule-based logic, while the other uses a cost-based objective
function. Then, section 4 describes how to use approximate
dynamic programming to produce decision functions that
optimize over time (rather than just at a point in time). This
logic takes us from a classical simulation framework to one
that adaptively learns better behaviors. This logic can work
quite well as long as the cost function is accurate, but a
common problem is that even optimal solutions may be
unacceptable. Section 5 shows how a cost-based model can
be combined with rule-based logic (expressed in the form
of fairly simple rules known as low-dimensional patterns).
9

2 AN ASSET ALLOCATION PROBLEM

The ideas in this paper are designed for modeling a broad
range of complex resource allocation problems. At the
same time, we recognize that a specific example can greatly
facilitate communication. For this reason, we briefly present
the military airlift problem in section 2.1. We then present
a general mathematical modeling framework for resource
allocation in section 2.2.

2.1 A Military Airlift Problem

The military airlift problem involves modeling the move-
ment of aircraft (possibly including pilots) around the world
to move a set of cargo (which can include a mixture of
passengers and freight), as illustrated in Figure 1. The cargo
becomes available at a specified point in time, and the goal
is to move it as quickly as possible.

Airlift capacity

Cargo movements

Figure 1: A Military Airlift Problem

Modeling an airlift problem begins with the challenge
of choosing an aircraft to move a block of cargo. Choosing
an aircraft also implies choosing the route the aircraft will
follow as it moves empty to pick up the cargo, and then
loaded to get the cargo to the destination. Each aircraft has
its own range before needing to refuel, and this range will
depend on how much cargo is being carried. It is reasonable
to specify different routes (sequences of airbases) through
which the aircraft can move from origin to destination,
but it is necessary to determine whether the movement is
feasible. For example, it is often necessary to use fairly small
airbases which can quickly reach capacity. The simulator
has to determine if an airbase will be at capacity at the time
the aircraft needs to move through the airbase. If an airbase
is judged to be at capacity, a different route (or aircraft)
will have to be used.

Once an aircraft is chosen to move a specific block of
cargo, it is also necessary to simulate loading and unloading
(which may need special equipment), refueling and repairs.
A model may also capture the movement of crews, which
7

Powell
will require capturing the rules of what a crew can and
cannot do.

An airlift simulation may also have to capture several
sources of randomness. Requests to move cargo may be
known in advance (but changes may be made at the last
minute), or requests may arrive randomly over time. Aircraft
may be delayed by weather or the need for repairs.

2.2 A Mathematical Model

In this section, we present a general mathematical model of
a dynamic resource allocation problem, using from time to
time the airlift mobility problem to illustrate the notation. We
assume that our problem consists of assigning “resources”
to “demands.” We model resources (e.g. aircraft) using:

a = The vector of attributes that describe a single
resource, a = a1, a2, . . . , an.

A = The set of possible attributes.

RA
ta = The number of aircraft (our resources) with

attribute a at time t .
RA

t = (RA
ta)a∈A.

R̂A
ta(Rt) = The change in the number of resources with

attribute a due to exogenous information that
arrived during time interval t .

R̂A
t = (R̂A

ta)a∈A.

A given aircraft will have a vector of attributes at at time
t . It is often the case that an aircraft moving from location
i to location j will, at time t , be enroute, arriving at some
point in the future. We model the actionable time as one
of the attributes. The function R̂A

ta(Rt) represents random
information about aircraft. It could include new aircraft
that unexpectedly enter the system (R̂A

ta(Rt) would be the
number of new aircraft with attribute a that are learned by
time t). Alternatively, a failure or delay would be captured
by subtracting an aircraft (with attribute a) from Rta and
adding it to RA

ta′ , if a′ is the new attribute vector.
We assume that decisions are made in discrete time,

but that exogenous information and physical events occur
in continuous time. We label the time interval between
t − 1 and t as time interval t , and we assume that all
exogenous information (such as R̂A

t) arrives continuously
during time interval t . In the formal language of probability,
we would let � be the set of elementary outcomes of all
exogenous information, and let Ft be the sigma-algebra
defined by the information available up through time t . In
our notation, any variable indexed by t is therefore Ft -
measurable. Equivalently, if a variable is indexed by t , it
can be computed using the information known up through
time t .
9

We model demands in a similar way:

b = The vector of attributes that describe a
single demand, b = b1, b2, . . . , bn.

B = The set of possible demand attributes.

RD
tb = The number of demands with attribute b

at time t .
RD

t = (RD
tb)b∈B.

R̂D
tb(R

D
t) = The change in the number of demands

with attribute b due to exogenous
information that arrived during time
interval t .

R̂t = (R̂D
tb)b∈B.

Here, R̂D
tb(Rt) will capture new customer requests and pos-

sibly changes in customer requests. Included in the vector b

will be information about pickup and delivery time windows.
Rtb might represent the size of the request (e.g. number of
pounds of cargo), or simply the number of cargos (each of
which require a whole aircraft) with a particular vector of
characteristics.

Our notation allows us to write the state of the system
(more precisely, the resource state) using:

Rt = (RA
t , RD

t).

If we wish to add pilots, we might introduce a vector RP
t

and add this to the resource state vector.
Decisions are modeled using:

d = A type of decision which can be used to act
on a resource with attribute a.

Da = The set of decisions which can be used to
act on a resource with attribute a.

xtad = The number of resources of type a that are
acted on with a decision of type d ∈ Da .

xt = (xtad)a∈A,d∈Da

Xt = The feasible region for xt .

For our presentation, we need to distinguish decisions that
couple two resources (a job is assigned to a machine, an
aircraft moves a load of freight) from decisions that simply
modify a machine (the machine incurs a setup, the aircraft
has to be repaired). We let DD represent decisions to couple
two resources (in our setting, assigning a resource to serve
a demand) and we let DM represent “modify” decisions,
where D = DD ∪ DM .

At a minimum, the decision vector must be nonnegative
and satisfy flow conservation:

∑
d∈D

xtad = Rta. (1)
8

Powell
The decision set D might include flying from one location to
another, loading, unloading, repairing, refueling or simply
sitting (the “do nothing” option). In principle we can include
decisions that act on aircraft as well as the cargo (or pilots),
but we assume for our presentation that we have a single
active layer (the aircraft) and a single passive layer (the
demands). If we included pilots, this would also be an
active layer.

We model the effect of a decision on a resource using
the modify function:

M(t, a, d) → (a′, c, τ).

The modify function tells us that if we act on a resource
with attribute a at time t with decision d then the result is a
modified resource with attribute a′ (e.g. the plane changes
location or is repaired), generates a cost (or contribution)
c, where τ is the time required to finish the action (τ can
also be captured as an attribute). It is useful to define the
terminal attribute function aM(t, a, d) which returns the
attribute a′. For algebraic purposes, we also define the
indicator function:

δa′(t, a, d) =
{

1 If aM(t, a, d) = a′

0 Otherwise.

This notation allows us to write the resource dynamics using:

Rx
t,a′ =

∑
a∈A

∑
d∈Da

δa′(t, a, d)xtad (2)

Rt+1,a′ = Rx
t,a′ + R̂t+1,a′ . (3)

Here, Rx
t is called the post-decision resource vector, while

Rt is the pre-decision resource vector. Rx
t captures what we

know about the state of the resources after we have made
a decision xt , but before any new information has arrived.
These two forms of the resource vector play important roles
in the design of our algorithmic strategy. It is sometimes
useful to represent these dynamics using a general transition
function (vocabulary that is common in simulation but less
familiar in optimization):

Rt+1 = RM(Rt , xt , R̂t+1). (4)

In this representation, xt depends purely on Rt . Alterna-
tively, we can write a recursion for the post-decision state
variable using:

Rx
t+1 = RM,x(Rx

t , R̂t+1, xt+1).

Here, xt+1 gets to “see” Rx
t as well as R̂t+1.
9

We next define the cost function using

ctad = The cost of applying decision d to a
single resource with attribute vector
a at time t .

Ct(Rt , xt) =
∑
a∈A

∑
d∈Da

ctadxtad .

At this point we do not wish to describe how a decision is
made (this is the focus of the remainder of the paper), but
we define a family of decision functions (policies):

Xπ
t (Rt) = A decision function which returns xt ∈ Xt

given a resource vector Rt and decision rule
π ∈ �.

� = A set of decision functions (policies).

Our goal is to find the best decision function (or policy) to
maximize:

min
π∈�

E

{
T∑

t=0

γ tCt (Rt , X
π
t (Rt))

}
, (5)

where γ is a discount factor.
At this point it is useful to discuss the cost function

which was introduced with little discussion. In practice,
many simulation models do not even have a cost function
(this is true of the airlift simulator). Simulation models do
not always need a cost function (decisions may be made
using predefined rules). For problems in transportation and
logistics, it is usually possible to define a basic cost function
(e.g. total miles traveled), but for many complex problems,
such cost functions do not capture all the issues.

In practice, finding an optimal solution to (5) is com-
putationally intractable, and many modelers will claim that
the goal is not to optimize anything, but rather to simulate.
In the vast majority of our own work, we are also focusing
on simulating an existing decision process, but we have
found that real-world decision making tends to be rational
(that is, it is approximately optimizing an appropriate cost
function). We revisit this topic later in the paper.

3 SIMULATING MYOPIC POLICIES

We start by illustrating some simple policies that we can
use if all we want to do is “simulate” the system. More than
simply illustrating some basic ideas, these simple policies
form the foundation of the more advanced policies we
introduce later on.

3.1 A Rule-based Policy

Perhaps the most common policy used in simulation is a
rule of the form “when in this state, take this action.” This
9

Powell
is exactly what is used in the AMOS simulator used by
the airlift mobility command. The rule works roughly as
follows. At time t , there is a list of aircraft, sorted on the
basis of availability, and a list of customer demands, also
sorted based on the time at which they should leave. The
problem is to find an aircraft that can satisfy the requirement.

The rule specifies that we take the first customer demand
that needs to be served, and try to find an aircraft. This logic
starts with the first available aircraft, and then undertakes a
series of calculations to see if this assignment is feasible.
For example, this feasibility check requires tracing the actual
route the aircraft will use to be sure that airbase capacity
constraints are not violated anywhere. If there is a violation,
the aircraft is rejected and the logic moves to the next aircraft
in the list. Note that the rule does not consider the distance
from the current location of the aircraft to the origin of the
order.

Rule-based policies have a difficult time making trade-
offs (Should we use a larger aircraft that is farther away?
Should we use an aircraft that is closer but is not yet avail-
able and will delay the movement of the order?). They also
struggle with goals such as “We prefer not to use C-141’s on
movements into Saudi Arabia.” But they offer tremendous
flexibility, providing the analyst with direct control over the
behavior of the system.

Rule-based policies have long been used as a practi-
cal tool for a variety of dynamic problems. In machine
scheduling, shortest-job-first has long been recognized as
an effective policy for minimizing the average wait time. In
certain inventory problems, a myopic policy that specifies
that you place an order xt = S −Rt whenever the inventory
Rt falls below a specified level s can be optimal. These
simple policies can be optimal, but typically only under
very special situations.

3.2 Myopic Cost-based Policies

Assume that we can measure the cost of assigning an aircraft
with attribute a to a demand with attribute b. We might
consider a single demand and a list of aircraft, and choose the
aircraft with the lowest cost (Figure 2a). This seems like a
trivial type of optimization, but it involves the transition from
a rule-based to a cost-based policy. Instead of controlling
the behavior of the system through a rule, we now face
the challenge of designing a cost function that produces the
desired behavior.

There is another “cost” to using a cost-based policy.
In our original rule-based policy, we pick a demand, then
pick an aircraft and then determine whether the assignment
is feasible. If so, we are done. Determining feasibility (for
the military airlift problem) is relatively time-consuming.
With a cost-based policy, we first evaluate a series of pos-
sible assignments and then use an optimization algorithm
10
�

�

�

�

Requirements Aircrafts

2a: One demand, multiple aircraft

�

�

�

�

Requirements Aircrafts

2b: Multiple demands and aircraft

Figure 2: A Cost-based Policy for One Demand and Multiple
Aircraft, or Multiple Demands and Aircraft Simultaneously

to choose the best. We need to consider the time required
to cost out all the possible assignments.

If we are going to generate costs for different assign-
ments, then we might as well consider a set of aircraft and
demands. We might restrict our set to aircraft and demands
that can be acted on now (for example, the aircraft is sitting
at an airbase waiting to be assigned, and the demand is
available to be moved now). Or, we could also include
aircraft and demands that are actionable within a specified
planning horizon. We model this by defining:

Aph
t = The subset of attributes where the resource

(aircraft) is actionable within a specified plan-
ning horizon of time t .

DD,ph
t = The set of decisions to assign aircraft to a

demand that is actionable within a specified
planning horizon of time t .

Each decision d ∈ DD,ph
t corresponds to a decision to

assign an aircraft to some type of demand. We designate
the type of demand as bd , since each element of DD,ph

t

has to correspond to an element of the demand attribute
space B. The problem of assigning multiple aircraft (more
specifically, multiple types of aircraft) to multiple demands
0

Powell
(depicted in Figure 2b) is given by the linear program:

max
xt∈Xt

∑
a∈Aph

t

∑
d∈DD,ph

ctadxtad (6)

subject to:

∑
d∈Dph

t

xtad = RA
ta a ∈ Aph

t (7)

∑
a∈Aph

t

xtad = RD
tbd

d ∈ DD,ph
t (8)

xtad ≥ 0. (9)

Problem (6)-(9) is a fairly simple linear program. In fact,
it is a network model and will return integer solutions.
Problems with thousands of resource and demand types, if
the linear program is properly engineered, can be solved
on a state-of-the-art PC.

The myopic problem represents a class of decision func-
tions. In this example, it requires solving a fairly simple
linear program. In other settings, the problem may be more
complex. For example, we may have a set of jobs and ma-
chines, and find that we have to solve a machine scheduling
problem (but only for the jobs that we already know about
at time t). In a logistics setting, we might have to schedule a
fleet of vehicles serving a series of known demands (the ma-
chine scheduling problem and vehicle routing problem are
quite similar). In the semiconductor industry, we might face
the problem of deciding how to design batches of product (a
similar problem in freight transportation involves deciding
where to send a truck, and what packages to put on the
truck).

Simulations that involve solving sequences of optimiza-
tion models have been widely used in engineering practice,
as well as in the research literature. Their biggest strength
is their ability to use a cost function to make tradeoffs.
But they ignore the impact of decisions now on the future.
Are we using the right type of aircraft? If we send a job
to a machine that requires a setup, how many jobs in the
future will require the same setup? The issues are partic-
ularly important when we need to make decisions now in
anticipation of demands in the future that have not arrived
yet. If we have an idle machine, should we perform a setup
because of jobs that might arrive in the future (given that
we have the time now to do the setup)? Should we move
a truck to a location that might need the truck (if we start
the movement now, will we be better positioned to serve
the demand)?
10
4 APPROXIMATE DYNAMIC PROGRAMMING

We now try to solve the optimization problem in (5) by
identifying policies that make good decisions not just for
now, but over time. In theory this can be done using dy-
namic programming, but in practice this has not proven to be
practical. In this section, we introduce the emerging field of
approximate dynamic programming, and describe a specific
adaptation that works especially well for resource allocation
problems. This adaptation overcomes some of the limita-
tions of established algorithms known in the approximate
dynamic programming literature (for good introductions,
see Bertsekas and Tsitsiklis (1996) and Sutton and Barto
(1998)).

4.1 The Optimality Equation and the Curses
of Dimensionality

Since the 1950’s it has been recognized that problems of the
form (5) can be solved using Bellman’s optimality equations,
given by:

Vt (Rt) = max
xt∈Xt

Ct (Rt , xt) + γ
∑
r ′∈R

p(r ′|Rt , xt)Vt+1(r
′)

(10)

where R is the space of possible values of Rt , and
p(r ′|Rt , xt) is the probability that Rt+1 = r ′ given state Rt

and action xt . An equivalent form of this equation is

Vt (Rt) = max
xt∈Xt

Ct (Rt , xt) + γ E {Vt+1(Rt+1)|Rt } , (11)

where Rt+1 is given by the transition function (4). The
problem with computing either of these forms of the opti-
mality equations has long been recognized as the “curse of
dimensionality.” If Rt is a vector, the number of possible
values of Rt quickly becomes very large (problems with
10100 states are actually not that large in practice). As
a result, computing (11) (or (10)) for each Rt is simply
impossible.

In practice, the problem is much worse than this. We
actually have three curses of dimensionality: the state space,
the outcome space and the action space. Specifically, in
addition to the large number of possible values of Rt ,
computing the expectation in (11) (the expectation is implicit
in (10)) involves taking a sum over all possible values of
the vector R̂t , which can be extremely large (in practical
problems, R̂t can have thousands or tens of thousands
of dimensions). Finally, xt is also a vector (again with
thousands or tens of thousands of dimensions), eliminating
the ability of using any algorithm that requires searching
over all possible decisions.
1

Powell
4.2 An Algorithmic Framework

In practice, we have found that the most difficult problem we
face when using (11) is computing (or even approximating)
the expectation. We solve this by formulating the optimality
equations around the post-decision state variable:

V x
t−1(R

x
t−1) = E

{
max
xt∈Xt

Ct (R
x
t−1, R̂t , xt)

+γV x
t (RM,x(Rx

t−1, R̂t , xt))|Rx
t−1

}
.

(12)

Readers may find it helpful to understand (12) by writing
the optimality equation in terms of both pre- and post-
decision state variables. We first break down the transition
equation (4) into two steps. We may write the transition
from pre-decision to post-decision state using:

Rx
t = RM,1(Rt , xt).

Then the transition from post-decision to pre-decision is
given by:

Rt+1 = RM,2(Rx
t , R̂t+1).

Using this two-step transition, we may write the value
functions for pre- and post-decision state variables using:

Vt (Rt) = max
xt∈Xt

{
Ct(R

x
t−1, R̂t , xt)

+γV x
t (RM,1(Rt , xt))

}
V x

t (Rx
t) = E

{
V x

t+1(R
M,2(Rt , R̂t+1))|Rx

t

}
.

The concept of pre- and post-decision state variables are
familiar to readers working with decision trees, where it
is common to write decision nodes (where we choose an
action) and outcome nodes (where we observe an exogenous
event).

Our next step is to drop the expectation in (12) and
write, for a specific sample realization R̂t (ω):

V x
t−1(R

x
t−1, R̂t (ω)) = max

xt∈Xt (ω)
Ct (R

x
t−1, R̂t (ω), xt)

+ γV x
t (RM,x(Rx

t−1, R̂t , xt)).

(13)

The key here is that given the post-decision state Rx
t−1

and the information from time interval t , R̂t (ω), we can
compute xt by solving a deterministic function. Readers
should verify that we cannot do this same trick using the
pre-decision state variable.
1

The last step in our process is to replace the value
function V x

t (which we still do not know) with a suitable
approximation which we denote, for the moment, V̄t (R

x
t):

∼
V

x

t−1 (Rx
t−1, ω) = max

xt∈Xt (ω)

{
Ct(R

x
t−1, R̂t (ω), xt)

+γ V̄t (R
x
t (xt))

}
.

∼
V

x

t−1 (Rx
t−1, ω) is a placeholder. Assuming we can devise a

reasonable approximation V̄t (R
x
t), we now face the challenge

of choosing what may be a high-dimensional decision vector
xt .

4.3 Approximation Strategies

The next step is the design of an approximation V̄t (R
x
t (xt)).

Our first consideration is computational. We want to design
an approximation strategy that does not destroy any problem
structure that our algorithm is exploiting. It is useful to
start with the myopic problem:

xt = arg max
xt∈Xt

Ct (R
x
t−1, R̂t , xt).

Does this problem have any particular mathematical struc-
ture? Is it an assignment problem? A linear program? A
shortest path problem? A machine scheduling problem? A
vehicle routing problem? Think about how you would solve
this problem. Are you using a linear programming package,
or your favorite tabu search algorithm? Algorithms such as
tabu search and genetic algorithms typically require little or
no problem structure, whereas integer programming-based
formulations often exploit problem structure.

The simplest approximation strategy is known as a
“table lookup” function, which simply means that for any
discrete state Rt , we find a function V̄t (Rt) that produces an
estimate of the value function given the state. This strategy
requires that we estimate one parameter that gives the value
of being in the state. Even small problems can have 1010

- 10100 states, so this is often impractical.
Another strategy is to use the structure of the problem

to identify a regression model which is parameterized by a
relatively small set of parameters θt . To do this, we start
by identifying a set of features which appear to capture the
important behaviors. For example, we might define:

φf (Rt) = A function of the (resource) state variable,
f ∈ F , where:

F = The set of functions.

The set of features (φf (Rt))f ∈F are often referred to as
basis functions. Given a set of basis functions, we can
02

Powell
formulate a value function approximation using:

V̄t (Rt |θ) =
∑
f ∈F

θf φf (Rt). (14)

In machine scheduling, one basis function might be the
total number of jobs of a particular priority. Another might
be the number of jobs needing a particular setup. In a
transportation problem, we might define a basis function as
the number of vehicles with a particular attribute:

φa(Rt) = Rta. (15)

We call such functions “linear in the resource state” (to
distinguish them from value functions which are linear in
the parameters). We might also use:

φa(Rt) = (Rta)
2.

We assume that the number of parameters, given by |F |,
is much smaller than the number of possible values of the
state Rt . In both examples above, the number of basis
functions is the same as the size of the attribute space A,
which will be much smaller than the number of states. If
we are managing complex resources where a ∈ A may
have a dozen (or several dozen) attributes, even |A| may
be quite large. In this case, we may wish to aggregate
the attribute space. Let G(a) be a function that maps the
original attribute vector a to a more compact attribute vector
f (a feature f may be an index or a vector of elements).
Our basis function might then be:

φf (Rtf) =
∑
a∈A

Rta1{G(a)=f }.

Of course, we may prefer to use a nonlinear relationship,
such as:

φf (Rt) = √
Rtf , (16)

where Rtf = ∑
a∈A Rta1{G(a)=f }. For discrete resource

allocation problems, an effective approximation is to use
piecewise linear functions:

V̄ta(Rta) =
∑
a∈A


�Rta�∑

i=1

v̄tai + (Rta − �Rta�)v̄ta	Rta


 ,

(17)

where v̄ta = (v̄tai)i is our vector of parameters to be
estimated. Piecewise linear functions are useful when we
are not comfortable using a linear function, but do not know
the shape of the function.
10
The design of a value function approximation is the
heart of any policy which wants to capture the impact of
decisions now on the future. While there are some broad
guiding principles and some specific tricks that can be used,
for the most part the design of a value function approximation
tends to be highly customized to the problem at hand. When
designing the function, one question that should be resolved
is whether the value function is needed to give you the value
of being in a state, or the marginal value of another resource
of a particular type. If you are solving the myopic problem
using a linear (or integer) program, it is quite likely that
you are more interested in the marginal value of another
resource with a particular attribute. This is most apparent
with the separable functions such as (15) or (16).

4.4 Estimation Strategies

Once we have defined the structure of the approximation, we
next face the problem of actually estimating the parameters.
There are a variety of techniques for doing this, but these
can be organized along a few basic principles. All of them
depend on using a Monte Carlo sample to create a random
observation of the true value function, which is then used
to update our approximation. We assume that we are at
iteration n, following a sample path ωn using value function
approximations V̄ n−1

t (Rt) computed at iteration n−1. There
are two classes of strategies for obtaining a Monte Carlo
estimate of the true value function. One is to solve, for a
given post-decision state R

x,n
t−1 and random sample R̂t (ω

n):

V̂ n
t = max

xt∈Xt (ωn)
Ct (R

x,n
t−1, R̂t (ω

n), xt) + γ V̄ n−1
t (Rx

t (xt)).

(18)

Here, V̂ n
t is directly a function of V̄ n−1

t . In the second
method, we use the approximations (V̄ n−1

t)Tt=1 to generate
a sequence of decisions:

xn
t = arg max

xt∈Xt (ωn)
Ct (R

x,n
t−1, R̂t (ω

n), xt) + γ V̄ n−1
t (Rx

t (xt)),

(19)

for t = 1, . . . , T . We compute V̂ n
t using:

V̂ n
t = Ct(R

x,n
t−1, R̂t (ω

n), xn
t) + γ V̂ n

t+1, (20)

which is computed backward through time starting with
V̂ n

T +1 = 0. Computing V̂ n
t using equation (18) requires a

single forward pass through time, computing both decisions
and sample values V̂ n

t . In the second method, we compute
the decisions xn

t through a forward pass using (19), but then
compute the V̂ n

t using a backward pass through equation
(20).
3

Powell
The forward pass method for computing V̂ n
t (equation

(18)) is easier to implement but generally provides slower
convergence. The reason is that the approximations V̄ n

t

are biased (because they are approximation and therefore
are not the true values). If we use the forward/backward
pass method ((19) to compute the decisions and (20) to
compute V̂ n

t), it is still the case that the observations V̂ n
t

are biased, but at least they are unbiased samples of the
value of following the policy determined by V̄ n−1.

Once we have our Monte Carlo observations V̂ n
t , we

next have to update the value functions themselves. If we
are using a simple table-lookup approximation (one value
for each state) then we use

V̄ n
t−1(R

x,n
t−1) = (1 − αn)V̄ n−1

t−1 (R
x,n
t−1) + αnV̂ n

t , (21)

where αn is a stepsize betwee 0 and 1. There is a broad
range of stepsize formulas to choose from (see George and
Powell (2005a) for a review), but a simple but effective
class of strategies is of the form:

αn = a

a + nβ − 1
,

where a and β are parameters that have to be tuned (a = 8
and β = .7 are a good first choice for many problems).

If we are using a basis function representation, we can
update the parameter vector θ using a simple formula. Let
θ̄ n−1 be our current estimate of θ . The same principles
that give us (21) for updating a table-lookup representation
produce the following updating formula when using a basis
function representation:

θ̄ n = θ̄ n−1 − αn(V̄t (R
n
t |θ̄ n−1) − V̂ n

t)∇θ V̄
n−1
t (Rn

t |θn)

= θ̄ n−1 − αn(V̄t (R
n
t |θ̄ n−1) − V̂ n

t)φ(Rn
t),

where φ(Rn
t) is a |F |-element vector.

There is a broad range of resource allocation problems
where we are more interested in the marginal value of
increasing Rta by one unit than we are in the total value
V̂ n

t . Let V̂ n+
t be computed just as we computed V̂ n

t (either
with the forward pass, or forward/backward pass method),
but instead of starting with R

x,n
t−1, we start with R

x,n
t−1 + 1.

For example, if we use the pure forward pass method, then

V̂ n+
ta = max

xt∈Xt (ωn)
Ct (R

x,n
t−1 + eta, R̂t (ω

n), xt)

+ γ V̄ n−1
t (Rx

t (xt)),

where eta is a |A|-dimensional vector of 0’s with a 1 in the
element corresponding to the element a. Next compute

v̂n
ta = V̂ n+

ta − V̂ n
t .
1

Finally, smooth these into estimates:

v̄n
t−1 = (1 − αn)v̄n−1

t−1 + αnv̂n
t .

We note in passing that we use v̂n
t (which uses sample

information from time interval t) to estimate v̄n
t−1 which

approximates an expectation of time t (and onward) us-
ing only the information available up through time t − 1.
This produces a linear-in-the-resource state value function
approximation:

V̄ n
t−1(Rt−1) =

∑
a∈A

v̄n
t−1,aRt−1,a.

Computing v̂n
ta takes advantage of the fact that finding

V̂ n+
ta usually requires far less work than computing the initial

V̂ n
t . If the decision function is a linear program (this is the

case with our airlift problem, or virtually any other linear
resource allocation problem), we have to solve:

max
xt∈Xt

∑
a∈At

∑
d∈D

ctadxtad + V̄ n−1(Rx
t (xt)) (22)

subject to:

∑
d∈Dph

xtad = RA
ta a ∈ Aph

t (23)

∑
a∈Aph

t

xtad = RD
tbd

d ∈ DD,ph
t (24)

xtad ≥ 0. (25)

We first note that we can write

V̄ n−1
t (Rx

t (xt)) =
∑
a′∈A

v̄n−1
ta′ Rx

ta′(xt)

=
∑
a′∈A

v̄n−1
ta′

∑
a∈A

∑
d∈D

δa′(t, a, d)xtad

=
∑
a∈A

∑
d∈D

xtad

∑
a′∈A

v̄n−1
ta′ δa′(t, a, d)

=
∑
a∈A

∑
d∈D

xtad v̄n−1
t,aM(t,a,d)

.

Substituting the result into (22) gives:

max
xt∈Xt

∑
a∈At

∑
d∈D

(
ctad + v̄n−1

taM(t,a,d)

)
xtad . (26)

Solving (26) subject to (23)-(25) is a linear program. The
dual variable for the flow conservation constraint (23) gives
us an estimate of v̂n

ta with no additional work. For more
difficult problems, computing the incremental effect of an
04

Powell
additional resource is typically much easier than solving
the problem from scratch.

Linear-in-the-resource state approximations can work
well, but this is problem dependent. It is often the case
that the value function is nonlinear in the resources. There
are several strategies, but a particularly simple one takes
advantage of knowledge of the problem. Assume that we
can use our understanding of the problem to develop an
initial approximation that we call V̄ n

t (Rt). For example,
we might use

V̄ 0
ta(Rta) = θta(Rta − R̄ta)

2,

where R̄ta is a rough approximation of what we think
might be the “right” amount of resources with attribute a

(this can be computed at any level of aggregation). The
SHAPE algorithm (Cheung and Powell 2000) updates the
approximation using

V̄ n
ta(Rta) = V̄ n−1

ta (Rta) + αn(v̂n
ta − ∇V̄ n−1

ta (Rn
ta))Rta.

The SHAPE algorithm is quite easy to use, but works
best when the initial approximation V̄ 0

ta(Rta) reflects a real
understanding of the problem. All it does is tilt the original
approximation with a linear correction term, but it has
been found to provide very good results in certain problem
settings.

4.5 How Well Does it Work?

In general, optimal solutions for stochastic, resource allo-
cation problems of a practical size are simply unachievable.
But there are several ways to obtain an indication of the
quality of the solution. One strategy is to use these methods
to solve a deterministic problem which can also be solved
using a commercial solver. Godfrey and Powell (2002)
consider a problem involving the management of fleets of
identical vehicles which have to move loads of freight from
one location to another (moving a vehicle from one location
to another is comparable to performing a machine setup).
The critical assumption is that each vehicle can serve one
demand at a time, and that if a demand is not served at a
particular point in time, it is lost.

This problem can be formulated as a linear program and
solved using standard linear programming solvers. Table 1
compares the results using approximate dynamic program-
ming to the optimal solution for problems with 20, 40 and
80 locations, over 15, 30 and 60 time period problems (for
a complete description of the experiments, see Godfrey and
Powell (2002)). The results indicate that the approximate
solutions are near-optimal.

High-quality solutions for stochastic problems do not
appear to be available. The best competition appears to be
the most widely used engineering approximation, popularly
105
Table 1: Percentage of Optimal Solution (from LP
Solver) Obtained using Piecewise Linear, Sepa-
rable Approximations (from Godfrey and Powell
2002)

Planning Horizon
Locations 15 30 60

20 100.00% 100.00% 100.00%
40 100.00% 99.99% 100.00%
80 99.99% 100.00% 99.99%

known as rolling horizon (or receding horizon) procedures.
Here, we optimize at time t using what we know at time
t plus a point forecast of future demands over a planning
horizon. We implement only what is actionable at time
t , and then rolling the clock forward one time period and
repeat the procedure. For each problem, we can find the
optimal solution assuming the entire future is known for
a particular sample path. We refer to this solution as the
posterior bound, since it is the best we could possibly do
(optimizing with perfect information).

Figure 3 shows the results of the rolling-horizon pro-
cedure against that produced by the approximate dynamic
programming solution, expressed as a percent of the pos-
terior optimal solution. This figure is for a “single com-
modity” problem where the items being managed are all
the same. Figure 4 does the same for a multicommod-
ity problem, where heterogeneous resources are managed
which can substitute for each other (at a cost) to serve the
same demand. Both problems were run for a range of dif-
ferent assumptions about substitution costs (see Topaloglu
and Powell (2005) for a more complete summary of the
experiments).

50

55

60

65

70

75

80

85

90

95

100

20/100 20/200 20/400 40/100 40/200 40/400 80/100 80/200 80/400

P
er

ce
n

t
o

f
p

o
st

er
io

r
o

p
ti

m
al

Point forecast

Approximate dynamic

Dataset (locations/fleet size)

Pe
rc

en
t o

f
po

st
er

io
r

op
tim

al

100

90

80

70

60

50

Figure 3: Percentage of Posterior Bound Produced by a
Rolling Horizon Procedure using a Point Forecast of the
Future Versus an Approximate Dynamic Programming Ap-
proximation on a Single Commodity Problem

Powell
50

55

60

65

70

75

80

85

90

95

100

Base I_10 I_40 S_II S_III S_IV R_100 R_400 c_1.6 c_8

P
er

ce
n

t
o

f
p

o
st

er
io

r
b

o
u

n
d

Point forecast

Approximate dynamic programmingPe
rc

en
t o

f
po

st
er

io
r

op
tim

al

100

90

80

70

60

50

Dataset (locations/fleet size)

Figure 4: Percentage of Posterior Bound Produced by a
Rolling Horizon Procedure Using a Point Forecast of the
Future Versus an Approximate Dynamic Programming Ap-
proximation on a Multicommodity Problem

These results are hardly conclusive for all problems,
but they are promising. At a minimum, they suggest that
relatively simple approximate dynamic programming strate-
gies can offer significantly improved results over myopic
policies or rolling horizon procedures.

4.6 Challenges

Approximate dynamic programming has been found to work
extremely well for problems in fleet management that arise
in trucking, rail and air. This said, it remains a relatively
new technology which has to be tested in the context of
specific applications. Technical challenges that should be
anticipated include:

• Stepsizes - The choice of an appropriate rule for αn

can have a significant impact on the performance
of the algorithm. If the stepsizes are too small,
convergence can be extremely slow, and it is easy
to conclude the algorithm does not work.

• Estimating v̂ - One pass or two-passes? We often
find that one-pass works well, but it can have slow
convergence. If slow convergence is a problem,
and you feel your stepsizes are large enough, try
using a backward pass.

• Large attribute spaces - It is quite easy, even when
managing relatively simple resources, for the at-
tribute vector to grow as a project progresses,
quickly producing an attribute space A that is far
too large to enumerate. A common strategy is to
use aggregation, which in this setting means esti-
mating the value of a resource with an aggregated
attribute vector. We have found that hierarchical
aggregation (estimating the value of a resource at
106
different levels of aggregation) works quite well
(see George and Powell 2005b).

• Multiple resource layers - Our introduction here
focused on one layer problems. For example, we
captured the value of aircraft in the future, but not
the demands. If we backlog demands, then we
have the problem of jointly estimating the value
of resources and demands in the future.

It is a good policy to focus initially on obtaining better
results than you would with a myopic policy. If you can
achieve this, look at your value function and see if you can
find further improvements. The real issue is whether your
value function approximation is capturing the downstream
effects of decisions made now.

5 COMBINING COST-BASED AND RULE-BASED
POLICIES

While obtaining optimal or near-optimal solutions is a worthy
goal, we have to keep in mind that it is often the case that
we are trying to simulate existing operations rather than
make them better. In many problems, minimizing a cost
function can be viewed as simulating what is typically
rational, if imperfect, decision-making. However, it is also
often the case that a cost model simply cannot capture all
the complexities of real-world operations.

Consider the following examples:

• A truckload motor carrier wishes to assign its driver
teams (two drivers in one truck) to longer loads
because it takes advantage of the fact that the truck
does not have to stop while the driver sleeps.

• The military may wish to avoid sending C-141’s
through airbases in a particular country because of
the lack of maintenance facilities for this aircraft
type.

• A printing company likes to send the print jobs for
a particular customer to a specific printing plant
because it is near the home location of the person
who has to review the quality of the printing.

• A manufacturer prefers to have a specific machine
handle certain jobs because the machine operator
is more familiar with the nuances of the job which
are not captured in the cost function.

• A railroad prefers to use high powered locomotives
on certain types of trains that have to compete
against fast moving trucks. It is possible to use
lower-powered locomotives, but the slower times
make the trains less competitive with a potential
loss of revenue.

All of these represent operating policies that are likely to
be expressed by a knowledgeable user. At the same time,

Powell
they each introduce issues that are hard to quantify as a
formal cost. Typically, it is fairly easy to express these
policies in a rule-based simulator, although even here it can
be difficult to model statements such as “we prefer to” or
“we like to avoid.” These are not hard constraints; they
are operating guidelines which the model should strive to
achieve, recognizing that exceptions can occur.

Optimization modelers have long handled these issues
by introducing artificial costs and bonuses to encourage or
discourage certain behaviors. This process, however, is ad
hoc and may require many repetitions to get the parameters
right (increasing one cost to achieve one goal can interfere
with the model’s ability to achieve other goals).

These rules can often be expressed as low-dimensional
patterns of behavior. Instead of complex “when in this state
take this action” they are of the form “if we have this type
of resource then take this type of decision.” The “type of
resource” can be modeled as a simplified attribute vector,
that we denote here by ā. Also, the decision may also be
more aggregate than an actual decision. Instead of “use
this particular aircraft to move this particular load” it can
be “use this type of aircraft to move this type of load.”
We also denote such aggregate decisions as d̄ . Our low
dimensional patterns are given by:

ρād̄ = The percent of time that we apply decisions
of type d̄ to resources with attributes of type
ā.

Let

Ga = Aggregation function that is applied to the
attribute vector a ∈ AA.

Gd = Aggregation function that is applied to the
decision d ∈ DA.

A = {Ga(a)|a ∈ AA}, the aggregated attribute
space.

D = {Gd(d)|d ∈ DA}, the aggregated decision
space.

We now define a pattern flow as the vector of flows at the
same level of aggregation as the pattern:

x̄t ād̄ =
∑

a∈AA

∑
d∈DA

a

xtad · I{Ga(a)=ā} · I{Gd(d)=d̄}

R̄tā =
∑
d̄∈D

x̄t ād̄ ,

where R̄tā is the total aggregated flow with attribute ā at
time t . To compare our solution to the static pattern, we
10
then define comparable static flows:

x̄ād̄ =
∑

t

x̄t ād̄

R̄ā =
∑

t

R̄t ā

=
∑

t

∑
d̄∈D

x̄t ād̄

ρ̄ād̄ (x) = x̄ād̄ /R̄ā

ρ̄(x) = (ρ̄ād̄ (x̄))ā∈A,d̄∈D.

We try to match the pattern flow by adding a penalty term
to our objective function, given by

H(ρ̄(x), ρ) =
∑
ā∈A

∑
d̄∈D

R̄ā(ρ̄ād̄ (x̄) − ρād̄)2.

H(ρ̄(x̄), ρ) is known as the pattern metric. We add it to
the cost function to obtain the modified objective for our
decision function:

xt (θ) = arg max
xt∈Xt

∑
a∈AA

∑
d∈DA

a

ctadxtad − θH(ρ̄(x), ρ),

where θ is a scaling factor. Normally, adding a separable
penalty term does not complicate the algorithmic solution.
When we are managing discrete assets, it is useful to re-
place the quadratic term with a piecewise linear term, with
breakpoints at integer values for flows.

The more significant problem is that our patterns are
static (we do not have patterns that tell us what to do at time
t), but decisions are dynamic. We can handle this effectively
using a Gauss-Seidel strategy where we compute the pattern
metric at time stage t by combining decisions xn

t ′ for t ′ < t

with decisions from the previous iteration xn−1
t ′ for t ′ > t .

These are held fixed at time t while we are optimizing only
over xn

t . For more details, we refer the reader to Powell,
Wu and Whisman (2004) and in particular to Marar and
Powell (2005).

Matching patterns requires that the simulator be run
iteratively. This is also required if we use approximate
dynamic programming, so both can be performed at the
same time. Our experience is that pattern matching works
after only three or four iterations.

An illustration of this idea is given in Figure 5. In this
experiment, we were given a pattern (expressed as expert
knowledge) that specified the percent of time that aircraft
moving through a particular airbase was of a particular type.
Without any guidance, the model would use this aircraft
approximately 18 percent of the time. We then varied this
pattern from 0 to 100, with different values for the penalty
weight θ . As θ approached 1000, the pattern matching
7

Powell
Pattern flow v .s. expert knowledge

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6

Expert knowledge

P
a

tt
e

r
n

fl
o

w

���

���

���

����

�����

������

Exact match

Figure 5: Percent of Time a Particular Activity Happened
against the Pattern Prescribing the Fraction of Time the
Activity Should Happen, for Different Values of θ (from
Powell, Wu and Whisman 2004)

logic would almost perfectly match the desired pattern. For
smaller values, the fraction of time that we used this aircraft
at this airbase would increase as we increased the pattern,
but would not necessarily match the desired pattern. This
experiment indicates how the pattern matching logic can
encourage desirable behavior from the model.

6 CONCLUDING REMARKS

The optimizing-simulator is a modeling and algorithmic
strategy that combines the ability of math programming
to handle high-dimensional resource allocation problems
with the flexibility of simulation to handle uncertainty and
complex system dynamics. It requires formulating a decision
function which may be myopic (rule-based or cost-based),
or may use two forms of adaptive learning.

The first form of adaptive learning uses approximate
value functions so that decisions now can use at least an
approximate estimate of the impact of decisions on the future.
For fairly simple resource allocation problems, it has been
shown that suitably chosen value function approximations
can produce near-optimal solutions.

The second recognizes that cost-based objective func-
tions are often imperfect, resulting in decisions that are
quickly criticized by a knowledgeable expert. These criti-
cisms can often be expressed as low-dimensional patterns.
We encourage our model to match these patterns by penal-
izing deviations from the patterns. Since these patterns are
almost always static, we have to run the model iteratively to
10
adjust our time-dependent behavior to match these average
patterns.

By retaining a cost-based objective function, we can
easily handle fairly complex tradeoffs that are difficult to
capture in a rule-based decision function. Such logic is crit-
ical for more complex resource allocation problems (which
are common in transportation and logistics) which require
the power of algorithms drawn from the field of math pro-
gramming. However, our experience implementing these
models with companies has shown us that cost-based models
often do not produce desired behaviors. Low-dimensional
patterns help retain some of the flexibility to simply tell the
model what to do.

In conclusion, when deciding whether to simulate or
optimize, the answer appears to be to combine both tech-
nologies.

ACKNOWLEDGMENTS

This research was supported in part by grant AFOSR-
FA9550-05-1-0121 from the Air Force Office of Scientific
Research and NSF grant CMS-0324380. The paper also
benefited from a number of helpful comments by Douglas
Morrice for which we are very appreciative.

REFERENCES

Baker, S., Morton, D., Rosenthal, R. and Williams, L. 2002.
Optimizing military airlift, Operations Research 50(4):
582–602.

Bertsekas, D. and Tsitsiklis, J. 1996. Neuro-Dynamic Pro-
gramming, Athena Scientific, Belmont, MA.

Cheung, R. K.-M. and Powell, W. B. 2000. SHAPE:
A Stochastic Hybrid Approximation Procedure
for Two-Stage Stochastic Programs. Operations
Research, 48(1): 73–79. Available online at
<http://www.castlelab.princeton.edu/
Papers/>

George, A. and Powell, W. B. 2005a. Adaptive step-
sizes for recursive estimation with applications in
approximate dynamic programming, Technical report,
Department of Operations Research and Financial
Engineering, Princeton University. Available online at
<http://www.castlelab.princeton.edu/
Papers/>

George, A. and Powell, W. B. 2005b. Value Function
Approximation using Hierarchical Aggregation for
Multiattribute Resource Management, Department
of Operations Research and Financial Engineer-
ing, Princeton University. Available online at
<http://www.castlelab.princeton.edu/
Papers/>

Godfrey, G. and Powell, W. B. 2002. An adaptive, dy-
namic programming algorithm for stochastic resource
8

http://www.castlelab.princeton.edu
http://www.castlelab.princeton.edu
http://www.castlelab.princeton.edu
http://www.castlelab.princeton.edu
http://www.castlelab.princeton.edu
http://www.castlelab.princeton.edu

Powell
allocation problems I: Single period travel times’, Trans-
portation Science 36(1): 21–39. Available online at
<http://www.castlelab.princeton.edu/
Papers/>

Killingsworth, P. and Melody, L. J. 1997. Should C-17’s be
deployed as theater assets?: An application of the conop
air mobility model Technical report rand/db-171-af/osd,
Rand Corporation.

Marar, A. and Powell, W. B. 2005. Using static flow patterns
in time-staged resource allocation problems. Technical
report, Princeton University, Department of Operations
Research and Financial Engineering. Available online at
<http://www.castlelab.princeton.edu/
Papers/>

Powell, W. B., Wu, T. T. and Whisman, A. 2004. Using low
dimensional patterns in optimizing simulators: An il-
lustration for the airlift mobility problem, Mathematical
and Computer Modeling 29: 657–2004.

Rosenthal, R., Morton, D., Baker, S., Lim, T., Fuller, D.,
Goggins, D., Toy, A., Turker, Y., Horton, D. and Briand,
D. 1997. Application and extension of the Thruput II
optimization model for airlift mobility, Military Oper-
ations Research 3(2): 55–74.

Schank, J., Mattock, M., Sumner, G., Greenberg, I. and
Rothenberg, J. 1991. A review of strategic mobility
models and analysis, Technical report, RAND Corpo-
ration.

Sutton, R. and Barto, A. 1998. Reinforcement Learning,
The MIT Press, Cambridge, Massachusetts.

Topaloglu, H. and Powell, W. B. (2005), ‘Dynamic pro-
gramming approximations for stochastic, time-staged
integer multicommodity flow problems’, Informs
Journal on Computing (to appear). Available online at
<http://www.castlelab.princeton.edu/
Papers/>

AUTHOR BIOGRAPHY

WARREN B. POWELL is a professor in the department of
Operations Research and Financial Engineering at Princeton
University. He is director of CASTLE Laboratory and has
implemented optimizing-simulator models in both military
and civilian settings, including a number of the largest
freight transportation companies in the U.S. The coauthor
of over 100 refereed publications, he has focused on solving
complex stochastic resource allocation problems, and has
recently focused on merging the fields of simulation, math
programming and approximate dynamic programming.
109

http://www.castlelab.princeton.edu
http://www.castlelab.princeton.edu
http://www.castlelab.princeton.edu
http://www.castlelab.princeton.edu
http://www.castlelab.princeton.edu
http://www.castlelab.princeton.edu

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

