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ABSTRACT

Techniques are presented for modeling and generating the
univariate and multivariate probabilistic input processes that
drive many simulation experiments. Among univariate input
models, emphasis is given to the generalized beta distri-
bution family, the Johnson translation system of distribu-
tions, and the Bézier distribution family. Among bivariate
and higher-dimensional input models, emphasis is given to
computationally tractable extensions of univariate Johnson
distributions. Also discussed are nonparametric techniques
for modeling and simulating time-dependent arrival streams
using nonhomogeneous Poisson processes.

1 INTRODUCTION

One of the main problems in the design and construction of
stochastic simulation experiments is the selection of valid
input models—i.e., probability distributions that accurately
mimic the behavior of the random input processes driving
the system under study. Often the following interrelated
difficulties arise in attempts to use standard distribution
families for simulation input modeling:

1. Standard distribution families cannot adequately
represent the probabilistic behavior of many real-
world input processes, especially in the tails of the
underlying distribution.

2. The parameters of the selected distribution family
are troublesome to estimate from either sample
data or subjective information (expert opinion).

3. Fine-tuning or editing the shape of the fitted dis-
tribution is difficult because (a) there are a limited
number of parameters available to control the shape
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of the fitted distribution, and (b) there is no effec-
tive mechanism for directly manipulating the shape
of the fitted distribution while simultaneously up-
dating the corresponding parameter estimates.

In modeling a simulation input process, the practitioner
must identify an appropriate distribution family and then
estimate the corresponding distribution parameters; and the
problems enumerated above can block the progress of both
of these model-building activities.

The conventional approach to identification of a stochas-
tic simulation input model encompasses several procedures
for using sample data to accept or reject each of the distribu-
tion families in a list of well-known alternatives. These pro-
cedures include (i) informal graphical techniques based on
probability plots, frequency distributions, or box-plots; and
(ii) statistical goodness-of-fit tests such as the Kolmogorov-
Smirnov, chi-squared, and Anderson-Darling tests. For a
comprehensive discussion of these procedures, see pp. 329–
369 of Law and Kelton (2000). Unfortunately, none of these
procedures is guaranteed to yield a definitive conclusion.
For example, identification of an input distribution can be
based on visual comparison of superimposed graphs of a
histogram and the fitted probability density function (p.d.f.)
for each of several alternative distribution families. In this
situation, however, the final conclusion depends largely on
the number of classes (also called bins or cells) in the
histogram as well as the class boundaries; and a different
layout for the histogram could result in identification of a
different distribution family. Similar anomalies can occur
in the use of statistical goodness-of-fit tests. In small sam-
ples, these tests can have very low power to detect lack
of fit between the empirical distribution and each alter-
native theoretical distribution, resulting in an inability to
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reject any of the alternative distributions. In large samples,
moreover, practically insignificant discrepancies between
the empirical and theoretical distributions often appear to
be statistically significant, resulting in rejection of all the
alternative distributions.

After somehow identifying an appropriate family of
distributions to model an input process, the simulation user
also faces problems in estimating the associated distribution
parameters. The user often attempts to match the mean and
standard deviation of the fitted distribution with the sample
mean and standard deviation of a data set, but shape charac-
teristics such as the sample skewness and kurtosis are less
frequently considered when estimating the parameters of an
input distribution. Some estimation methods, such as max-
imum likelihood and percentile matching, may simply fail
to yield parameter estimates for some distribution families.
Even if several distribution families are readily fitted to a
set of sample data, the user generally lacks a comprehensive
basis for selecting the appropriate “best-fitting” distribution.

The task of building a simulation input model is further
complicated if sample data are not available. In this situation,
identification of an appropriate distribution family is arbi-
trarily based on whatever information can be elicited from
knowledgeable individuals (experts); and the corresponding
distribution parameters are computed from subjective esti-
mates of simple numerical characteristics of the underlying
distribution such as the mode, selected percentiles, or low-
order moments. In summary, simulation practitioners lack
a clear-cut, definitive procedure for identifying and estimat-
ing valid stochastic input models; consequently, simulation
output analysis is often based on incorrectly specified input
processes.

In this article techniques are presented for modeling
and generating the probabilistic input processes that drive
many simulation experiments, with the primary focus on
methods designed to alleviate many of the difficulties en-
countered in using conventional approaches to simulation
input modeling. Univariate input models are discussed in
§2, with emphasis on the generalized beta distribution fam-
ily, the Johnson translation system of distributions, and the
Bézier distribution family. Multivariate input models are
discussed in §3, with emphasis on computationally tractable
extensions of univariate Johnson distributions. (Because §3
covers a more specialized topic, it may be skipped on first
reading.) Some techniques for modeling and simulating
time-dependent arrival streams are discussed in §4. Finally
conclusions and recommendations are presented in §5.

2 UNIVARIATE INPUT MODELS

2.1 Generalized Beta Distribution Family

Suppose X is a continuous random variable with lower limit
a and upper limit b whose distribution is to be approximated
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and then sampled in a simulation experiment. In such a
situation, it is often possible to model the probabilistic
behavior of X using a generalized beta distribution, whose
p.d.f. has the form

fX(x) = �(θ1 + θ2)

�(θ1)�(θ2)(b − a)θ1+θ2−1 (x−a)θ1−1(b−x)θ2−1 (1)

for a ≤ x ≤ b, where �(z) = ∫∞
0 tz−1e−t dt (for z > 0)

denotes the gamma function. For graphs illustrating the wide
range of distributional shapes achievable with generalized
beta distributions, see pp. 92–93 of Hahn and Shapiro (1967)
or pp. 308–309 of Law and Kelton (2000).

If X has the p.d.f. (1), then the cumulative distribution
function (c.d.f.) of X, which is defined by FX(x) = Pr{X ≤
x} = ∫ x

−∞ fX(w) dw for all real x, unfortunately has no
convenient analytical expression; but the mean and variance
of X are given by

µX = E[X] = θ1b + θ2a

θ1 + θ2
,

σ 2
X

= E
[(

X − µX

)2] = (b − a)2θ1θ2

(θ1 + θ2)2(θ1 + θ2 + 1)
.

 (2)

Provided θ1, θ2 > 1 so that the p.d.f. (1) is unimodal, the
mode is given by

m = (θ1 − 1)b + (θ2 − 1)a

θ1 + θ2 − 2
. (3)

Equations (2) and (3) reveal that key distributional char-
acteristics of the generalized beta distribution are simple
functions of the parameters a, b, θ1, and θ2; and this facil-
itates input modeling—especially in pilot studies in which
rapid model development is critical.

Fitting Beta Distributions to Data or Subjective Infor-
mation. Given a random sample {Xi : i = 1, . . . , n} of size
n from the distribution to be estimated, let X(1) ≤ X(2) ≤
· · · ≤ X(n) denote the order statistics obtained by sorting
the {Xi} in ascending order so that X(1) = min

{
Xi : i =

1, . . . , n
}

and X(n) = max
{
Xi : i = 1, . . . , n

}
. We can

fit a generalized beta distribution to this data set using the
following sample statistics:

â = 2X(1) − X(2), b̂ = 2X(n) − X(n−1),

X = n−1∑n
i=1 Xi, S2 = (n − 1)−1∑n

i=1

(
Xi − X

)2
.


In particular the method of moment matching involves (i)
setting the right-hand sides of (2) equal to the sample mean
X and the sample variance S2, respectively; and (ii) solving
the resulting equations for the corresponding estimates θ̂1
and θ̂2 of the shape parameters. In terms of the auxiliary
quantities d1 = (

X − â
)/(

b̂ − â
)

and d2 = S
/(

b̂ − â
)
,
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the moment-matching estimates of θ̂1 and θ̂2 are given by

θ̂1 = d2
1 (1 − d1)

d2
2

− d1, θ̂2 = d1(1 − d1)
2

d2
2

− (1 − d1).

AbouRizk, Halpin, and Wilson (1994) developed
BetaFit, a Windows-based software package for fitting the
generalized beta distribution to sample data by computing
estimators â, b̂, θ̂1, and θ̂2 using the following estimation
methods:

• moment matching;
• feasibility-constrained moment matching (so that

the feasibility conditions â < X(1) and X(n) < b̂

are always satisfied);
• maximum likelihood (assuming a and b are known

and thus are not estimated); and
• ordinary least squares (OLS) and diagonally

weighted least squares (DWLS) estimation of the
c.d.f.

Like all the software packages mentioned in this article,
BetaFit is in the public domain and is available on the Web
via <www.ie.ncsu.edu/jwilson/page3>.

For rapid development of preliminary simulation mod-
els, practitioners often base an initial input model for the
random variable X on subjective estimates â, m̂, and b̂

of the minimum, mode, and maximum, respectively, of
the distribution of X. Although the triangular distribution
is often used in such circumstances, it can yield exces-
sively heavy tails—and hence grossly unrealistic simulation
results—when (i) â is substantially smaller than m̂, or (ii)
b̂ is substantially larger than m̂. The generalized beta
distribution is generally a better choice in cases (i) and
(ii), where the corresponding estimates of the beta shape
parameters are given in terms of the auxiliary quantity
d = (

b̂ − m̂
)/(

m̂ − â
)

as follows:

θ̂1 = d2 + 3d + 4

d2 + 1
and θ̂2 = 4d2 + 3d + 1

d2 + 1
; (4)

see McBride and McClelland (1967).
The Visual Interactive Beta Estimation System (VIBES)

enables the user to perform user-controlled, graphically-
oriented fitting of generalized beta distributions to subjective
estimates of: (i) the endpoints a and b; and (ii) any of the
following combinations of distributional characteristics—

• the mean µX and the variance σ 2
X,

• the mean µX and the mode m,
• the mode m and the variance σ 2

X,
• the mode m and an arbitrary quantile xp = F−1

X (p)

for p ∈ (0, 1), or
• two quantiles xp and xq for p, q ∈ (0, 1)
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(AbouRizk, Halpin, and Wilson 1991).
As a general-purpose tool for simulation input modeling,

the generalized beta distribution family has the following
advantages:

• It is sufficiently flexible to represent with reasonable
accuracy a wide diversity of distributional shapes.

• Its parameters are easily estimated from either sam-
ple data or subjective information.

On the other hand, generating samples from the beta distribu-
tion is relatively slow; and in some general-purpose simula-
tion systems, the beta variate generators break down for mod-
erately large values of the shape parameters—specifically,
when θ1 > 10 or θ2 > 10.

Application of Beta Distributions to Pharmaceutical
Manufacturing. Pearlswig (1995) provides a good ex-
ample of a pharmaceutical manufacturing simulation whose
credibility depended critically on the use of appropriate
input models. In this study of the estimated production
capacity of a plant that had been designed but not yet
built, the usual three time estimates

(
â, m̂, and b̂

)
were

obtained from the process engineer for each of the opera-
tions in manufacturing a certain type of effervescent tablet.
Unfortunately extremely conservative (i.e., large) estimates
were provided for the upper limit b̂ of each operation time;
and when triangular distributions were used to represent
batch-to-batch variation in actual processing times for each
operation within each step of production, the resulting bot-
tlenecks resulted in very low estimates of the probability
of reaching a prespecified annual production level.

As in many simulation applications in which subjective
estimates â, m̂, and b̂ are elicited from experts, the estimate
m̂ of the modal (most likely) time to perform a given oper-
ation was substantially more reliable than the estimates â

and b̂ of the lower and upper limits on the same operation
time. When all the triangular distributions in the simulation
were replaced by generalized beta distributions using (4)
to ensure conformance to the engineer’s estimate of the
most likely processing time for each operation within each
step, the resulting annual tablet production was in excellent
agreement with production of similar plants already in exis-
tence. This simple remedy restored the faith of management
in the validity of the overall simulation model, which was
subsequently used to finalize certain aspects of the design
and operation of the new plant.

2.2 Johnson Translation System of Distributions

Starting from a continuous random variable X whose dis-
tribution is unknown and is to be approximated and sub-
sequently sampled, Johnson (1949a) proposed the idea of
inferring an appropriate distribution by identifying a suitable
“translation” (or transformation) of X to a standard normal

<www.ie.ncsu.edu/jwilson/page3>
http://www.ie.ncsu.edu/jwilson/page3.html
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random variable Z with mean 0 and variance 1 so that
Z ∼ N(0, 1). The proposed translations have the general
form

Z = γ + δ · g

(
X − ξ

λ

)
, (5)

where γ and δ are shape parameters, λ is a scale parameter,
ξ is a location parameter, and g(·) is a function whose
form defines the four distribution families in the Johnson
translation system,

g(y) =


ln(y), for SL (lognormal) family,

ln
(

y +
√

y2 + 1
)

, for SU (unbounded) family,

ln[y/(1 − y)] , for SB (bounded) family,

y, for SN normal family.

DeBrota et al. (1989a) detail the advantages of the John-
son translation system of distributions for simulation input
modeling, especially in comparison with the triangular, beta,
and normal distribution families.

Johnson Distribution and Density Functions. If (5) is
an exact normalizing translation of X to a standard normal
random variable, then the c.d.f. of X is given by

FX(x) = �
[
γ + δ · g

(x − ξ

λ

)]
for all x ∈ H,

where: (i) �(z) = (2π)−1/2
∫ z

−∞ exp
(− 1

2w2
)

dw denotes
the c.d.f. of the N(0, 1) distribution; and (ii) the space H

of X is

H =


[ξ, +∞), for SL (lognormal) family,
(−∞, +∞), for SU (unbounded) family,
[ξ, ξ + λ], for SB (bounded) family,
(−∞, +∞), for SN normal family.

The p.d.f. of X is given by

fX(x) = δ

λ(2π)1/2
g′
(

x − ξ

λ

)
exp

{
−1

2

[
γ + δ · g

(
x − ξ

λ

)]2
}

for all x ∈ H, where

g′(y) =


1/y, for SL (lognormal) family,

1
/√

y2 + 1, for SU (unbounded) family,

1/[y/(1 − y)], for SB (bounded) family,

1, for SN normal family.

See DeBrota (1989a) for graphs illustrating the broad di-
versity of distributional shapes that can be achieved with
the Johnson system of univariate probability distributions.

Fitting Johnson Distributions to Sample Data. The pro-
cess of fitting a Johnson distribution to sample data involves
first selecting an estimation method and the desired trans-
lation function g(·) and then obtaining estimates of the
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four parameters γ , δ, λ, and ξ . The Johnson transla-
tion system of distributions has the flexibility to match (i)
any feasible combination of values for the mean µX, vari-
ance σ 2

X, skewness αX = E
[(

X − µX

)3/
σ 3

X

]
, and kurtosis

βX = E
[(

X − µX

)4/
σ 4

X

]
; or (ii) sample estimates of the

moments µX, σ 2
X, αX, and βX. Moreover, in principle

the skewness αX and kurtosis βX uniquely identify the ap-
propriate translation function g(·). Although there are no
closed-form expressions for the parameter estimates based
on the method of moment matching, these quantities can
be accurately approximated using the iterative procedure
of Hill, Hill, and Holder (1976). Other estimation meth-
ods may also be used to fit Johnson distributions to sample
data—for example, in the FITTR1 software package (Swain,
Venkatraman, and Wilson 1988), the following methods are
available:

• OLS and DWLS estimation of the c.d.f.;
• minimum L1 and L∞ norm estimation of the c.d.f.;
• moment matching; and
• percentile matching.

Fitting SB Distributions to Subjective Information. De-
Brota et al. (1989b) developed VISIFIT, a public-domain
software package for fitting Johnson SB distributions to sub-
jective information, possibly combined with sample data.
The user must provide estimates of the endpoints a and b

together with any two of the following characteristics:

• the mode m;
• the mean µX;
• the median x0.5;
• arbitrary quantile(s) xp or xq for p, q ∈ (0, 1);
• the width of the central 95% of the distribution; or
• the standard deviation σX.

Generating Johnson Variates by Inversion. After a John-
son distribution has been fitted to a data set, generating sam-
ples from the fitted distribution is straightforward. First, a
standard normal variate Z ∼ N(0, 1) is generated. Then the
corresponding realization of the Johnson random variable
X is found by applying to Z the inverse translation

X = ξ + λ · g−1
(

Z − γ

δ

)
, (6)

where for all real z we define the inverse translation function

g−1(z) =


ez, for SL (lognormal) family,(
ez − e−z

)/
2, for SU (unbounded) family,

1
/(

1 + e−z
)
, for SB (bounded) family,

z, for SN (normal) family.
(7)
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Application of Johnson Distributions to Smart Mate-
rials Research. In Matthews et al. (2005) and Weiland
et al. (2005), a multiscale modeling approach is presented
for the prediction of material stiffness of a certain class
of smart materials called ionic polymers. The material
stiffness depends on multiple parameters, including the ef-
fective length of the polymer chains comprising the material.
In a case study of Nafion, a specific type of ionic poly-
mer, Matthews et al. (2005) describe the development of a
simulation model of the conformation of Nafion polymer
chains on a nanoscopic level, from which a large number
of end-to-end chain lengths are generated. The p.d.f. of
end-to-end distances is then estimated and used as an in-
put to a macroscopic-level mathematical model to quantify
material stiffness.

Figure 1 shows the empirical distribution of 9,980
simulation-generated observations of end-to-end Nafion
chain lengths (in angströms). Superimposed on the empiri-
cal distribution is the result of using the DWLS estimation
method to fit an unbounded Johnson (SU ) distribution to the
chain length data. Figure 1 reveals a remarkably accurate
fit to the given data set.

The results in Matthews et al. (2005) and Weiland et
al. (2005) indicate that the estimates of the distribution of
chain lengths obtained by fitting an appropriate Johnson
distribution to the data are more intuitive than those us-
ing other density estimation techniques for the following
reasons. First, it is possible to write down an explicit func-
tional form for the Johnson p.d.f. fX(x) that is simple to
differentiate. This is a crucial property since the second
derivative f ′′

X(x) of the p.d.f. will be used as an input to a
mathematical model to estimate material stiffness. Second,
there is a relatively simple relationship between the Johnson
parameters and the material stiffness. The study by Weiland
et al. (2005) includes the results of a sensitivity analysis
for the Johnson parameters and the corresponding effect
on material stiffness. Establishing a consistent relationship
between these parameters and stiffness would first serve to
extend the current theory to stiffness predictions, and may
ultimately also serve as a first step toward the custom design
of materials with specific stiffness properties.

Application of Johnson Distributions to Healthcare. In
a recent study of the arrival patterns of patients who have
scheduled appointments at a community healthcare clinic,
Alexopoulos et al. (2005) find that patient tardiness (i.e., the
patient’s deviation from the scheduled appointment time) is
most accurately modeled using an SU distribution. Specif-
ically they consider data on patient tardiness collected by
the Partnership of Immunization Providers, a collaborative
public-private project created by the University of Califor-
nia, San Diego School of Medicine, Division of Community
Pediatrics, in association with community clinics and small,
private provider practices. Alexopoulos et al. (2005) per-
form an exhaustive analysis of 18 continuous distributions,
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and they conclude that the SU distribution provided superior
fits to the available data.

2.3 Bézier Distribution Family

Definition of Bézier Curves. In computer graphics, a
Bézier curve is often used to approximate a smooth (con-
tinuously differentiable) function on a bounded interval by
forcing the Bézier curve to pass in the vicinity of selected
control points

{
pi ≡ (xi, zi)

T : i = 0, 1, . . . , n
}

in two-
dimensional Euclidean space. (Throughout this article, all
vectors will be column vectors unless otherwise stated; and
the roman superscript T will denote the transpose of a vec-
tor or matrix.) Formally, a Bézier curve of degree n with
control points {p0, p1, . . . ,pn} is given parametrically by

P(t) = [
Px(t; n, x), Pz(t; n, z)

]T
=

n∑
i=0

Bn,i(t) pi for t ∈ [0, 1], (8)

where x ≡ (x0, x1, . . . , xn)
T and z ≡ (z0, z1, . . . , zn)

T, and
where the blending function Bn,i(t) (for all t ∈ [0, 1]) is
the Bernstein polynomial

Bn,i(t) ≡ n!
i! (n − i)! t i (1 − t)n−i for i = 0, 1, . . . , n. (9)

Bézier Distribution and Density Functions. If X is a
continuous random variable whose space is the bounded
interval [a, b] and if X has c.d.f. FX(·), and p.d.f. fX(·), then
in principle we can approximate FX(·) arbitrarily closely
using a Bézier curve of the form (8) by taking a sufficient
number (n + 1) of control points with appropriate values
for the coordinates (xi, zi)

T of the ith control point pi for
i = 0, . . . , n. If X is a Bézier random variable, then the
c.d.f. of X is given parametrically by

P(t) = [
Px(t; n, x), Pz(t; n, z)

]T
= {

x(t), FX[x(t)]}T for t ∈ [0, 1], (10)

where

x(t) = Px(t; n, x) =
n∑

i=0

Bn,i(t)xi,

FX[x(t)] = Pz(t; n, z) =
n∑

i=0

Bn,i(t)zi .

 (11)

Equation (11) reveals that the control points p0, p1, . . . , pn

constitute the parameters regulating all the properties of
a Bézier distribution. Thus the control points must be
arranged so as to ensure the basic requirements of a c.d.f.:
(i) FX(x) is monotonically nondecreasing in the cutoff
value x; (ii) FX(a) = 0; and (iii) FX(b) = 1. By utilizing
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Figure 1: Johnson SU C.d.f. (Left Panel) an
Chain Lengths

the Bézier property that the curve described by (10)–(11)
passes through the control points p0 and pn exactly, we
can ensure that FX(a) = 0 if we take p0 ≡ (a, 0)T; and we
can ensure that FX(b) = 1 if we take pn ≡ (b, 1)T. See
Wagner and Wilson (1996a) for a complete discussion of
univariate Bézier distributions and their use in simulation
input modeling.

If X is a Bézier random variable with c.d.f. FX(·) given
parametrically by (10), then it follows that the corresponding
p.d.f. fX(x) for all real x is given parametrically by

P∗(t) = [
P ∗

x (t; n, x), P ∗
z (t; n, x, z)

]T
= {

x(t), fX[x(t)]}T for t ∈ [0, 1],

where x(t) = P ∗
x (t; n, x) = Px(t; n, x) as in (11) and

fX[x(t)] = P ∗
z (t; n, x, z)

= Pz(t; n − 1, �z)

Px(t; n − 1, �x)
=
∑n−1

i=0 Bn−1,i (t)�zi∑n−1
i=0 Bn−1,i (t)�xi

.

In the last equation, we take �x ≡ (�x0, . . . , �xn−1)
T

and �z ≡ (�z0, . . . , �zn−1)
T, where �xi ≡ xi+1 − xi

and �zi ≡ zi+1 − zi (i = 0, 1, . . . , n − 1) represent the
corresponding first differences of the x- and z-coordinates of
the original control points {p0, p1, . . . ,pn} in the parametric
representation (10) of the c.d.f.

Generating Bézier Variates by Inversion. The method of
inversion can be used to generate a Bézier random variable
whose c.d.f. has the parametric representation displayed
in equations (10)–(11). Given a random number U ∼
Uniform[0, 1], we perform the following steps: (i) find
tU ∈ [0, 1] such that

FX[x(tU )] =
n∑

i=0

Bn,i(tU )zi = U ; (12)
46
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and (ii) deliver the variate

X = x(tU ) =
n∑

i=0

Bn,i(tU )xi .

The solution to (12) can be computed by any root-finding
algorithm such as Müller’s method, Newton’s method, or
the bisection method. Codes to implement this approach
to generating Bézier variates are available on Web site
<www.ie.ncsu.edu/jwilson/page3>.

Using PRIME to Model Bézier Distributions. PRIME is
a graphical, interactive software system that incorporates
the methodology detailed in this section to help an analyst
estimate the univariate input processes arising in simulation
studies. PRIME is written entirely in the C programming
language, and it has been developed to run under Mi-
crosoft Windows. A public-domain version of the software
is available on the previously mentioned Web site. PRIME is
designed to be easy and intuitive to use. The construction
of a c.d.f. is performed through the actions of the mouse,
and several options are conveniently available through menu
selections. Control points are represented as small black
squares, and each control point is given a unique label cor-
responding to its index i in equation (8). Figure 2 shows a
typical session in PRIME, where the c.d.f. and p.d.f. windows
are both displayed.

In the absence of data, PRIME can be used to model an
input process conceptualized from subjective information
or expertise. The representation of the conceptualized dis-
tribution is achieved by adding, deleting, and moving the
control points via the mouse. Each control point acts like
a “magnet” that pulls the curve in the direction of the con-
trol point, where the blending functions (i.e., the Bernstein
polynomials defined by equation (9)) govern the strength
of the “magnetic” attraction exerted on the curve by each
control point. Pressing and dragging (i.e., moving) a con-
trol point causes the displayed c.d.f. to be updated (nearly)
instantaneously. If they are displayed, the corresponding

<www.ie.ncsu.edu/jwilson/page3>
http://www.ie.ncsu.edu/jwilson/page3.html
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Figure 2: PRIME Windows Showing the Bézier C.d.f. (Left Panel) with Its Control
Points and the P.d.f. (Right Panel)
p.d.f., the first four moments (that is, the mean, variance,
skewness, and kurtosis), and selected percentile values of the
Bézier distribution are updated (nearly) simultaneously in
adjacent windows so that the user gets immediate feedback
on the effects of moving selected control points. Thus,
the user has a variety of readily available indicators and
measures, as well as visually appealing displays, to aid in
the construction of the conceptualized distribution.

As detailed in Wagner and Wilson (1996a, 1996b),
PRIME includes several standard estimation procedures for
fitting distributions to sample data sets:

• OLS estimation of the c.d.f.;
• minimum L1 and L∞ norm estimation of the c.d.f.;
• maximum likelihood estimation (assuming a and

b are known);
• moment matching; and
• percentile matching.

Figure 3 shows a Bézier distribution that was fitted to the
same data set consisting of Nafion polymer chain lengths
as shown in Figure 1. In this application of PRIME, we
obtained the fitted Bézier distribution automatically, where:
(i) the number of control points (n+1) was determined by
the likelihood ratio test detailed in Wagner and Wilson
(1996b); and (ii) the parameters x = (x0, x1, . . . , xn)

T and
z = (z0, z1, . . . , zn)

T of the control points were estimated
by the method of ordinary least squares. Figure 3 shows
that a Bézier distribution yielded an excellent fit to the given
data set.

The Bézier distribution family, which is entirely speci-
fied by its control points {p0, p1, . . . ,pn}, has the following
advantages:

• It is extremely flexible and can represent a wide
diversity of distributional shapes. For instance,
Figure 2 depicts a multimodal distribution that is
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easily constructed using PRIME, yet impossible to
achieve with other distribution families.

• If data are available, then the likelihood ratio test
of Wagner and Wilson (1996a) can be used in
conjunction with any of the estimation methods
enumerated above to find automatically both the
number and location of the control points.

• In the absence of data, PRIME can be used to
determine the conceptualized distribution based on
known quantitative or qualitative information that
the user perceives to be pertinent.

• As the number (n+ 1) of control points increases,
so does the flexibility in fitting Bézier distributions.
The interpretation and complexity of the control
points, however, does not change with the number
of control points.

3 MULTIVARIATE INPUT MODELS

Many univariate distributions have been generalized to form
bivariate distributions. These include numerous discrete (bi-
nomial, hypergeometric, Poisson) and continuous (uniform,
normal, exponential, beta, and gamma) distributions (Mar-
dia 1970). However, very few of these can be practically
extended to higher dimensions. The multivariate normal dis-
tribution (Kotz, Balakrishnan, and Johnson 2000) is the most
easily manipulated and most frequently used multivariate
distribution. However, the component normal distributions
have a fixed shape and are often inappropriate for data
fitting. In addition to the inflexibility of the multivariate
normal, Johnson (1987) cites the following limitations of
existing multivariate distributions:

• Some distributions (e.g., the Bessel function dis-
tributions) present significant computational prob-
lems.
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Figure 3: Bézier Distribution Fitted to 9,980 Nafion Chain Lengths
• The support of some distributions (e.g., the beta-
Stacy) is too limited to be of interest.

• Some multivariate distributions (e.g., Morgen-
stern’s distribution) are able to represent only weak
correlation structures.

• Computational methods for distribution fitting and
variate generation have not been developed for
some multivariate distributions.

Although the bivariate Bézier distribution family (Wag-
ner and Wilson 1995) seems to have the potential for ac-
curately representing many commonly occurring forms of
bivariate dependence, the extension of this family to three
or more dimensions appears to be cumbersome and compu-
tationally intensive. Other approaches to multivariate input
modeling can be based on TES (Transform-Expand-Sample)
processes (Jagerman and Melamed 1992a, 1992b) andARTA
(AutoRegressive To Anything) processes (Cario and Nelson
1996, 1998). Both methodologies enable the user to spec-
ify the autocorrelation function out to an arbitrary lag for a
univariate stochastic process with a user-specified marginal
distribution, but ARTA processes seem to be substantially
easier to use.

In the following subsections we focus the discussion
on flexible multivariate distributions that are based on the
Johnson family of univariate distributions because the meth-
ods for estimating and then generating samples from these
latter distributions require much less computation than for
TES and ARTA processes—especially for moderate to large
values of the dimension ν of the modeled random vector.
The greatest computational effort required for the methods
described in this section is the effort to invert a ν×ν matrix.
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3.1 Multivariate Johnson Translation System

Johnson (1949b) proposed a bivariate distribution based
on the univariate Johnson distributions. The parameterized
model matches the first four moments (i.e., the mean, vari-
ance, skewness, and kurtosis) for each component of the
target random vector X = (X1, X2)

T and then attempts to
approximate the correlation between the two components.
As detailed below, the technique is easily extended to higher
dimensions. For a discussion that is limited to the case of
bivariate distributions and hence may be more accessible
on first reading, see Wilson (1997).

Consider a continuous multivariate random vector X
with ν components, X = (X1, . . . , Xν)

T, which is to be
modeled with some parameterized distribution. The Johnson
multivariate modeling method determines a normalizing
translation such that

Z = γ + δg
[
λ−1 (X − ξ)

] ∼ Nν(0ν, �) , (13)

so that the random vector Z = (Z1, . . . , Zν)
T has a ν-

dimensional standard normal distribution with null mean
vector 0ν and covariance matrix � whose entry in the
(i, j) place is the correlation between Zi and Zj for
i, j = 1, . . . , ν. Thus � is actually a correlation matrix
with ones on the diagonal. Notice that (13) is a straight-
forward generalization of Johnson’s univariate translation
(5) to the multivariate case. Based on a random sample{
Xj = (X1,j , X2,j , . . . , Xν,j )

T : j = 1, . . . , n
}

from the
distribution of X that is to be approximated, this vector-
valued normalizing translation is accomplished as follows:
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1. Identify the transformation g
[(

y1, . . . , yν

)T] ≡[
g1(y1), . . . , gν(yν)

]T so that for the ith compo-
nent Xi of X (where i = 1, . . . , ν), the transla-
tion function gi(·) is selected to match the sample
skewness and kurtosis computed from the random
sample {Xi,j : j = 1, . . . , n}.

2. Estimate the matrices of shape parameters, γ ≡(
γ1, . . . , γν

)T,

δ ≡ diag(δ1, . . . , δν) =


δ1 0 · · · 0
0 δ2 · · · 0
...

...
. . .

...

0 0 · · · δν

 ,

and the matrices of the respective location
and scale parameters, ξ ≡ (

ξ1, . . . , ξν

)T, λ ≡
diag

(
λ1, . . . , λν

)
, so that for the ith component

Xi of X (where i = 1, . . . , ν), not only the trans-
lation function gi(·) but also the parameters γi ,
δi , λi , and ξi are determined so as to match the
sample mean, variance, skewness, and kurtosis of
the random sample {Xi,j : j = 1, . . . , n}.

3. Estimate correlation matrix � by (i) inserting each
sample value {Xj : j = 1, . . . , n} into the esti-
mated normalizing translation (13) to obtain the
corresponding sample {Zj : j = 1, . . . , n} of es-
timated standard normal random vectors; and (ii)
computing the sample correlation matrix of the {Zj }
as the approximate moment-matching estimator of
�.

enerating Johnson Random Vectors. To generate a
ohnson random vector with parameters γ , δ, λ, ξ , and

(or with estimators of these quantities), we must first
ompute the “square root” matrix Q based on the Cholesky
ecomposition � = QQT. If U = (U1, . . . , Uν)

T consists
f independent standard normal random variables, then Z =
U ∼ Nν(0ν, �). It follows that by applying the inverse of

he multivariate translation (13) to Z, we obtain a random
ector X with the desired distributional characteristics,

X = ξ + λg−1[δ−1(Z − γ )
]
, (14)

sing the previously determined parameter vectors
nd the vector-valued inverse translation function
−1
[
(z1, . . . , zν)

T ] ≡ [
g−1

1 (z1), . . . , g
−1
ν (zν)

]T, where
−1
i (·) is defined by (7) for i = 1, . . . , ν.

imitations of the Procedure Based on (13)–(14). This
ethod will generate random vectors with exactly the same
arginal moments as the original sample data {Xj : j =
, . . . , n} from which the sample estimators of γ , δ, λ,
, and � are computed (at least to the limits of machine
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accuracy); and if each of the empirical marginal distribu-
tions of the original sample data is nearly symmetric about
its mean, then the intercomponent correlations of the fitted
multivariate Johnson distribution will nearly match the sam-
ple correlations of the original sample data. However, if
some of the empirical marginal distributions of the original
sample data (or the corresponding underlying theoretical
marginals) possess marked skewness, then the correlation
matrix of the fitted multivariate Johnson distribution will
not match the sample correlation matrix of the original data
set.

Application of Multivariate Johnson Distributions to
Welfare Policy Analysis. McDaniel, Sullivan, and Wilson
(1988) developed a large-scale simulation model of the In-
stitutional Care and Community Care programs of the Texas
Department of Human Services (TDHS) with the objective
of estimating the effects of changes in program eligibility
criteria on client loads, costs, and other relevant perfor-
mance measures for new and existing services when those
performance measures must be forecast over an extended
planning horizon. Trivariate Johnson SBBB distributions
were used to approximate the joint distribution of monthly
income, dollar value of countable resources, and functional
disability score for individuals in each target population
defined by a combination of age cohort and service region.
The resulting simulation model, called ADSSIM, was used
by the Budget and Planning Division of TDHS to analyze
budget requests and to redesign sections of TDHS’s biennial
survey so that the modeling approach could be applied to
all Community Care programs.

3.2 Matching Exactly a Given Mean Vector
and Covariance Matrix

Alternative Multivariate Distributions with Univariate
Johnson Marginals. In some situations the objective is to
fit a multivariate distribution having a given mean vector µX
and covariance matrix �X such that for i = 1, . . . , ν, the ith
marginal is a univariate Johnson distribution with the same
first four moments as Xi , the ith component of the target
random variable X. To do this, we present the method of
Stanfield et al. (1996). Suppose that X has correlation matrix
CX = [Corr(Xi, Xj )]. Define the lower triangular matrix

�X ≡ [
θij

] = C1/2
X based on the Cholesky decomposition

CX = �X�T
X together with the matrix of standard deviations

σ X ≡ diag
[
Var1/2(X1), . . . , Var1/2(Xν)

]
.

If Y = (Y1, . . . , Yν)
T consists of independent stan-

dardized Johnson variates so that each component Yi has a
univariate Johnson distribution with mean 0 and variance 1
for i = 1, . . . , ν, then the new random vector

W ≡ µX + σ X�XY (15)
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has the mean vector µX and covariance matrix �X. Notice
that W does not have a conventional multivariate Johnson
distribution as defined by (7)–(14). Most important, how-
ever, is the observation that for each component i (where
i = 1, . . . , ν), the parameters γi, δi, λi , and ξi of Yi are
set so that the ith component Wi of the random vector W
has the same skewness αXi

and kurtosis βXi
as the random

variable Xi has.
Let αX and βX be ν ×1 vectors whose ith elements are

the skewness αXi
and kurtosis βXi

of the random variable
Xi , respectively, for i = 1, . . . , ν. Similarly, let αY and βY
denote the skewness and kurtosis vectors for Y. Finally,
define the auxiliary matrix �

(k)
X ≡ [

θk
ij

]
for k = 3, 4 together

with the auxiliary vector 
X ≡ (ψ1, . . . , ψν)
T, where ψi

= 6
∑ν

j=1
∑ν

�=j+1 θ2
ij θ

2
i� for i = 1, . . . , ν.

Now if the random vector X were generated according
to the transformation X = µX + σ X�XY, then it is easily
shown that the skewness and kurtosis vectors αX and βX
corresponding to X, would be given, respectively, by

αX = �
(3)
X αY

βX = �
(4)
X βY + 
X

}
. (16)

Thus, when we are given estimates or exact values of
skewness and kurtosis vectors αX and βX for the target
random vector X, we solve the moment-matching equations
(16) to yield the skewness and kurtosis vectors αY and βY
that are required for Y:

αY = [
�

(3)
X

]−1
αX

βY = [
�

(4)
X

]−1(
βX − 
X

)
 . (17)

It follows from (17) that for i = 1, . . . , ν, the standardized
Johnson variate Yi with mean 0 and variance 1 must have
skewness αYi

and kurtosis βYi
as specified by the ith el-

ements of the vectors αY and βY, respectively. Thus for
i = 1, . . . , ν, we use the moment-matching algorithm of
Hill, Hill, and Holder (1976) to determine the appropri-
ate form of the translation function gi(·) and to compute
the corresponding moment-matching parameters γi , δi , λi ,
and ξi for the required distribution of Yi ; and these latter
four quantities become the ith elements of the associated
parameter vectors γ , δ, and λ, and ξ , respectively.

If we compute the matrices �X, �
(3)
X , �

(4)
X , and 
X

based on known or estimated matrices µX, σ X, CX, αX,
and βX describing the target random vector X whose joint
distribution is to be approximated, then we see that the
transformed random vector W given by (15) has the same
mean vector and covariance matrix as X has; moreover for
i = 1, . . . ν, we see that the skewness of Wi matches the
skewness αXi

of Xi as this quantity is specified or estimated
by the ith element of the vector αX. With some exceptions
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explained below, it is also true that for i = 1, . . . ν, the
kurtosis of Wi matches the kurtosis βXi

of Xi as this quantity
is specified or estimated by the ith element of the vector
βX.

This method requires relatively little computational ef-
fort. Data fitting requires determining 4ν marginal moments
and ν(ν − 1)/2 correlation values; finding the fourth power
of ν(ν + 1)/2 numbers; inverting two ν × ν matrices; com-
puting ψi for i = 1, . . . , ν; and finally fitting ν univariate
Johnson distributions by the method of moment matching.
Random vector generation requires generating ν indepen-
dent normal variates, taking the inverse of ν univariate
Johnson translations, and multiplying two ν × ν matrices.

Generating Random Vectors with Given Mean and Co-
variance Matrix. To generate the random vector X with
desired mean vector µX and covariance matrix �X, we gen-
erate the random vector Z = (Z1, . . . , Zν)

T consisting of
ν independent standard normal random variables; and we
deliver the random vector given by

X = µX + σ X�X
{
ξ + λg−1[δ−1(Z − γ )

]}
, (18)

where the translation function g(·) and the parameter vectors
γ , δ, λ, and ξ were computed one component at a time
from (17) as described above.

Limitations of the Procedure Based on (15)–(18). The
ability to match the marginal skewness of each component
of W to the marginal skewness of the corresponding com-
ponent of X depends only on finding standardized Johnson
random variables with mean 0, variance 1, and skewness
values specified by the components of αY in (17). A
standardized univariate Johnson distribution can always be
found whose skewness matches any target value; see, for
example, Johnson (1949a) or Hill, Hill, and Holder (1976).
Consequently, the multivariate distribution-fitting scheme
(15)–(17) always matches the first three marginal moments
and correlation structure of the modeled data.

The ability to match the marginal kurtosis of each
component of W to the marginal kurtosis of each component
of X depends only on finding a vector Y of independent
standardized Johnson variates each with mean 0, variance
1, skewness specified by the corresponding component of
the vector αY, and kurtosis specified by the corresponding
component of the vector βY. Now if a standardized Johnson
random variable Yi has skewness αYi

and kurtosis βYi
, then

we must have

βYi
≥ α2

Yi
+ 1 for i = 1, . . . , ν; (19)

see, for example, Johnson and Lowe (1979). Unfortunately,
the solution (17) to the moment-matching equations (16)
is not guaranteed to satisfy the requirement (19) for a
valid probability distribution even though the corresponding



Lada, Steiger, Wagner, and Wilson
relationship βXi
≥ α2

Xi
+ 1 must hold for each component

Xi of the target random vector X. This state of affairs
reflects a fundamental limitation of the family of multivariate
distributions formulated in equations (15)–(17). Although
this family always possesses the flexibility to match the
available information about the mean vector and covariance
matrix of X as well as the marginal skewness of each
component of X, this approach may fail to match exactly
all available information about the marginal kurtosis of the
components of X.

If αY and βY completely consist of feasible skew-
ness/kurtosis pairs that satisfy (19), then W will have the
same first four marginal moments and correlation structure
as X has. On the other hand, if (17) yields an infeasible
pair αYi

, βYi
of marginal skewness and kurtosis values for

the ith component Yi , then we must increase the corre-
sponding kurtosis estimate βYi

to a feasible value slightly
above α2

Yi
+ 1 so that (19) is satisfied for this component

of Y. As a result, W will have the first three marginal
moments and correlation structure of X with some marginal
kurtosis values that are slightly different from those for X.
The transformation to correct kurtosis values and to deter-
mine the marginal kurtosis of W and the deviation from
the marginal kurtosis of X is easy to apply. Notice that the
order in which the multivariate components are determined
has some influence on the adjustment required for infeasible
αYi

, βYi
pairs.

Application of Procedure Based on (15)–(18) to Reman-
ufacturing. Stanfield, Wilson, and King (2004) used the
multivariate input-modeling approach of (15)–(18) to de-
velop a simulation model of the operation of a NAVAIR
depot. This is a large remanufacturing facility that provides
the U.S. Navy with its most thorough level of aircraft, air-
craft engine, and aircraft component maintenance, including
major repair, modification, and overhaul. Operation times
are random variables whose distributions tend to have a
variety of shapes and often exhibit substantial skewness.
Different operation times for the same product tend to ex-
hibit significant interdependencies (correlations). In practi-
cal applications of simulation to product-reuse facilities of
realistic complexity, there are frequently hundreds of indi-
vidual operations to be modeled so that often ν ≥ 100; and
in such situations, the multivariate input-modeling approach
of (15)–(18) has substantial computational advantages over
other techniques for modeling the stochastic dependencies
among operation times.

4 TIME-DEPENDENT ARRIVAL PROCESSES

Time-varying arrival processes are routinely encountered in
practical applications of industrial and systems engineering
techniques. The following are typical situations in which
the arrival rate of relevant entities depends strongly on time:
demands for seasonal products such as lawn mowers; ar-
5

rivals of patrons at an amusement park; arrivals of patients
at an emergency room; and arrivals of telephone calls at
a customer service center. To analyze or improve system
operation in such situations, discrete-event stochastic simu-
lation is often the technique of choice. Consequently, high-
fidelity probabilistic input models are frequently needed to
perform meaningful simulation experiments. In the past,
nonhomogeneous Poisson processes (NHPPs) have been
used successfully to model complex time-dependent arrival
processes in a broad range of application domains (Lewis
and Shedler 1976; Kao and Chang 1988; Lee, Wilson,
and Crawford 1991; Massey, Parker, and Whitt 1996; and
Pritsker et al. 1995).

An NHPP {N(t) : t ≥ 0} is a counting process such
that N(t) is the number of arrivals in the time interval
(0, t]; and λ(t), the instantaneous arrival rate at time t ,
is a nonnegative, integrable function satisfying the usual
Poisson postulates so that the corresponding (cumulative)
mean-value function is given by

µ(t) ≡ E[N(t)] =
∫ t

0
λ(z) dz for all t ≥ 0. (20)

The rate or mean-value function of the NHPP {N(t) : t ≥ 0}
completely characterizes the probabilistic behavior of the
process.

Both parametric and nonparametric methods have been
developed to estimate the rate or mean-value function of the
process {N(t) : t ≥ 0} from observed arrival times. In this
section we concentrate the discussion on a nonparametric
approach of Leemis (1991, 2000, 2004); and we present the
method in the context of a recent application to modeling
and simulating unscheduled patient arrivals to a community
healthcare clinic (Alexopoulos et al. 2005).

Suppose that we are given a time interval (0, S] over
which we observe several independent replications (realiza-
tions) of a stream of unscheduled patient arrivals, and that
this stream of arrivals constitutes an NHPP with a time-
dependent arrival rate λ(t) for t ∈ (0, S]. For example,
the observation interval might represent the time period on
each weekday during which unscheduled patients may walk
into a clinic—say, between 9:00 A.M. and 5:00 P.M. so that
S = 480 minutes.

Suppose that k realizations of the arrival stream over this
observation interval have been recorded so that we have ni

patient arrivals in the ith realization for i = 1, 2, . . . , k; and
thus we have a total of n = ∑k

i=1 ni patient arrivals accumu-
lated over all realizations of the arrival stream. Moreover,
let
{
t(i) : i = 1, . . . , n

}
denote the overall set of arrival

times for all unscheduled patients expressed as an offset
from the beginning of the observation interval (0, S] and
then sorted in increasing order. Thus, for example, if we
observed n = 250 patient arrivals over k = 5 days, each
with an observation interval of length S = 480 minutes,
1
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then t(1) = 2.5 minutes means that over all 5 days, the
earliest patient arrival occurred 2.5 minutes after the clinic
opened its doors to unscheduled arrivals on one of those
days; and similarly, t(2) = 4.73 minutes means that the
second-earliest patient arrival occurred 4.73 minutes after
the clinic opened its doors to unscheduled arrivals on one
of those days.

Given that λ(t) represents the rate of arrival of unsched-
uled patients for each time t in the observation interval (0, S],
we see that the mean-value function µ(t) representing the
expected number of arrivals during the interval (0, t] is
given by (20). We take t(0) ≡ 0 and t(n+1) ≡ S so that
for t(i) < t ≤ t(i+1) and i = 0, 1, . . . , n, a piecewise linear
nonparametric estimator of µ(t) is

µ̂(t) = in

(n + 1)k
+
{

n
[
t − t(i)

]
(n + 1)k

[
t(i+1) − t(i)

]}; (21)

see Leemis (1991). Equation (21) provides a basis for
modeling and simulating unscheduled patient-arrival streams
when the arrival rate exhibits a strong dependence, for
example, on the time of day.

To perform goodness-of-fit testing on the fitted mean-
value function µ̂(t) for t ∈ (0, S], we recommend the
following cross-validation technique. Suppose that in addi-
tion to the realizations of the target arrival process that were
used to compute the estimated mean-value function µ̂(t), we
observe one additional realization

{
A′

i : i = 1, 2, . . . , n′}
that is independent of the previously observed realizations,
with the ith patient arriving at time A′

i for i = 1, . . . , n′. If
the target arrival stream is in fact an NHPP with true mean-
value function µ(t) for t ∈ (0, S], then the transformed
arrival times

{
B ′

i = µ
(
A′

i

) : i = 1, 2, . . . , n′} obtained by
feeding each arrival time into the true mean-value function
constitute a homogeneous Poisson process with an arrival
rate of 1; and the corresponding transformed interarrival
times

{
X′

i = B ′
i − B ′

i−1 : i = 1, 2, . . . , n′} (with B ′
0 ≡ 0)

constitute a random sample from an exponential distribution
with a mean of 1.

It follows that an appropriate test for the adequacy of the
fitted mean-value function µ̂(t) as an approximation to the
true mean-value function µ(t) is to apply the Kolmogorov-
Smirnov test to the data set

{
X′′

i = µ̂
(
A′

i

) − µ̂
(
A′

i−1

) :
i = 1, 2, . . . n′} (with A′

0 ≡ 0) consisting of estimates of
the transformed interarrival times based on the estimated
mean-value function, where the hypothesized c.d.f. in the
goodness-of-fit test is FX′′

i
(x) = 1−e−x for all x ≥ 0. For a

comprehensive discussion of other techniques for assessing
the goodness of fit of estimated arrival processes, see Lee,
Wilson, and Crawford (1991); Kuhl, Wilson, and Johnson
(1997); and Kuhl and Wilson (2000).

If the estimated mean-value function µ̂(t) passes the
goodness-of-fit test outlined above, then we can use the
simulation algorithm of Leemis (1991) as displayed in Figure
52
4 to generate a new stream of arrival times
{
Ai : i =

1, 2, . . .
}

over the time interval (0, S] with approximately
the same general pattern of dependence on time as in (21)—
that is, with the approximate arrival rate λ(t) at each time
t in the interval (0, S].

[1] Set i ← 1 and N ← 0.

[2] Generate Ui ∼ Uniform(0, 1).

[3] Set Bi ← − ln(1 − Ui).

[4] While Bi < n/k do

Begin

Set m ←
⌊

(n + 1)kBi

n

⌋
;

Set Ai ← t(m) + {
t(m+1) − t(m)

}{ (n + 1)kBi

n
− m

}
;

Set N ← N + 1; Set i ← i + 1;

Generate Ui ∼ Uniform(0, 1);

Set Bi ← Bi−1 − ln(1 − Ui).

End

Figure 4: Algorithmic Statement of the NHPP Simulation
Procedure of Leemis (1991)

Note that in the simulation algorithm of Figure 4, 
z�
denotes the greatest integer (or floor) function so that, for
example, 
3.7� = 3. Moreover, the total number of arrivals
generated by this algorithm on one simulated realization of
the arrival stream is given by the random variable N ; and
provided that N > 0, the ith patient will arrive at time Ai

for i = 1, . . . , N .
The main advantage of this approach to modeling and

simulation of time-dependent arrival processes is that it does
not require the assumption of any particular functional form
for the way in which the arrival rate λ(t) depends on the
time t since the beginning of the observation interval (0, S].
Moreover as k → ∞, so that the number of realizations of
the target arrival process becomes large, with probability
1 the estimated mean-value function µ̂(t) of equation (21)
converges to the true mean-value function µ(t) for all t ∈
(0, S]. This means that the simulation algorithm given above
(which is based on inversion of µ̂(t) so that Ai = µ̂−1(Bi)

for i = 1, . . . , N) is also asymptotically valid as k → ∞.
For more information on this approach to modeling and
simulation of time-dependent arrival processes, see Leemis
(2004).

Application to Organ Transplantation Policy Analysis.
The United Network for Organ Sharing (UNOS) carried out
a remarkable large-scale application of a simplified variant
of this approach to modeling and simulating patient-arrival
streams in the development and use of the UNOS Liver
Allocation Model (ULAM) for analysis of the cadaveric
liver-allocation system in the United States (see Harper et
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al. 2000). ULAM incorporated models of (a) the streams of
liver-transplant patients arriving at 115 transplant centers,
and (b) the streams of donated organs arriving at 61 organ
procurement organizations in the United States—and virtu-
ally all these arrival streams exhibited strong dependencies
on the time of day, the day of the week, and the season of
the year as well as pronounced geographic effects.

Handling Arrival Processes Having Trends and Cyclic
Effects. Kuhl, Damerdji, and Wilson (1997) and Kuhl
and Wilson (2001) formulate a nonparametric method for
modeling and simulating arrival processes that may exhibit
a long-term trend or nested periodic phenomena (such as
daily and weekly cycles), where the latter effects might not
necessarily possess the symmetry of sinusoidal oscillations.
Called a “multiresolution” procedure because of its ability
to handle nested cyclic effects, this procedure has been
implemented in Web-based software by Kuhl, Sumant, and
Wilson (2005).

The procedure of Kuhl, Sumant, and Wilson (2005)
involves the following steps at each resolution level corre-
sponding to a basic cycle: (a) transforming the cumulative
relative frequency of arrivals within the cycle (for example,
the percentage of all arrivals as a function of the time of
day within the daily cycle) to obtain a statistical model with
approximately normal, constant-variance responses; (b) fit-
ting a specially formulated polynomial to the transformed
responses; (c) performing a likelihood ratio test to deter-
mine the degree of the fitted polynomial; and (d) fitting to
the original (untransformed) responses a polynomial of the
same form as in (b) with the degree determined in (c).

Kuhl, Wilson, and Sumant (2005) perform a compre-
hensive experimental performance evaluation to demonstrate
the accuracy and flexibility of the automated multiresolu-
tion procedure. The inversion scheme of Kuhl and Wilson
(2001) for simulating NHPPs fitted by the multiresolution
estimation procedure is substantially faster than the corre-
sponding inversion scheme of Kuhl, Wilson, and Johnson
(1997) for simulating NHPPs that have a parametric rate
function of the form

λ(t) = exp

[ m∑
i=0

αi t
i +

p∑
k=1

γk sin(ωkt + φk)

]
,

which is said to be of the type “Exponential-Polynomial-
Trigonometric-with-Multiple-Periodicities” (EPTMP). Rate
functions of type EPTMP were originally used in the UNOS
Liver Allocation Model (Pritsker et al. 1995); and although
the resulting fits were remarkably accurate, the times to
generate realizations of the fitted NHPPs were too large in
practice.

5 CONCLUSIONS AND RECOMMENDATIONS

The common thread running through this article is the focus
on robust input models that are computationally tractable
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and sufficiently flexible to represent adequately many of
the probabilistic phenomena that arise in many applica-
tions of discrete-event stochastic simulation. Specifically,
input-modeling techniques are presented that deviate from
conventional practice to produce realistic representations of
the underlying input processes and hence yield greater fi-
delity in the resulting simulation output processes. In time,
and with the growing understanding of the shortcomings
of using classical distribution families in simulation experi-
ments, it is our belief that these nonstandard techniques will
in fact become the conventional procedures. For another
approach to input modeling with no data, see Craney and
White (2004).

Notably missing from this article is a discussion of
Bayesian techniques for simulation input modeling, a topic
that we think will receive increasing attention from prac-
titioners and researchers alike in the future. For an intro-
duction to this topic, see Chick (1999, 2001) and Zouaoui
and Wilson (2003, 2004).

Additional material on techniques for simulation input
modeling, including the slides for the oral presentation
accompanying this article, will be posted to the Web site
<www.ie.ncsu.edu/jwilson/more_info>.
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