
Proceedings of the 2004 Winter Simulation Conference
R .G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, eds.

WEBGPSS: THE FIRST TWO HOURS OF SIMULATION EDUCATION

Richard G. Born

College of Business
Northern Illinois University
DeKalb, IL 60115, U.S.A.

 Ingolf Ståhl

Department of Managerial Economics
Stockholm School of Economics
S-11383 Stockholm, SWEDEN

ABSTRACT

In this paper we present seven short lessons used for intro-
ducing management science students to discrete event
simulation. It has been used both as the only element of
such simulation in courses that devote only two classroom
hours to this topic and as the introduction in courses that
are devoted almost completely to simulation.

1 INTRODUCTION

The authors have been teaching discrete event simulation
for together almost four decades to beginners. Most of the
courses have used GPSS in some form or other. During the
last few years both of us have used the WebGPSS system,
available both at the site <www.webgpss.com> and
as a stand-alone system for Windows (Born 2003, Ståhl et
al. 2003).

One of us has written a conventional text book for this
(Ståhl 2003) and one has designed an electronic equivalent
with over 500 PowerPoint slides (Born and Ståhl 2003,
Schriber et al. 2003). Although most of our teaching has
been in longer courses, some teaching of simulation has also
been as a small part of a general course in e.g. operations re-
search, .e.g as introduction to queueing. The following seven
lessons have then proved to be useful in courses when only
two classroom hours have been available for discrete event
simulation. They have also been used for such purpose by
other teachers, e.g. in Latvia. The seven lessons have also
proved to be a good start in longer courses.

During these two first hours we gradually build up a
model of a simple one server system, where customers ar-
rive at random and wait for service in a first come, first
served queue. We shall here start by first studying just how
customers arrive at and leave a system. In Lesson 1, we as-
sume that customers arrive 18 minutes apart at a booth to
buy tokens for a turnstile. Each customer buys one token.
When 50 tokens have been bought, the turnstile is closed
down, since there are then no tokens left.

2 LESSON 1

When we open WebGPSS, e.g. at www.webgpss.com, we
see that the screen, shown in Figure 1, is divided into two
parts, one larger to the right, the block diagram field, ini-
tially empty, and one to the left, the Symbol menu, with 18
GPSS block symbols. We build our programs by clicking
on these symbols.

Figure 1: The WebGPSS Application Window

The GENERATE symbol in the upper left-hand corner

is the first block used in every GPSS program. With this
block we bring customers into the simulation program.
When we click on the GENERATE symbol in the symbol
menu we get a copy of this symbol in the block diagram
part to the right. There is then also a cross below this
GENERATE block indicating where the next block will be
inserted in the block diagram.

For this program we also need a TERMINATE block
to get the customers out of the system. We hence click on
this symbol, to the right of GENERATE in the symbol
menu. This TERMINATE block is now placed in the block
diagram below the GENERATE block, where we earlier
had the cross. This cross has moved down one step.

We have now created our first segment of blocks, as
shown in Figure 2. A line connects the GENERATE and

Born and Ståhl

TERMINATE blocks. We have now created a simple
block diagram, which shows the logic of the program.

Figure 2: Block Diagram
Showing the Program
Logic

This gives the general structure of the program. We

must next give values to the operands of the blocks. We
double-click on the GENERATE block in the block dia-
gram to open the dialog for the operands of GENERATE.
Here we see all the operands of the block, as shown in Fig-
ure 3. In this first program it is enough to write a value in
the first field in this dialog. Even if GENERATE has five
operands, we need for this program to determine only the
first operand, Average IAT. IAT means InterArrival Time,
i.e. Average IAT is the average time between the arrivals
of two subsequent customers.

Figure 3: The GENERATE and TERMINATE Operands

Since we want all customers to come 18 minutes apart,

we write 18 in the field on the first line. Since this is the only
operand that we now want to input, we click on OK. Then
the dialog is closed and we see 18 written inside the
GENERATE block, as shown in the block diagram in Figure
4. Having given a value only to the first operand implies that
we for our first programs assume that the time of the arrival
of the first customer, T(1), is equal to IAT(1), i.e. the first
Inter Arrival Time. This is the standard, i.e. default, assump-
tion. Hence the first customer arrives after 18 minutes.

We next want to give an operand to the TERMINATE
block. We double-click on the TERMINATE block to open
the dialog for its operands. We see that TERMINATE has
only one operand: the number of tokens to be taken away.

Figure 4: The Full Program and
Block Diagram

This refers to the number of tokens that a customer re-
moves going through the TERMINATE block. In the ex-
ample with the booth each customer buys a certain number
of tokens. Since we here assume that each customer buys
only one token, we write 1 in the field on the first line, as
shown in the right half of Figure 3. After clicking on OK,
we see 1 inside the TERMINATE block, as shown in the
block diagram in Figure 4.

We have now created the complete block diagram for
the first program. We have also created a program in text
format. We can see this program in its original form by
clicking on Edit in the main menu and then on Text Edit-
ing. After clicking on OK in the box with the question “Do
you want to replace this text?”, we can in the Text Editing
window see the full program, as shown in Figure 4.

Besides the two blocks, GENERATE 18 and
TERMINATE 1, we see three control statements. Unlike
blocks that refer to actions taken by customers and exe-
cuted every time a customer enters the block, control
statements generally refer to actions executed once, at the
start or end of simulation. Every GPSS program has at
least the following three control statements: SIMULATE,
START and END.

SIMULATE comes first in each program and has as
operand the number of times that one wants to run the pro-
gram, i.e. the value given to the right of the Run button,
close to the bottom of the symbol menu.

START always lies after all the blocks and has as op-
erand the number of tokens that are available at the start of
the simulation. This operand determines how the simula-
tion is stopped. On the bottom line in the symbol menu we
see that the default value is 1. For this first run, we allow it
to remain unchanged. This gives us START 1, which
means that we have only one token. Since this one token is
removed already by the first customer, the program is ter-
minated already by the first customer.

END, which lacks operands, is inserted automatically
at the very end of each program to mark its end.

We next move to the Run button at the bottom of the
symbol menu, with the text time(s). In the field to the left
of this text we have the default value 1. Since we initially
want to run the program only once, we allow this value 1
to remain unchanged. When we click on the Run button we
get a new window, a Results window. This contains two

Born and Ståhl

sub-windows, one for the program list and one for the
block statistics, as shown in Figure 5.

Figure 5: The Results Window with Program List and
Block Statistics Tabs, when Starting with 1 Token

Program list contains an extended listing of the pro-

gram. "Extended" implies that the GPSS system has added
some features to the original program, which we saw in the
Text Editing window. The program is listed in a neater for-
mat than the “free format” of the original file. Furthermore,
at the right hand side, the statements are numbered. At the
left hand side we have other numbers, referring to blocks. In
this program there are only two blocks.

We next click on the tab with the text Block statistics, to
get the only statistics provided by this program. We here
first get information about the value of the simulation clock
when the simulation is finished, namely 18. GENERATE 18
implies, as mentioned, that customer 1 comes at time 18.
Since this customer removes the only token, the simulation
is ended at time 18. We see furthermore, under Total, that
one customer has gone through the GENERATE block and
one customer through the TERMINATE block, i.e., exactly
as expected.

We next change the program so that 50 customers go
through the system. We write 50 in the field to the right of
Start at the bottom in the symbol menu. We get the pro-
gram we call PRO01. We click again on Run to get the
Results window, shown in Figure 6. We see in the program
listing that we now have START 50, i.e. that 50 tokens
have to be removed before the simulation is stopped.

As mentioned, customer 1 comes after 18 minutes.
When will the other customers arrive? The GENERATE
block can schedule any desired number of customers, all
with the IATs according to the distribution expressed by the
operands, in this case the first operand. Thus, the arrival of
customer 2 is at time T(2) = T(1) + IAT(2) = 18 + 18 = 36.
Customer 3 will also arrive 18 minutes later, in this case at
time 36 + 18 = 54. In this way the GENERATE block will
schedule and bring additional customers into the system. As
customer 1 becomes active at time 18, GENERATE sched-
ules the arrival of customer 2 at time 36. When customer 2
gets into the system at time 36, GENERATE schedules the
arrival of customer 3.

Figure 6: Results Window when Starting with 50 Tokens

In this way simulation could continue “forever” if it were
not for the TERMINATE block. Each customer takes away
one token. After the first customer 49 tokens remain; after
the second 48 tokens and after 49 customers only one to-
ken remains. The 50th customer, arriving at time 50*18 =
900, takes the last token, The simulation then stops, with
no tokens left. This is seen in the Block statistics, where
the clock value at simulation stop is 900. Under Total we
can see that 50 customers have gone through both
GENERATE and TERMINATE.

3 LESSON 2

In program PRO01 above there was no uncertainty. There
was always a distance in time of 18 minutes between each
customer arriving at the turnstile. Since there is no uncer-
tainty, the same output appears no matter how many times
the program is run. We shall now modify program PRO01
by inserting uncertainty. We introduce randomness into
the Inter Arrival Times of the customers, so that they do
not always come 18 minutes apart, but instead between 12
and 24 minutes apart, as in Figure 7.

Figure 7: Uniformly Distributed Inter Arri-
val Times

The average is still 18 minutes, but the customers ar-

rive 18 + 6 minutes apart. The “half spread” is 6 minutes,
since the total spread is 24 - 12 = 12 minutes. All times are

Born and Ståhl

hence uniformly distributed, i.e. all times between the two
extreme values of 12 and 24 are equally possible. This is
the simplest form of assumption regarding randomness, but
there are many other distributions in GPSS.

We double-click on GENERATE in the block diagram
to open its dialog and we write 6 in the field for 1/2 IAT
spread, as shown in Figure 8. As regards this second oper-
and the following should be noted. Since, e.g., customer 2
cannot come before customer 1, the time, IAT(2), between
the arrival of the second and first customer cannot be nega-
tive. Hence, the lower limit of the possible IATs must not
be negative and the second operand, called the B operand,
must not be larger than the first operand, the A operand.
If there is no B operand, like in PRO01, then there is an
implicit, "default”, value of 0, giving a constant IAT.

Figure 8: Introducing Random Inter Ar-
rival Times

We next click on OK and see 18,6 as text in the

GENERATE block with a comma between the operands, as
shown in Figure 8. The comma separates the operands.
Customers are generated with a time distance of between 12
and 24, with all times in between equally probable.

Since we now have randomness in the arrival times, it
is no longer enough to run the new program, PRO02, only
once. Every run will use a different sequence of random
numbers. We write 3 for Run 3 times in the field at the
Run-button and click on Run to run the program three
times. In the results window, we first see in the program
listing that we have SIMULATE 3 and GENERATE 18,6.
We see in the block statistics, in Figure 9, the results from
all three runs. The first one was finished when the simula-
tion clock is 892.24; the second at 859.92 and the third
time 900.63. Two observations can be made here:

Everyone who runs this program will get the same re-
sults. This has to do with the fact that GPSS, like all other
simulation systems, does not use true random numbers, but
instead pseudo-random numbers, i.e., artificial random
numbers, which look random, but are determined by a
computer program. A starting number called a seed initi-
ates the sequence. Each number in the sequence is then ob-
tained from the preceding number by a process of multi-

Figure 9: Block Statistics for
Three Runs

plication and division with certain constants. The use of
this type of numbers has great advantages. For every run, a
specific sequence of random numbers is used.

Secondly, the different results in the three runs are
connected with the fact that we in the three runs use differ-
ent sequences of random numbers for determining the time
between the arrivals of the 50 customers. By writing a
number larger than 1 in the field after the Run-button, we
can run the program several times with different results.
We can regard each such result as a sample from a large
number of possible results. If we want to draw conclusions
from a simulation, the simulation program should never
run just once, since one can then not estimate the variation
of results due to differences in the random numbers.

4 LESSON 3

In the two earlier programs, the number of customers de-
cided when the simulation should stop. In the next pro-
gram, which we call PRO04, to keep the numbering in ac-
cordance with what is on the Web, the simulation will
instead stop at a specific time, namely after 8 hours, but
customers will still arrive 18 + 6 minutes apart. We build
on program PRO02 above. The first change is that no cus-
tomer determines when the simulation is stopped. A cus-
tomer hence no longer takes away any token. We open the
dialog of TERMINATE and delete 1 in the field regarding
the number of tokens to take away. After OK to close the
dialog, there is no number in the TERMINATE block.

Furthermore, we have in this program not only a cus-
tomer segment, but also a stop segment, as shown in Figure
10. If we now did not have the stop segment, the simulation
would go on "forever", since the customers would not de-
crease the number of tokens and each customer schedules

Born and Ståhl

the arrival of the next customer. We can think of a janitor
who comes after 8 hours and closes the turnstile. In order to
have a block generating a janitor to the right of the customer
segment, we must first insert a cross for the next block under
the TERMINATE block by clicking below this block. We
next click on the GENERATE symbol in the symbol menu,
so that the new GENERATE block is placed to the right of
the old one in the block diagram. The janitor must also leave
the system. We hence also click on the TERMINATE sym-
bol in the symbol menu. We now also have a stop segment.

Figure 10: Customer and Stop
Segments

Since it is confusing to talk about a customer in the

case of the stop segment, we shall use the more general
term transaction to denote the temporary entities gener-
ated in the GENERATE blocks. We have two kinds of
transactions in this program: customers and a janitor.

We next give operands to the blocks in this stop seg-
ment. Since we used minutes in the customer segment, we
must use minutes also in the stop segment. In GPSS no
specific unit of time is specified. All units of time are pos-
sible, but one must use the same unit of time consistently
throughout the whole program. 8 hours must hence be
stated as 480 minutes. We click on the new GENERATE
block to the right and write 480 as Average IAT. In this
case, when the janitor comes after exactly 480 minutes,
there is no spread and there is no B operand in this
GENERATE block. If nothing else is stated, the janitor ar-
rives at the first sampled or determined IAT-time, in this
case exactly 480 minutes after simulation start.

 Since the janitor closes the system after 480 minutes,
i.e. already the first time that he arrives, the janitor's
TERMINATE block must remove tokens. If we start with
only one token, it will be enough to have the janitor re-
move this only token to stop the simulation. We hence
double-click on the TERMINATE block and write 1 in the
field on the line for number of tokens to be removed and
click on OK. As the last step, we change 50 in the field for
Start to 1, since it is enough to start with one token, which
will then be removed by the janitor to stop the simulation.

We shall next run this program 3 times. We then see in
the block statistics that the simulation is stopped after 480
minutes in each of the three runs and that in the first two
runs 27 customers arrived, but only 26 in the third run.
5 LESSON 4

We shall now change the turnstile of program PRO04
above into a museum. In the turnstile, the customers left
the system the same moment as they arrived. In the mu-
seum of PRO05, we allow them to stay in the simulated
system for a time that varies at random between 20 and 30
minutes, as shown in Figure 11. We call this a museum,
since we do not have any limit on the number of visitors
who can be inside the museum system at the same time.

Figure 11: Uniformly Distributed Museum
Visit Times

We use a new block, the ADVANCE block, for delay-

ing the visitors between 20 and 30 minutes, i.e. with an av-
erage time of 25 minutes and a half spread of 5 minutes.
We insert such an ADVANCE block between the first
GENERATE and TERMINATE blocks. We click on the
line connecting these two blocks in the customer segment.
The cross of where the next block shall be inserted is then
marked on this line. We click on ADVANCE in the sym-
bol menu and a rectangular ADVANCE block is inserted
between the GENERATE and the TERMINATE blocks in
the customer segment, as shown in Figure 12.

Figure 12: Introducing Random Museum Visit Times

We next click on this ADVANCE block to open its

dialog, as shown in Figure 12. We see two operands here:
Average time and 1/2 spread. We write 25 as Average time
and 5 as 1/2 spread. After OK, we see 25,5 inside the
ADVANCE block. This implies that all times between 20
and 30 minutes are equally likely, since the two operands,
the A and B operands, have the same function as
GENERATE. The default values for the A and B operands
are likewise 0.

Born and Ståhl

We run the program twice. The program list contains no
surprises. The new thing is in the block statistics, shown in
Figure 13. Earlier we had only data in the left-most column,
Total, on how many transactions in total passed through
each block. Now we also have data in the middle column
with the heading Current. For the third run we see in block 1
(GENERATE) under Total that 27 visitors have been cre-
ated, but in block 3 (TERMINATE) that only 25 visitors
have left the museum. We see in block 2 (ADVANCE), un-
der Current, that 2 visitors are still inside the museum at
closing time. They are visitors who planned to leave after
time 480, but who are now forced out earlier. This shows
that there is no specific limit on how many visitors can be in
the ADVANCE block at the same time.

Figure 13: Part of Block Statistics
of Museum Program

6 LESSON 5

We have up to now only dealt with the temporary entities,
transactions, such as customers. We now introduce the other
important type of entities, the permanent servers. We here
study the simplest kind of server, called a facility, which can
give service to only one transaction at a time.

We shall remake PRO05, our museum program, to a
program that deals with a small barbershop with one bar-
ber, Joe, who can cut the hair of obviously only one cus-
tomer at a time. Customers arrive according to the same
time pattern as before, i.e. with a time distance of between
12 and 24 minutes. The time for a haircut varies between
20 and 30 minutes, with 25 minutes on average, the same
times as the visitors were in the museum in PRO05.

We first insert a new block, a SEIZE block, before the
ADVANCE block. We insert the SEIZE block in the same
way that we inserted the ADVANCE block earlier. We next
insert a RELEASE block after the ADVANCE block. The
RELEASE block implies that the customer makes the barber
free to serve other customers. We obtain the diagram for this
new program, PRO07, as shown in Figure 14.

The SEIZE and RELEASE blocks can be seen as mirror
pictures of each other. SEIZE has, to its right, a triangle
pointing upwards, while RELEASE has a triangle pointing
downwards. As seen in the symbol menu, there are in GPSS
several other symbols that come in such pairs. This makes it
simpler to follow the logic in block diagrams.

We next add operands to the two new blocks, as
shown in the operand windows in Figure 15.

Figure 14: Block Diagram
of Program PRO07

Figure 15: Dialogs of SEIZE and RELEASE

We open the dialog of the SEIZE block. At the top, we

have Station name. This refers in this case to the name of
the barber. We write Joe and click for OK. We see Joe
written at the bottom of the triangle of the SEIZE block. A
server name must have 3 – 6 characters, the first three let-
ters and the remaining characters, if any, letters or digits.
We also open the dialog of RELEASE, where we also find
a field Station name. We write the same name as in the
SEIZE block, i.e. Joe. After OK, we see Joe written at the
top of the downward pointing triangle of RELEASE.

In spite of its simplicity, this program is not trivial,
since the results are not self-evident. Since customers ar-
rive on average 18 minutes apart and a haircut takes 25
minutes on average, the waiting line will obviously in-
crease during the day. It is, however, not clear what the
longest waiting line during the day is. Suppose our barber
has four chairs for waiting customers and wants to find out
if this number of chairs is sufficient. We run the program
once with the results shown in Figure 16.

In the block statistics, we see under Total in blocks 1
and 2, (GENERATE and SEIZE), that 27 customers have
arrived at the barbershop, but that only 19 have started get-
ting a haircut by closing time. Under Current in the
GENERATE block (block 1), there are 8 persons waiting
for a haircut. Hence four chairs are not enough.

Born and Ståhl

Figure 16: Barbershop Program Results

The persons who are waiting to get served are in the

block statistics waiting in the block preceding the SEIZE
block, but are also put on an internal waiting list, invisible
to the user. While customer 1 can get a haircut without
waiting, the barber is busy when customer 2 arrives and
tries to "seize" Joe. Customer 2 will then have to wait. In
the block statistics, he will not be admitted into the SEIZE
block, but must wait in the block preceding SEIZE, here
GENERATE. When customer 1 has got a haircut and "re-
leases" Joe, Joe turns to the waiting customer 2, who will
now be permitted to go through the SEIZE block into the
ADVANCE block to get his haircut. He then goes through
the RELEASE block, which never refuses entry. GPSS
automatically determines who waits and who gets into ser-
vice, on a first come, first served basis, unless another dis-
cipline is indicated. Figure 16 shows that we also get a tab
with statistics for Stations with three data items:

1. Average utilization, 97.41, is the percent of the to-
tal simulation time that Joe was busy.

2. Number of entries is the number of times that cus-
tomers have started to get service from the station.

3. Average time/trans, 24.61, the average time that
each customer is served, is the total time that Joe
was busy, divided by the number of entries, 19.

7 LESSON 6

The results of PRO07 showed the length of the waiting line
at the end of the simulation, but there was no information
on the waiting line during the simulation. To get more de-
tailed queuing statistics, we open the dialog of the SEIZE
block. In Figure 15, the line under Station name in the
Seize operands dialog reads Queue statistics, followed by a
small box. By clicking to get a "mark" here, we "switch
on" the collection of queue statistics. After OK, we see a Q
in the lower right-hand corner of the SEIZE rectangle. We
run this program PRO08 once.

In the program list, we now see that the only difference
to PRO07 is that the second block now reads SEIZE Joe,Q.
The block statistics and the stations statistics are exactly the
same as for program PRO07. The adding of Q to the SEIZE
block thus does not influence the actual simulation process.
The Q only gathers statistics. We also find a new sub-
window named Queue/AD, as shown in Figure 17.

Figure 17: Barbershop Program Results Queue Statistics

We here find eight information items:

1. Maximum contents, 8, which is the highest num-

ber of customers that ever waited during the simu-
lation.

2. Average contents, 3.78, is total time that custom-
ers waited, divided by the total simulation time,
480.

3. Total entries, 27, is the number of customers who
have joined the queue.

4. Zero entries, 1, is the number of customers who did
not have to wait at all, in this case customer 1.

5. Percent zeros, 3.70, is the number of zero entries,
here 1, as a percent of total entries (point 3).

6. Average time/trans, 67.25, is total time custom-
ers have been waiting, divided by the number of
entries.

7. $Average time/trans, 69.83, is the average time for
those customers that really had to wait. We here re-
fer to the 26 (=27-1) customers who had to wait.

8. Current contents, 8, is the number of customers,
who were waiting when the simulation ended.

Since customers arrive with an average IAT of 18

minutes, but a haircut takes on average 25 minutes, the
waiting line will grow. The question is, if it is only because
of this time discrepancy that we get a waiting line. To an-
swer this question, we open the dialog of the ADVANCE
block and change the average time for a haircut to 18 min-
utes, i.e. the same time as the average IAT, and run the
program once. We see already in the block statistics, under
Current for block 1, a waiting line, but it is much shorter,
of just 1 person. We see in the queue statistics that average
waiting time has decreased, but still amounts to almost a
quarter of an hour. The number of customers who did not
wait at all has only increased to two. 93 percent of the cus-
tomers still had to wait.

The question is then if it is the random variation in arri-
val and service times that causes the remaining queues.
To answer this, we change our program so that there are no
random variations. In the GENERATE block of the cus-
tomer segment, we delete 6 as the 1/2 IAT spread and in the

Born and Ståhl
ADVANCE block we delete 5 as the 1/2 spread to get
GENERATE 18 and ADVANCE 18. Running this program
once, we see in the block statistics that no one waits in block
1 and in the queue statistics that the waiting time is 0, and
that the percentage of customers who did not wait reached
100. The waiting line in the preceding program was hence
only caused by the random variations. This stresses the im-
portance of using random variables when studying systems
subject to noticeable random variations.

8 LESSON 7

The queue statistics obtained this far are in many cases in-
sufficient, since they only refer to averages. One is often
more interested in extreme values, like how many waited
more than two hours. We might need a table of these waiting
times, distributed into different time classes, e.g. of how
many waited 10-20 minutes,.., 110-120 minutes, etc. In
GPSS we obtain such statistics by using a queue table.

We open program PRO08 and go to the top menu and
click on Control. In the submenu then obtained, we click
on Queue tables and get a queue tables dialog, where we
click on the Add button. We get a smaller dialog, which
shows for which queues one can get a queue table. In this
case there is only one queue, the queue in front of Joe. Af-
ter a click on OK, Joe is written at the top to the left in the
main field of the queue tables dialog. At the right-hand
side of the dialog we see three fields for data to be input:
 Class 1 top. It refers to the upper limit of class 1. We
write 0 here. This implies that all who waited 0 minutes,
i.e. not at all, are shown in class 1.
 Width, i.e. class width, is the number of time units in
each class (except the lowest and highest). Here, where we
want the classes 0-10, 10-20,.. minutes, we write 10.
 # of classes, i.e. number of classes, is the maximum
number of classes we wish to have in the table. We set this
to 20, which is the maximum number allowed.
 When we have written these three values, we click on
the Set button. The three values are then brought into the
first line of the large main field, as shown in Figure 18.

Figure 18: The Queue Tables Dialog

By clicking on OK, we complete the new program and

run it once. We then see in the program listing that immedi-
ately after SIMULATE we have the statement QTABLE

Joe,0,10,20. This is the only difference compared to program
PRO08. We also see that the block, station and queue statis-
tics are all the same as for PRO08. The new thing is that we
now have a Results window tab called Queue table with
new statistics, as shown in Figure 19.

Figure 19: The Queue Table Tab of the Program Results

At the top we have a line with six data:

1. Entries, 19. Since a table produced by QTABLE

refers only to those customers that have finished
waiting, this number is different from the number
of entries in the ordinary queue statistics, 27, the
number of customers that have started waiting.

2. Mean queue time, 68.85, is the average waiting
time for the customers that have finished waiting.

3. St(andard) dev(iation), 39.97, is a measure for de-
scribing the variations in the waiting times in this
table.

4. Total time, 1308.15, is the total time that all 19
customers in the table have waited.

5. Minimum, 0, is the shortest waiting time, in this
case of the first customer.

6. Maximum, 126.25, is the longest waiting time.

 Under this line we have the table with five columns:
 Column 1, Range, shows that the first class refers to a
waiting time of 0 minutes, the second one to 0.01 - 10 (i.e.
0.000001 - 10), the third one to 10.01 - 20, etc.
 Column 2, Observed frequency, shows the number of
customers in each class.
 Column 3, Per cent of total, shows the number in col-
umn 2 as a percent of the total number of customers, 19.
 In column 4, Cumulative percentage, the percentage
figures in column 3 are added cumulatively to make it easier
to answer a question like "What percent of the customers
waited at most 20 minutes? (Answer: 15.79 percent).

Born and Ståhl

 Column 5, Cumulative remainder, is 100 minus the
value in column 4, to answer e.g. "What percent waited
more than an hour?" (Answer: 57.89 percent.)
 Although we in the queue table dialog asked for 20
classes, the table contains only 14. The highest one shown
runs from 120.01 to 130. Since there are no observations
above 130, the remaining classes are not displayed.

We can also produce a histogram for the queue table
statistics. We click on Control and Queue tables and in the
box for Draw histogram, to mark this box. After clicking on
Set, we see yes in the column for Histogram to the right. We
click on OK to confirm and close the dialog. We now run
this program again. We see in the Results window yet an-
other tab, Histogram 1. We click on this tab and we see a
frequency histogram, as shown in Figure 20. On the scale at
the bottom, the limits of the classes are written.

Figure 20: Histogram for the Queue Table Statistics

9 CONCLUSIONS

We have above presented a mini-course, which consists of
seven brief lessons. This has been used as the introduction to
simulation, either as the first two hours in a course focused
on simulation or as the only two hours available for discrete-
events simulation in a more general course. We have shown
how one with a simple GUI can rapidly build up an easily
understood program, which is shown both in a block dia-
gram form and as pure text code and which produces differ-
ent types of tables and graphs. We have also shown that one
with very compact programs (e.g. 7 blocks and 4 control
statements) can analyze service problems that are not trivial.
We have also shown how one with simple simulation mod-
els can exemplify ideas that are fundamental for understand-
ing the formation of waiting lines in service systems.

REFERENCES

Born, R. 2003. Teaching discrete-event simulation to busi-
ness students: the alpha and omega. In Proceedings
of the 2003 Winter Simulation Conference, ed. S.
Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice,
1964-1972. Piscataway, NJ: IEEE.

Born, R. and I Ståhl. 2003. WebGPSS Slide Presentation.
DeKalb, IL: Available on request from R. Born at
<rborn@niu.edu>.

Schriber, T., I. Ståhl, J. Banks, A. Law, A. Seila, and R.
Born. 2003. Simulation textbooks – old and new
(panel). In Proceedings of the 2003 Winter Simulation
Conference, ed. S. Chick, P. J. Sánchez, D. Ferrin, and
D. J. Morrice, 1952-1963. Piscataway, NJ: IEEE.

Ståhl, I. 2003. Simulation made simple with WebGPSS – a
tutorial. Stockholm: Stockholm School of Economics.

Ståhl, I., H. Herper, R. Hill, C. Harmonosky, J. Donohue
and D. Kelton. 2003. Teaching the Classics of Simu-
lation to Beginners. In Proceedings of the 2003 Win-
ter Simulation Conference, ed. S. Chick, P.J. Sánchez,
D. Ferrin, and D.J. Morrice, 1941-1951. Piscataway,
NJ: IEEE.

AUTHOR BIOGRAPHIES

RICHARD G. BORN is an Associate Professor of Man-
agement Information Systems in the Department of Opera-
tions Management and Information Systems in the College
of Business at Northern Illinois University. He has taught
simulation modeling for the past 13 years to university stu-
dents at all levels from undergraduate to graduate, including
M.S. students in Management Information Systems, M.S.
students in Accountancy, and M.B.A. students. His email
address is <rborn@niu.edu>.

INGOLF STÅHL is a Professor at the Stockholm School
of Economics, Stockholm, and has a chair in Computer
Based Applications of Economic Theory. He was visiting
Professor, Hofstra University, N.Y., 1983-1985 and leader
of a research project on inter-active simulation at the Inter-
national Institute for Applied Systems Analysis, Vienna,
1979-1982. He has taught GPSS for twenty-five years at
universities and colleges in Sweden and the USA. Based
on this experience, he has led the development of the mi-
cro-GPSS and WebGPSS systems. His email address is
<ingolf.stahl@hhs.se> and the web address for his
WebGPSS is <http://www.webgpss.com/>.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 2066
	02: 2067
	03: 2068
	04: 2069
	05: 2070
	06: 2071
	07: 2072
	08: 2073
	09: 2074

