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ABSTRACT 

Determination of credit portfolio loss distributions is es-
sential for the valuation and risk management of multi-
name credit derivatives such as CDOs. The default time 
model has recently become a market standard approach for 
capturing the default correlation, which is one of the main 
drivers for the portfolio loss. However, the default time 
model yields very different default dependency compared 
with a continuous-time credit migration model. To build a 
connection between them, we calibrate the correlation pa-
rameter of a single-factor Gaussian copula model to portfo-
lio loss distribution determined from a multi-step credit 
migration simulation. The deal correlation is produced as a 
measure of the portfolio average correlation effect that 
links the two models. Procedures for obtaining the portfo-
lio loss distributions in both models are described in the 
paper and numerical results are presented.  

1 INTRODUCTION 

A synthetic Collateralized Debt Obligation (CDO) is a syn-
thetic securitization of a pool of credit risky assets in which 
investors agree to insure the credit portfolio against a speci-
fied range of losses in exchange for the periodic payment of 
an insurance premium. The different loss ranges are referred 
to as the tranches of the CDO. In a typical synthetic CDO 
transaction, the portfolio loss distribution directly determines 
the tranche cash flows and thus the tranche valuation and 
risk analysis. The main drivers for the portfolio loss distribu-
tion are default probability, default correlation and the loss 
given default (LGD). While there are many credit risk mod-
els that address these issues, we focus here on the structural 
model from which the default time model and the multi-step 
credit migration model can be derived.  

The structural approach was first proposed by Merton 
(1974). It makes assumptions on the underlying firm asset 
value process that drives the credit migration and defaults. A 
multi-step simulation model (Hull and White 2001, Moro-
koff 2003) can capture the default correlation and credit mi-

 

gration in a practical manner, but requires a step-wise simu-
lation that may often be time-consuming.  

The default time approach was developed by Li (2000) 
for pricing CDOs. It can be understood as a single-step 
version of the structural model, requiring only one-step 
simulation to generate the default times based on the mar-
ginal default probabilities and copula function. While the 
Gaussian copula is commonly used or implicitly implied 
for modeling the joint defaults, some papers claimed that 
other copula functions, such as Student-t copula (Mashal 
and Naldi 2001) and Clayton copula (Rogge and Schön-
bucher 2003), may better capture the tail dependency.  

The single-factor Gaussian copula is a simple form of 
the default time model with a semi-analytical solution so 
that Monte Carlo simulation is not required for pricing 
(Gregory and Laurent 2003, Hull and White 2004). Spe-
cifically, the loss distribution can be expressed as a low 
dimensional integral that may be evaluated with quadrature 
methods.  An earlier work on this was by Vasicek (1987) 
on loan loss distribution. The main idea is: conditional on 
the latent factor, marginal default and survival probabilities 
are independent. An explicit form of the number-of-default 
distribution, or loss distribution, can be computed and used 
to valuate basket default swaps or synthetic CDO tranches. 
The sensitivity measures can be produced in a similar way. 

  In recent years, the default time model, especially the 
single-factor Gaussian copula version, has become an indus-
try standard mostly due to its tractability. However, the de-
fault time model yields very different default dependency 
from using multi-step simulation. As pointed out in Moro-
koff (2003), the default time model tends to overestimate the 
default correlation when using a weekly asset return correla-
tion to determine the joint defaults in a longer time horizon. 
What correlation parameter to use in the default time model 
is thus a problem worth careful consideration.  

2 CREDIT PORTFOLIO LOSS DISTRIBUTION 

We consider here a portfolio of M exposures, with notional 
amount INj and loss given default LGDj, j=1,…,M. The 
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cumulative default probability of an exposure up to time t 
is given by the function Fj(t) (note that this function is non-
decreasing by definition). The key to determining the port-
folio loss distribution at time t is modeling how the de-
faults up to time t are correlated. The model must be cali-
brated so the expected number of defaults for each 
individual name is given by Fj(t). 

2.1 Default Time Model 

This section describes the methodology most commonly 
employed today for describing correlated defaults. It is 
known as the default time or copula approach and is de-
scribed by Li (2000) and Schmidt and Ward (2002).  

For an exposure in a CDO collateral pool, the default 
probability to maturity (either of the CDO deal or the ex-
posure, which ever is sooner) gives the probability of that 
name defaulting as some point during the life of a CDO 
deal.  The timing of the default, however, can also play a 
crucial role in determining the performance of the deal. 
Default timing is described by the function Fi(t).  

The default time/copula method is most easily described 
as a simulation for randomly sampling default times. The 
first step is to randomly sample a uniform (0,1) variate .u  
Let T be the maturity of the CDO deal. If ( )iu F T>  then the 

exposure i does not default. If ( )( )i iF t u F t t< ≤ + ∆  then the 
exposure defaults in period ( , ].t t t+ ∆  This procedure is 
closely related to sampling a stopping time for a random 
process crossing a default boundary. 

A key feature of this approach is the process for de-
termining correlated default times. This requires sampling 
a set of correlated uniform variates ( )1, , Mu uL . This is 

done by specifying a copula function ( )1 , MC u uL , which 
is a probability distribution function defined on the M -
dimensional unit cube. The copula function is often related 
to the asset return distribution function at time NT , 

( )1, , MF R RL , by the formula 
 

( ) ( ) ( )( )1 1
1 1 1, , , ,M M MC u u F F u F u− −=L L , 

 
where ( )1

jF −   is the inverse of the marginal probability 

distribution for the thj exposure. However, any copula 
function may be used for this purpose. The most com-
monly used are Gaussian copula and t-copula, although a 
variety of other methods, including Clayton and Archi-
medean copulas, have been considered.  

For the Gaussian copula, the sampling procedure is 
particularly simple. Based on the correlation matrix for the 
asset returns, a set of correlated standard normal variates 
( )1, , Mε εL is sampled, either from a Cholesky decomposi-
tion of the correlation matrix or from a factor model de-
composition. The correlated uniform variates are then ob-
tained from the formula  

 
( )j ju ε= Φ , 

 
where Φ is the one-dimensional standard cumulative nor-
mal distribution function. 

If the factor model underlying the correlation structure 
has more than a few dimensions, it is necessary to use 
Monte Carlo simulation to sample correlated defaults and 
default times that are then used to evaluate expectation in-
tegrals such as the probability of having more than k de-
faults or the expected value of the cash flows to a tranche. 
Under more restrictive assumptions on the correlation 
structure, semi-analytical solutions can be derived. For ex-
ample, the latent variable approach, proposed by Vasicek 
(1987) for credit portfolio risk problems, has been ex-
tended to CDOs by Gregory and Laurent (2003). The idea 
is that there exists a low dimensional underlying latent 
variable V conditional on which the default probabilities 
and default times are independent. As an example, the as-
set returns associated with a single-factor model with a 
Gaussian copula can be represented as  

 
2 21i i i iR V R zε = + − , 

 
where the latent variable V is assumed to have a standard 
normal distribution and the idiosyncratic component of the 
return iz  are iid standard normal and independent of the 
latent variable. The R-squared parameter (Ri

2) determines 
the degree of variance of the asset return attributable to the 
latent factor. Conditional on the latent factor, the asset re-
turns are all independent. The law of conditional expecta-
tions then allows the portfolio properties of interest to be 
expressed as an expectation of the portfolio properties of 
an independent portfolio with respect to the latent factor.  

2.2 Single-Factor Gaussian Copula Model 

This is a special case of the default time model in that it as-
sumes there is one latent factor that explains all the system-
atic risk and the joint default is modeled through a Gaussian 
copula function as described above. It has the advantage of 
using a semi-analytical calculation instead of simulation.  

To compute the loss distribution under this model, we 
first standardize each exposure’s loss given default as an 
integer multiple of a loss unit amount. This can be consid-
ered as a special case of the second approach in Hull and 
White (2004), but may be computed faster than that ap-
proach in general and the fast Fourier transform in Gregory 
and Laurent (2003).  

The unit of standardized loss, sl, can be chosen as a 
small percentage of total collateral notional, a fraction of 
the minimum loss given default in the collateral, or a com-
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bination of these two. By assuming constant LGD and con-
stant exposure at default, we can calculate the number of 
standardized losses for each underlying exposure by 

 

int i i
i

IN LGD
l

sl
 =  
 

, 

 
where int(x) is the function that rounds x to the closest in-

teger. 
1

M

L i
i

N l
=

=∑ gives the maximum number of standard-

ized losses. Given common factor V, we can calculate the 
conditional default probability pi(t|V) by 

 

( )1

2

( )
( | )

1
i i

i

i

F t RV
p t V

R

− Φ −
 = Φ
 − 

, 

 
where Ri is the correlation of exposure i with the latent fac-
tor, Φ(x) is the cumulative normal distribution function, 
qi(t|V) = 1- pi(t|V) is the conditional survival probability. A 
common practice is to assume constant asset correlation ρ 
throughout the portfolio, for which we need to set all Ri

2 
equal to ρ. 

Given the conditional default probabilities, we can 
calculate the conditional number-of-default distribution 
Q(N(t)=n|V) and conditional standardized loss distribution 
Q(L(t)=l|V) through the probability generating function. 
Specifically, they can be calculated as the coefficient of un 
and ul respectively from the following expansions accord-
ing to a simple iterative process, 

 

( ) ( )n

0 1

( ) | ( | ) ( | )
MM

i i
n i

Q N t n V u q t V p t V u
= =

= = +∑ ∏ , 

( ) ( )
0 1

( ) | ( | ) ( | )
L

i

N M
ll

i i
l i

Q L t l V u q t V p t V u
= =

= = +∑ ∏ . 

 
The two expansions are similar, except that in the second 
equation li is used as the exponent to account for the expo-
sure-specific losses.  

The number-of-default distribution Q(N(t)=n) and 
standardized loss distribution Q(L(t)=l) can be obtained 
through numerical integration of the corresponding condi-
tional distributions with respect to V. This may be done 
through Gaussian quadrature with Hermite polynomials, 

 

( ) ( )( ) ( ) |m m
m

Q N t n w Q N t n V= = =∑ , 

( ) ( )( ) ( ) |m m
m

Q L t l w Q L t l V= = =∑ , 

where Vm are the chosen quadrature points and wm are the 
associated weights. 
2.3 Multi-Step Credit Migration Model 

The multi-step credit migration approach used in this paper 
has been given in Morokoff (2003). This alternative to the 
default time approach is based on simulating the firm asset 
value as a stochastic process. Similar methods have been 
proposed by Hull and White (2001), Arvanitis and Gregory 
(2001) and Finger (2000). In this section we describe an 
implementation of a multi-step approach based on the em-
pirically derived Distance-to-Default distributions.  

While the default time approach captures the marginal 
default probabilities of each individual exposure correctly 
over the life of the simulation, substantial error may be in-
troduced into the correlated default structure, depending on 
how the correlation structure and the underlying stochastic 
default process are viewed. Time series of asset, equity or 
debt price returns are usually based on daily or weekly 
time intervals. Given the relatively high default probability 
of most assets over time horizons of five years or longer, 
using a correlation structure based on weekly returns as a 
proxy for multi-year horizon correlations can lead to 
skewed results. In particular, the single-step approach may 
not adequately capture the absorbing nature of the default 
state (i.e., the stochastic process has an absorbing bound-
ary).  Thus it is better to consider a simulation based on a 
sequence of shorter time steps than one single step to ma-
turity. The effects of the stochastic process for credit mi-
gration is also not accounted for in the default time model 
since it focuses only on the function Fi(t), which for the 
multi-step credit migration process acts only as a calibra-
tion parameter. 

It is possible to model the credit migration of a single 
asset as a continuous-time stochastic process, such as geo-
metric Brownian motion or an Ohrnstein-Uhlenbeck proc-
ess, with an absorbing boundary implied by the cumulative 
default probability function ( )F t . In this formulation a free 
boundary problem PDE can be derived as described by 
Avellaneda and Zhu (2001). However, the existence of 

( )F t  as a continuous-time function usually arises from im-
posed model or interpolation assumptions; there is generally 
not enough market data or financial information available to 
imply forward default probabilities over short time windows. 
Thus the continuous approach does not add accuracy relative 
to a discrete approach as long as the correlated behavior of 
asset over the time step is consistent with the correlation 
modeling.  In any case, unless a low-dimensional latent vari-
able approach is applied, computation of the properties of a 
portfolio of many exposures will require a Monte Carlo 
simulation based on discrete time steps. 

For analyzing a single CDO deal, it is most convenient 
to use simulation time steps based on the CDO payment 
periods. For one simulation step, the names defaulting dur-
ing that period are identified, recoveries on defaulted 
names are determined, interest cash flows from non-
defaulted collateral are aggregated, scheduled and un-



Cao and Morokoff 

 
scheduled principal payments from the collateral are col-
lected, etc. The resulting pools of interest and principal 
cash flows are then passed to the cash flow waterfall en-
gine to be distributed to the CDO tranches. If desired, the 
exact default time of an exposure can be sampled using the 
default time methodology described above within one 
simulation period. In practice, however, the default on a 
particular exposure will occur on a coupon date, not at a 
random time. The key question for the simulation is thus 
whether the default occurs in a given period.  

There are numerous approaches that can lead to multi-
step simulations for correlated defaults depending on how 
the default process is modeled. We focus here on a discrete 
time process that makes use of distributions derived from 
empirical data. The method takes as input the cumulative 
default function ( )jF t  specified at discrete times 
( )1, , NT TL  for each obligor in the collateral portfolio, in-
dexed by j . In addition, the firm asset value correlation 
matrix for all obligors must be specified. 

The assumption of geometric Brownian motion for the 
asset value process often does not adequately capture how 
a firm’s credit quality changes over time because it does 
not take into account the associated changes in liability 
structure. It is known that as firms do well (e.g. as the asset 
value of the firm increases), they tend to take on more 
debt, thereby keeping their credit quality more stable over 
time. For example, a Baa rated firm will tend to maintain 
that rating by borrowing more when opportunities arise. It 
would be unusual for such a firm to grow without adding 
leverage to become a Aaa rated. However, this tends to be 
the consequence of the geometric Brownian motion model: 
over longer time horizons, firms that do not default un-
dergo systematic improvement in their credit quality. 

To capture the effects of changes to both asset value and 
liability structure on credit quality in long horizon multi-step 
simulations, at MKMV we have developed a multi-step 
simulation based on the Distance-to-Default ( DD ) transi-
tion densities. Distance-to-Default refers to the number of 
standard deviations a firms asset value is from a default 
point derived from the firm’s liabilities. We now consider 
the implementation of this empirically based method. 

A key point to consider when working with histori-
cally observed data is the need to bucket the data in order 
to build a suitable sample size. For example, the first step 
in determining the probability of transitioning from a DD  
value of 3 over a one year horizon to a DD  value of 4 is to 
identify all names in the historical sample that have at 
some time point a DD  value of 3. However, since DD  is 
determined as a continuous variable, it is unlikely that any 
of the sample will have a DD  value of exactly 3. Thus it is 
necessary to repose the question as to the probability of 
transition from a bucket, or interval, containing the DD  
value 3 to a DD  value less than 4. The distribution of arri-
val DD ’s after one year does not necessarily have to be 
bucketed–a parametric distribution for the cumulative tran-
sition probability distribution can be selected and the actual 
data used to estimate the distribution’s parameters. How-
ever, for use in a multi-step simulation, it is convenient to 
work with the transition probabilities from one bucket to 
another bucket in the form of a transition matrix. The 
multi-step simulation is then carried out as a discrete 
Markov chain by repeated application of the transition ma-
trix to an initial state vector. The size of the transition ma-
trix, which is determined by the size of the DD  buckets, is 
chosen to balance the desire for high resolution in DD  
space with the need to minimize the statistical errors aris-
ing from small sample sizes. Ultimately this is a question 
of the size of the original data set. The Moody’s KMV 
model is calibrated from 9 years of monthly data on 
12000+ firms. 

There are a number of important observations to be 
made about the DD  transition matrix. First, the default 
state, conveniently labeled as 0DD = , is an absorbing 
state. The total probability of transitioning to this default 
state over a given time period is the forward default prob-
ability. This forward default probability is different for 
each firm; however, the transition matrix was determined 
by pooling data on many firms. Thus the transition matrix 
must be viewed as firm aggregate behavior. In order to 
capture the firm-specific behavior dictated by the input F(t) 
term structure for each firm, it is necessary to make a firm-
specific calibration of the transition matrix. The calibration 
consists of satisfying the constraint that over a given time 
period, the probability of transitioning from a non-default 
state to the default state must be the unconditional (or more 
precisely, conditional only on data specified at 0T ) forward 
default probability: 

 
( )

( )
1

1
1

( )
( , ) .

1
i i

i i
i

F T F T
f T T

F T
−

−
−

−
=

−
 

 
There are numerous ways this constraint could be enforced. 
One simple approach is to rescale all the original firm ag-
gregate transition probabilities to default by a single factor, 
such that their sum, weighted by the unconditional probabili-
ties of being in each non-default state at time 1iT − , matches 
the forward default probability. Once the transition prob-
abilities are adjusted by this scaling, the unconditional prob-
abilities for each state at time iT  can be determined, thereby 
allowing the calibration for the next time step. 

A second consideration for the transition matrix is 
whether the underlying data supports the model of a 
Markov process. Not surprisingly, the firm-aggregate tran-
sition matrices for time horizons of 6 months, 1 year, 2 
years, 5 years, etc., derived from the data do not fit per-
fectly in a Markov framework. In other words, the one-
year matrix is not exactly the convolution of the 6-month 
matrix with itself; nor is the five-year transition matrix ex-
actly the five-fold convolution of the one-year transition 
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matrix. The agreement of these transition matrices is how-
ever sufficient, particularly given the complexity of the 
underlying factors which drive credit migration of firms as 
well as the firm-aggregate nature of the transitions them-
selves, to warrant the approximation by a single Markov 
transition matrix. It is determined by optimally fitting, in a 
least-squares sense, one matrix (and its convolutions) to 
the empirical transition matrices. This avoids the excep-
tionally difficult task of specifying and calibrating a non-
Markov process for the credit migration. 

Once the transition matrix is specified for each obligor 
at each time step, the simulation proceeds by sampling 
from ( )1|i iF DD DD − , the probability distribution of DD  
states at time iT  determined from the appropriate probabil-
ity distribution (as given by the transition matrix) condi-
tional on the DD  state at time 1iT − . By interpolation from 
the cumulative probabilities for the discrete transition ma-
trix on DD  states, ( )1|i iF DD DD −  can be assumed to be a 

continuous, non-decreasing function with inverse ( )1
iF u−  

defined on the unit interval [0,1] . For values of u  in the 
interval 1[0, ( 0)]iP DD − →  (i.e., between 0 and the condi-
tional probability of defaulting), it follows that 

( )1 0iF u− = . We introduce correlations among obligors by 
assuming multi-variate Brownian motion for the asset re-
turn process and sampling the correlated asset return in-
crements according to the specified asset return correlation 
matrix. The cumulative normal distribution function is then 
used to map the sampled asset return increments to the unit 
interval; this value is then used as the argument for 

( )1
iF u− . More precisely, the DD  sample for obligor j  at 

time i  is given by  
 

( )( )1
i jDD F ε−= Φ  

 
where the jε  are the normalized, correlated normal sam-
ples of asset returns. 

If the random asset return sample falls below the de-
fault threshold (determined by the DD  state at the previ-
ous time step and the original default probability term 
structure), the default state of 0DD =  is sampled. In this 
case, a random recovery may be drawn from an appropriate 
distribution of recovery rates. If the obligor does not de-
fault, the sampled DD  state at iT  can be used to determine 
a conditional default probability term structure looking 
forward that can be used to discount future cash flows ac-
cording to their credit risk in order to obtain a price for the 
exposure at time iT . (Note that a discussion of the model-
ing of a stochastic interest rate process, important for de-
termine both price and cash flow characteristics of debt in-
struments, has not been included here). 
3 RESULTS AND DISCUSSIONS 

Using the procedures described above, we obtain the port-
folio loss distributions from multi-step simulation and from 
single-factor Gaussian copula with a group of constant cor-
relations. Then we calculate the sum-squared-errors be-
tween a pair of loss distributions, one from multi-step 
simulation and one from single-factor Gaussian copula, 
across the group of constant correlations. A minimization 
procedure returns a single correlation number that best 
calibrates the loss distribution from multi-step simulation, 
which we name the deal correlation. It is a single number 
that captures the average correlation effect of the collateral 
portfolio, which could be easily communicated and com-
pared across different CDO deals. It is similar, in some 
sense, to the Moody’s Diversity Score.  

In general, we can infer a deal correlation either from 
a number-of-default distribution or from a portfolio loss 
distribution. For a homogeneous portfolio in which the ex-
posure sizes and LGD values do not vary much throughout 
the portfolio, they will return similar results of deal 
correlation, otherwise the results may deviate a lot from 
each other. The deal correlation implied by a number-of-
default distribution is more meaningful for an nth-to-default 
swap or a ‘number-of-default’ CDO, while the deal 
correlation implied by the portfolio loss distribution is 
more relevant for a regular CDO tranche. 

As the numerical example, we consider a collateral 
portfolio of 100 names. Each name represents a notional 
amount of 10MM with 60% LGD, all maturing after 5 
years. The 1-year default probabilities vary from 3 bps to 
8% with an average of 0.86%, R-squared vary from 10% to 
65% with an average of 32%, pair-wise asset correlations 
vary from 6% to 62% with an average of 24%. We are in-
terested in the total portfolio loss within a 5-year horizon. 
The multi-step simulation is carried out with a semi-annual 
frequency, i.e., 10 time steps for 5 years.  

Figure 1 shows a comparison of the portfolio loss dis-
tribution from multi-step simulation and from single-factor 
Gaussian copula. As the correlation number for the latter 
increases, the portfolio loss distribution tends to have both 
a higher ‘head’ (low loss scenario) and heavier ‘tail’ (high 
loss scenario), indicating a higher default correlation.  

The deal correlation for this portfolio is 16%, which is 
lower than the portfolio average asset correlation (24%) 
and portfolio average R-squared (32%). It’s because the 
default time model tends to overestimate default correla-
tion when using instantaneous asset return correlation to 
infer the long-term joint defaults. Figure 2 shows that the 
portfolio loss distribution from multi-step simulation 
matches almost perfectly with the loss distribution using 
single-factor Gaussian copula with 16% correlation. 

As we can see from Figure 1 and Figure 2, different 
correlations lead to completely different loss distributions 
under the copula model, which, of course, incurs different 
tranche valuation and risk analysis results. 
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Figure 1: Portfolio Loss Distribution with Con-
stant LGD Multi-Step Simulation vs. Single-
Factor Gaussian Copula  

 

 
Figure 2: Portfolio Loss Distribution with Constant 
LGD (Deal Correlation=16%, Portfolio Average Asset 
Correlation=24%, Portfolio Average R-squared=32%) 
 
Table 1 lists the sum-squared-errors (between loss dis-

tributions from multi-step simulation and Gaussian copula 
model) and tail loss probabilities, corresponding to differ-
ent correlation numbers. Consider a 10-20% tranche for 
example (i.e., a tranche that absorbs the portfolio loss be-
tween 10% and 20%), 24% correlation implies a 3.17% 
probability of getting hit while 16% correlation only incurs 
a 1.67% chance. 

 
Table 1: Sum-Squared-Errors and Tail Loss Probabilities 
(Portfolio Loss Distribution with Constant LGD) 

ρ 0% 8% 16% 24% 32% 
S.S.E. (10-4) 537 84 1 67 245 
P(L>10%) 0% 0.35% 1.67% 3.17% 4.48% 

 
As a comparison, we study the portfolio loss distribu-

tion with stochastic LGD, or equivalently stochastic recov-
ery rate. We assume the LGD follows a Beta distribution 
with mean 0.6 and shape parameter 4, there is no correla-
tion between default probability and LGD. The portfolio 
loss distribution in this case (Figure 3) is similar in shape 
to the loss distribution with constant LGD, while the for-
mer has a little higher ‘head’ and heavier ‘tail’ than the lat-
ter, since the randomness in LGD flattens the loss distribu-
tion on both ends.  

 

 

Figure 3: Portfolio Loss Distribution with 
Stochastic LGD (Multi-Step Simulation vs. 
Single-Factor Gaussian Copula) 

 
Sum-squared-errors between distributions and tail loss 

probabilities under stochastic LGD are given in Table 2. 
 

Table 2: Sum-Squared-Errors and Tail Loss Probabilities 
(Portfolio Loss Distribution with Stochastic LGD) 

ρ 0% 8% 16% 24% 32% 
S.S.E. (10-4) 456 79 1 69 247 
P(L>10%) 0% 0.41% 1.70% 3.17% 4.46% 

4 CONCLUSION 

We describe in this paper the methods to obtain the credit 
portfolio loss distributions from multi-step credit migration 
model and single-factor Gaussian copula model. The loss 
distributions are compared to produce a deal correlation 
number, which measures the portfolio average correlation 
effect and can be compared across different deals. 
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