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ABSTRACT

We review the basic principles of Quasi-Monte Carlo (QMC)
methods, the randomizations that turn them into variance-
reduction techniques, and the main classes of constructions
underlying their implementations: lattice rules, digital nets,
and permutations in different bases. QMC methods are
designed to estimate integrals over the s-dimensional unit
hypercube, for moderate or large (perhaps infinite) values
of s. In principle, any stochastic simulation whose purpose
is to estimate an integral fits this framework, but the meth-
ods work better for certain types of integrals than others
(e.g., if the integrand can be well approximated by a sum of
low-dimensional smooth functions). Such QMC-friendly in-
tegrals are encountered frequently in computational finance
and risk analysis. We give examples and provide compu-
tational results that illustrate the efficiency improvement
achieved.

1 INTRODUCTION

Quasi-Monte Carlo (QMC) refers to a class of deterministic
numerical techniques to approximate integrals in more than
2 or 3 dimensions. The general idea is to define a set
or sequence of points that covers the integration domain
very uniformly, evaluate the function at these points, and
approximate the integral by the average value multiplied by
the volume of the integration domain.

1.1 Simulation and the Monte Carlo Method

In the vast majority of situations, the integration domain is
the s-dimensional unit hypercube for some integer s, and
this is the case considered in this paper. So we want to
estimate an integral of the form

µ =
∫

[0,1)s
f (u)du

for some function f . In a stochastic simulation, s corre-
sponds to the number of calls to the underlying uniform
random number generator, u = (u0, u1, u2, . . . ) is the se-
quence of successive numbers returned by this generator, and
f represent the (usually very complicated) transformation
of these numbers into the simulation output f (u), which is
assumed here to be an unbiased estimator of some constant
µ. In the case where the required number of uniforms is
random and unbounded, we can just take s = ∞.

The estimator of µ considered here has the form

Qn = 1

n

n−1∑
i=0

f (ui ),

where Pn = {u0, . . . , un−1} ⊂ [0, 1)s is the point set over
which the average is taken. The number of points n corre-
sponds to the number of simulation runs.

In standard Monte Carlo (MC), the ui are indepen-
dent and uniformly distributed over [0, 1)s . Then, Qn is
obviously unbiased and has variance σ 2/n, where

σ 2 =
∫

[0,1)s
f 2(u)du − µ2.

If σ 2 < ∞, we have the central-limit theorem
√

n(Qn −
µ)/σ ⇒ N(0, 1), so the size of a confidence interval for
µ, at a fixed level, converges as at rate Op(σ/

√
n).

1.2 Quasi-Monte Carlo and the
Koksma-Hlawka Inequality

Quasi-Monte Carlo (QMC) tries to take the points ui more
uniformly distributed over [0, 1)s than typical independent
uniform random points (Niederreiter 1992b, Sloan and Joe
1994, L’Ecuyer and Lemieux 2002). Its traditional justifi-
cation is via Koksma-Hlawka-type inequalities of the form

|Qn − µ| ≤ ‖f − µ‖D(Pn) (1)

for all f in some Hilbert space of functions with norm
‖ · ‖, where ‖f − µ‖ measures the variability of f , D(Pn)

measures the discrepancy (or non-uniformity) of Pn, and
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their definitions depend on each other (Niederreiter 1992b,
Hickernell 1998a). Such inequalities provide determinis-
tic worst-case error bounds. Infinite sequences of points
u0, u1, . . . for which D(Pn) = O(n−1(ln n)s) can be con-
structed for any finite s. For functions with finite variation,
this give a convergence rate of |Qn−µ| = O(n−1(ln n)s) for
the error, which is asymptotically better than the Op(n−1/2)

rate of MC. However, these bounds are not practical for
several reasons (e.g., they are much too difficult to com-
pute, and for s larger than 7 or 8, n−1(ln n)s < n−1/2 for
all n ≥ n0 requires an n0 that is much too large to be
practical). Yet, QMC happens to give much more precise
results than MC for certain types of integrands in hundreds
of dimension or more. One explanation of this success is
outlined in Section 1.4.

1.3 Randomized QMC

With deterministic QMC methods, reliable error estimates
are difficult to obtain. This has motivated the introduction of
randomized QMC (RQMC), which essentially turns QMC
into a variance-reduction technique (Owen 1998, L’Ecuyer
and Lemieux 2002). The idea is to randomize Pn so that:
(a) it retains its high uniformity when taken as a set and
(b) each individual point has the uniform distribution over
[0, 1)s . Under these conditions, E[Qn] = µ, and hopefully
Var[Qn] will be smaller with RQMC than with MC.

To estimate the variance and compute a confidence
interval on µ, we can apply m independent randomiza-
tions to the same Pn, and compute X̄m and S2

x,m, the
sample mean and sample variance of the m correspond-
ing (independent) values of Qn. Then, E[X̄m] = µ and
E[S2

x,m] = Var[Qn] = mVar[X̄m] (L’Ecuyer and Lemieux
2000). A confidence interval on µ can be computed in a
standard way if we assume that

√
m(X̄m − µ)/Sx,m has

approximately the Student distribution with m − 1 degrees
of freedom.

For a fixed computing budget (i.e., a fixed value of
mn), a larger m gives a more precise variance estimator,
but a larger n is likely to provide a more precise estimator
of µ. So a compromise must be made. This is usually
done by selecting m somewhere between 5 and 25. If our
aim is really to estimate the variance (e.g., to measure the
efficiency improvement of RQMC over MC), then we would
usually take a larger m.

For certain classes of (smooth) functions f and specific
classes of (uniform) point sets, variance bounds and asymp-
totic variance expressions (as a function of n, for either the
worst-case f or an average f in some Hilbert space) have
been developed for RQMC (Owen 1997, Hickernell and
Wózniakowski 2001, Heinrich, Hickernell, and Yue 2004,
Owen 2003); see also Section 3.
1.4 ANOVA Decomposition and Effective Dimension

In many practical settings, the s-dimensional function f

can be well approximated by a sum of low-dimensional
function, i.e., functions that depend only on a small number
of coordinates of u. Then, a sufficient condition for QMC
to be efficient is that these low-dimensional functions are
integrated with small error. For example, if s = 1000, a
direct application of (1) is essentially useless, but if f can
be written approximately as a sum of three-dimensional
functions (i.e., where each function depends only on three
coordinates of u or less), then (1), with Pn replaced by its
appropriate three-dimensional projection in each case, can
be used to show that the integration error for each of these
three-dimensional functions converges rapidly, provided that
all important three-dimensional projections of Pn have fast-
converging discrepancy.

For RQMC, this can be studied generally and
rigourously using a functional ANOVA decomposition of
f (Owen 1998, Liu and Owen 2003). The idea is to write
f as

f (u) = µ +
∑

I⊆{1,...,s}, I 	=φ

fI (u)

where each fI depends only on {ui, i ∈ I }, the fI ’s integrate
to zero and are orthogonal, and the variance decomposes
as σ 2 = ∑

I⊆{1,...,s} σ 2
I where σ 2

I = Var[fI (U)] for U uni-
formly distributed over [0, 1)s . For each set of coordinates
I , let Pn(I) denote the projection of Pn over the subspace
determined by I . For a given function f , if

∑
I∈J σ 2

I ≈ σ 2,
for some “small” class J of subsets of {1, . . . , s}, then it suf-
fices to construct Pn so that the projections Pn(I) are highly
uniform for all I ∈ J , in order to reduce the important
variance terms σ 2

I .
In this context, f is said to have effective dimension d in

proportion ρ in the superposition sense if
∑

|I |≤d σ 2
I ≥ ρσ 2

(Owen 1998). If ρ is close to 1, this means that f is well
approximated by a sum of d-dimensional (or less) functions.
The following definitions reduce even further the number
of projections that have to be considered.

Sometimes,
∑

I∈J σ 2
I is close to σ 2 if J contains all the

sets I formed by indices that are not too far apart, and it suf-
fices to have good uniformity for the corresponding projec-
tions. For example, if we simulate a single queue over a long
time horizon, the random numbers used to generate the in-
terarrival times and service times of customers that are close
to each other in time have a much more important interaction
than those that are far away. We say that f has effective
dimension d in proportion ρ in the successive-dimensions
sense if

∑
I⊆{i,...,i+d−1}, 0≤i≤s−d σ 2

I ≥ ρσ 2 (L’Ecuyer and
Lemieux 2000).

There are cases where the first few random numbers of
the simulation are much more important than the others. If∑

I⊆{1,...,d} σ 2
I ≥ ρσ 2, then f has effective dimension d in
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proportion ρ in the truncation sense (Caflisch, Morokoff,
and Owen 1997). Low effective dimension in the trunca-
tion sense can sometimes be achieved by redesigning the
simulation program (i.e., the function f ) in a way that the
first few uniforms account for most of the variance in f

(Morokoff 1998, Caflisch et al. 1997, Fox 1999).
In practice, point sets are constructed by considering

the uniformity of certain sets of projections. One natural
requirement is that all projections contain as many distinct
points as the original point set (this rules out rectangular
grids, for example). Constructions for which several pro-
jections are identical also make the analysis easier. A point
set Pn in [0, 1)s is called fully projection-regular (Sloan
and Joe 1994, L’Ecuyer and Lemieux 2000) if for each
non-empty I ⊆ {1, . . . , s}, Pn(I) has n distinct points. It is
called dimension-stationary (Lemieux and L’Ecuyer 2001)
if whenever 1 ≤ i1 < . . . < iη < s and 1 ≤ j ≤ s − iη,
Pn({i1, . . . , iη}) = Pn({i1 + j, . . . , iη + j}). Thus, Pn(I)

depends only on the spacings between the indices in I .

2 MAIN QMC CONSTRUCTIONS

2.1 Digital Nets and Sequences

To start with a simple case, suppose n is fixed and s = 1,
so we just want to place n points to cover uniformly the
unit interval [0, 1). A simple choice for Pn in this case is
Pn = Zn/n = {0, 1/n, . . . , (n − 1)/n}. If s > 1, we may
want to construct Pn in a way that each one-dimensional
projection is Zn/n. In other words, for each dimension j , the
j th coordinate of the points ui will visit all n values in Zn/n,
but in a different order for the different coordinates. Such
a point set is defined by selecting a different permutation
of Zn/n (or equivalently, of the integers in Zn) for each
coordinate j . The permutations must be different, because
otherwise all the points would lie on a diagonal line in
the unit hypercube. The trick is to select the permutations
in a way that Pn has high uniformity over [0, 1)s , in a
well-defined sense (to be determined).

Linear digital nets (Niederreiter 1992b) are construction
methods that do precisely what we just described. They are
defined as follows. Let b ≥ 2 be an arbitrary integer, usually
a prime, called the base. To define a net of n = bk points in
s dimensions, we select s generator matrices C0, . . . , Cs−1,
which are (in theory) ∞×k matrices whose elements are in
Zb = {0, . . . , b − 1}. The matrix Cj is used for coordinate
j of all the points, for j ≥ 0. To define the ith point ui , for
i = 0, . . . , bk − 1, write the digital expansion of i in base
b and multiply the vector of its digits by Cj , modulo b, to
obtain the digits of the expansion of ui,j , the j th coordinate
of ui . That is,

i =
k−1∑
�=0

ai,�b
�,




ui,j,1
ui,j,2

...


 = Cj




ai,0
ai,1
...

ai,k−1


 mod b,

ui,j =
∞∑

�=1

ui,j,�b
−�, (2)

ui = (ui,0, . . . , ui,s−1).

The point set thus obtained is a digital net in base b. In
practice, the expansion (2) is truncated to r digits for some
r , so each Cj becomes a r × k matrix. Typically, r is
equal to k, or is slightly larger, or is selected so that br is
near 231. If the first k lines of each Cj form a nonsingular
k × k matrix (which we shall assume henceforth), then the
n output values for coordinate j , truncated to their first k

fractional digits in base b, are a permutation of Zn/n.
To obtain an infinite sequence of points, it suffices to

define an infinite number of columns for each Cj . This
gives a digital sequence in base b. Only the first k columns
are needed to get the first bk points, for any k. Likewise,
to obtain an infinite-dimensional point set, it suffices to
have an infinite sequence of matrices Cj . In both cases,
the sequence of columns and matrices can be defined via
recurrences (each column and matrix being a function of the
previous ones). Concrete implementations are the sequences
of Sobol’ (1967), in base 2, of Faure (1982), in prime base
b, of Niederreiter (1987), and of Niederreiter and Xing
(1997).

Obviously, the projection Pn(I) of a digital net over the
subspace determined by a subset of indices I = {i1, . . . , id}
is also a digital net, and similarly for a digital sequence.

If the first k lines of Cj form the reflected identity (that
is, the identity matrix but with its columns taken in reverse
order, so that column c contains a 1 in line k−c+1 and 0’s
elsewhere, for 0 ≤ c < k) and the other lines are zero, then
coordinate j runs through the values 0, 1/n, . . . , (n− 1)/n

in that order. If the first k lines of Cj form the identity and
the other lines are zero, then the first n output values are the
first n elements of the van der Corput sequence in base b,
defined as ψb(0), ψb(1), ψb(2), . . . , where ψb : N → [0, 1)

is the radical inverse function in base b, defined by

ψb(i) = a0b
−1 + a1b

−2 + · · · + ak−1b
−k
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if i is a k-digit integer in base b with digital b-ary expansion

i = a0 + a1b + · · · + ak−1b
k−1.

The first n numbers of a van der Corput sequence fill up
the unit interval quite uniformly for any large enough n.

It is customary to take C0 as the identity for digital
sequences, and the reflected identity when n is fixed in
advance (so the points are enumerated by order of their first
coordinate).

2.2 Lattice Rules

An interesting special case of a digital net is when k = r = 1.
Then, n = b, all coordinates are multiples of 1/n, each
matrix Cj contains a single integer aj ∈ Zb, and the ith
point can be written as ui = [i(a0, a1, . . . , as−1) mod n]/n.
This is one way of defining a s-dimensional rank-1 lattice
rule.

In general, an integration lattice is a vector space of
the form

Ls =

v =

s∑
j=1

hj vj such that each hj ∈ Z


 ,

where v1, . . . , vs ∈ R
s are linearly independent over R and

where Ls contains Z
s . The QMC approximation of µ with

Pn = Ls ∩ [0, 1)s is a called a lattice rule (Sloan and Joe
1994). The rank of Ls is the smallest r such that one can
find a basis of the form v1, . . . , vr , er+1, · · · , es , where ej

is the j th unit vector in s-dimensions. A lattice rule of rank
1 for which v1 = (1, a, a2 mod n, . . . , as−1 mod n)/n

for some a ∈ Zn is called a Korobov rule. The point set of a
Korobov rule can also be written as Pn = {(x0, . . . , xs−1)/n

such that x0 ∈ Zn and xj = axj−1 mod n for all j > 0}.
This is the set of all vectors of successive values produced by
a linear congruential generator (LCG) with modulus n and
multiplier a, from all possible initial states (including 0).
This LCG recurrence offers a convenient way to enumerate
the points.

2.3 Hammersley Point Sets and Halton Sequence

Digital nets and sequences can be further generalized by
allowing different bases for the different coordinates, say
bj for coordinate j . For example, the point sets introduced
long ago by Hammersley (1960) have

ui = (i/n, ψb1(i), ψb2(i), . . . , ψbs−1(i)),

for i = 0, . . . , n − 1, where the basis bj used for coor-
dinate j is the j th smallest prime number. Here, C0 is
the reflected identity and Cj is the identity for all j > 0.
The corresponding infinite sequence, proposed by Halton
(1960), takes

ui = (ψb1(i), ψb2(i), . . . , ψbs (i))

for all i ≥ 0, where bj is again the j th smallest prime. One
drawback is that bj becomes quite large for large j . In any
case, the identity matrices Cj could also be replaced by
more general generating matrices, which may give room to
improve the uniformity.

2.4 Equidistribution and t-Value

Consider a digital net in base b with n = bk points. Suppose
we partition the hypercube [0, 1)s into bq1+···+qs rectangular
boxes of the same size by partitioning the j th axis into bqj

equal parts for each j , for some integers qj ≥ 0. We
call such a partition a q-equidissection in base b, where
q = (q1, . . . , qs). If each box contains the same number of
points of Pn, i.e., exactly bt points where t = k−q1−· · ·−qs ,
we say that Pn is q-equidistributed in base b.

The set Pn is called a (t, k, s)-net in base b if it
is (q1, . . . , qs)-equidistributed for all non-negative integers
q1, . . . , qs summing to k − t (Niederreiter 1992b). We call
the smallest such t the t-value of the net. The largest
� for which Pn is (�, . . . , �)-equidistributed is called the
s-dimensional resolution of Pn. This value cannot exceed
�k/s�. These definitions also apply to the projections Pn(I),
for I = {i1, . . . , id} ⊂ {1, . . . , s}. The resolution gap of
Pn(I) is δI = �k/d� − �I , where �I is the d-dimensional
resolution of Pn(I).

As measures of uniformity for digital nets, one may
consider �J = maxI∈J δI (worst-case resolution gap) or
maxI∈J t∗|I |/tI or maxI∈J (tI − t∗|I |), where J is a selected
class of sets I , tI is the t-value for Pn(I), t∗|I | a lower bound
on the best possible t-value in |I | dimensions, and with the
convention that 0/0 = 1. The choice of J is arbitrary and
a matter of compromise: If J contains too many sets, the
selection criterion will be more costly to compute and the
best value that it can achieve will be larger, which means that
the criterion will be less demanding for the equidistribution
of the more important projections.

For lattice rules, convenient measures of uniformity can
be defined in terms of the spectral test, in essentially the
same way as for linear congruential and multiple recursive
random number generators (L’Ecuyer and Lemieux 2000).

Other uniformity criteria are discussed, e.g., in Sloan
and Joe (1994), Hickernell (1998b), L’Ecuyer and Lemieux
(2002), Heinrich, Hickernell, and Yue (2004).

2.5 Randomizations

A simple randomization method that satisfies the two con-
ditions (a) and (b) given in Section 1.3, for an arbirary point
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set Pn, is a random shift modulo 1: generate a single point
u uniformly over [0, 1)s and add it to each point of Pn,
coordinate-wise, modulo 1. In the case of a lattice rule, the
lattice structure of the points is preserved by the shift.

There is also a digital version of this method, called
the random digital shift in base b: generate again a single
u = (u1, . . . , us) uniformly over [0, 1)s , write the digital
expansion in base b of each of its coordinates, say uj =∑∞

�=1 dj,�b
−�, then add dj,� modulo b to the �th digit of

the digital expansion in base b of the j th coordinate of each
point ui ∈ Pn. For b = 2, the digit-wise addition modulo
b becomes a bitwise exclusive-or, which is fast to perform
on a computer. An interesting property of the digital shift
in base b is that for digital nets in base b, it preserves the
q-equidistribution properties for all vectors q. In particular,
it preserves the (t, k, s)-net properties.

These random shifts provide unbiased estimators of
µ with a small amount of change in the point set. For
certain types of point sets, however, a deeper scrambling
(i.e., more randomization) can reduce the variance because
the average point set over the class in which we randomize
can have better uniformity in the larger class (with more
randomization) than in the restricted class (random shift
only).

Owen (1995) has proposed a nested uniform scrambling
randomization method, for digital nets, which randomly per-
mutes the values {0, . . . , b − 1} used for the digits ui,j,�,
independently across the coordinates and across the digits.
Owen (1997) has shown that for functions whose mixed par-
tial derivatives satisfy a Lipschitz condition, with a (t, k, s)-
net scrambled in this way, the variance is in O(n−3(log n)s).
However, this method requires (1 + b + · · · + b�−1)s inde-
pendent permutations to scramble the first � digits, and is
therefore very time-consuming.

A class of less expensive approaches that perform well,
for digital nets, are the linear matrix scrambles (Matoušek
1999, Faure and Tezuka 2002, Hong and Hickernell 2003,
Owen 2003), which multiply the matrices Cj by a random
invertible matrix Mj , modulo b. When this is combined
with a digital random shift modulo b, we get an affine matrix
scramble (Owen 2003), which satisfies our two conditions
(a) and (b). There are several variants, depending on how
Mj is generated, and on whether Cj is multiplied on the
left or on the right. Here we consider only multiplication by
Mj on the left. In a version proposed by Matoušek (1999)
and Hong and Hickernell (2003), which we simply call left
matrix scramble, Mj is a w×w nonsingular lower-triangular
matrix whose diagonal entries are generated uniformly over
{1, . . . , b − 1}, whereas the entries below the diagonal are
generated uniformly over {0, . . . , b − 1}, all independently.
The i-binomial matrix scramble of Tezuka and Faure (2002)
adds the constraint that all entries on any given diagonal
or subdiagonal of Mj are identical. The striped matrix
scramble proposed by Owen (2003) adds the constraint that
in any given column, all entries below the diagonal are
equal to the diagonal entry, which is generated randomly
over {1, . . . , b − 1}.

A simple technique that often reduces the variance for
randomly-shifted lattice rules is the baker transformation,
which replaces each coordinate u (after the shift) by 2u if
u ≤ 1/2 and by 2(1 − u) if u > 1/2. This corresponds to
streching everything by a factor of two and folding, along
each coordinate. Hickernell (2002) has show that it can
reduce the variance to O(n−4+ε) for non-periodic smooth
functions.

Wang and Hickernell (2000) randomize the Halton se-
quence simply by selecting the starting point u0 randomly
over [0, 1)s , and exploiting the fact that there is a simple way
of getting ψb(i + 1) directly from ψb(i), so the successive
points can be generated without knowing their indices i in
the original sequence. They show that this method satisfies
conditions (a) and (b) of Section 1.3. In their numerical
experiments, it performs much better than randomly shifting
(modulo 1) the Halton sequence.

2.6 Transforming the Function f

Besides randomizing and improving the “average” unifor-
mity of the points, another way of making RQMC more
effective is to transform the function f so that its expec-
tation and variance remain the same in the MC setting,
but its effective dimension (in some sense) is reduced. In
the context of financial applications, this can be achieved
via bridge sampling techniques, principal component anal-
ysis, using conditional distributions, generating the random
numbers in a different order, etc. (Moskowitz and Caflisch
1996, Fox 1999, Glasserman 2004). We illustrate some of
these methods in our examples, in Section 3.

3 EXAMPLES

3.1 Functions of a Multinormal Vector

Suppose that our integrand of interest can be written as a
function of a vector Y = (Y1, . . . , Ys) of s normal random
variables, say with mean zero (without loss of generality)
and covariance matrix �. That is, µ = E[g(Y)] for a known
function g, and g(Y) is the estimator. Consider, for example,
a basket of c assets whose values evolve as (potentially
correlated) geometric Brownian motions (GMBs). Suppose
that the net payoff at time T is a function g of the assets
values at fixed observation times 0 < t1 < · · · < td = T .
This covers a wide range of option types and fits the above
setting with s = cd.

To generate Y, it suffices to decompose the covariance
matrix as � = CCt for some matrix C, generate a vector
Z = (Z1, . . . , Zs) of s i.i.d. N(0, 1) (standard normal)
random variates, and return Y = CZ. But there are in
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general many possibilities for the choice of factorization
(i.e., choice of C). The most common one, the Cholesky
factorization, takes C to be lower triangular. Another one,
based on a standard principal component analysis (PCA),
selects C so that Z1 accounts for the maximum amount
of variance, then Z2 for the maximum amount of variance
conditional on Z1, and so on. In other words, the method
packs the variance in the first coordinates of Z as much as
possible. This yields C = PD1/2 where D is a diagonal
matrix that contains the eigenvalues of � in decreasing
order and P is an orthogonal matrix whose columns are the
corresponding unit-length eigenvectors. Acworth, Broadie,
and Glasserman (1997) proposed PCA as a tool to reduce the
effective dimension in the truncation sense, in the context
of simulating GMBs for option pricing via QMC. In their
examples, it was shown to be quite effective.

This PCA technique, however, does not take into ac-
count the function g. It may turn out that with the PCA
sampling scheme, g(Y) depends very little on Z1 and very
much on Z25, for example, even if Z1 has a much greater
influence on the variance of Y. In such a situation, PCA
will miss its target. A more general (and generally bet-
ter) approach would be to find a decomposition CCt that
minimizes the effective dimension of the integrand f (U)

in some sense. Imai and Tan (2002, 2004) explain how
to implement such an approach for the special case of an
European option whose payoff is based on an geometric
or arithmetic average, for a basket of assets whose prices
evolve as GMBs. They write C = CchA where Cch is lower
triangular (the Cholesky matrix) and A is orthogonal, and
optimize the first column of A, then the second, and so on,
trying to catch as much of the residual variance of g(Y)

at each step, i.e., so that the sum of terms with |I | = ν is
as small as possible for ν = 1, then for ν = 2 conditional
on what was selected before, etc. This technique is not
necessarily easy to implement in general, however.

In the special case where c = 1 and where the payoff
depends only on the values taken by a single Brownian mo-
tion {X(t), t ≥ 0} at observation times 0 = t0 < t1 < · · · <

td = T , then the most direct way of simulating the pay-
off is the following sequential sampling (or random walk)
method: generate X(t1), then the increment X(t2)−X(t1),
then X(t3) − X(t2), and so on. All these increments are
independent normals. A second method is bridge sampling
(for notational simplicity, we assume here that d is a power
of two): generate first X(td), then X(td/2) conditional on
(X(0), X(td)), then X(td/4) conditional on (X(0), X(td/2)),
then X(t3d/4) conditional on (X(td/2), X(td)), then X(td/8)

conditional on (X(0), X(td/4)), and so on. These condi-
tional distributions are all independent normals with known
parameters. Each of the these two sampling methods im-
plements (implicitly) a special case of the general decom-
position outlined above, each one with its corresponding
matrix C. Intuitively, the bridge sampling is likely to pack
more variance in the first few coordinates of Z, because the
first few random numbers already sketch the general shape
of the trajectory whereas the last ones are only making
minor adjustment to it. Using bridge sampling to reduce
the effective dimension was proposed by Moskowitz and
Caflisch (1996) in the context of GMB simulation via QMC.
It turns out to be quite effective, as demonstrated by these
authors and several others.

3.2 Numerical Illustrations with GMB Processes

We now give some numerical illustrations with examples
taken from Glasserman (2004), Section 5.5.1, and from Imai
and Tan (2002), but comparing a different set of RQMC
methods. Consider a set of c GMB processes, {Si(t), t ≥ 0},
1 ≤ i ≤ c, where Si has drift parameter µi and volatility
parameter σi . That is,

Si(t) = Si(0) exp
[
(µi − σ 2

i /2)t + σiWi(t)
]

where Wi is a standard Brownian motion (whose increments
over disjoint intervals are independent and are normal with
mean 0 and variance δ over an interval of length δ). More-
over, we assume that the Wi’s are correlated as follows:
Cov[Wi(t + δ) − Wi(t), Wj (t + δ) − Wj(t)] = ρi,j δ for

all δ > 0. We have an option whose discounted payoff is
e−rT max[S̄ − K, 0], where S̄ can be either the geometric
average

S̄(G) =
c∏

i=1

d∏
j=1

Si(tj )
1/cd (3)

or the arithmetic average

S̄(A) = 1

cd

c∑
i=1

d∑
j=1

Si(tj ), (4)

for fixed observation times 0 < t1 < · · · < td = T . In all our
examples, we take tj = jT /d . Denoting Y = (W1(t1), . . . ,

Wc(t1), W1(t2), . . . , Wc(t2), . . . , W1(td), . . . , Wc(td))t, the
element ((i −1)c+j), (i′ −1)c+j ′) of � is ρi,i′σiσi′ |tj ′ −
tj−1|) for j ′ ≥ j .

Example 1 For our first numerical illustration, we
take c independent assets with a single observation time,
with the following parameters borrowed from Glasserman
(2004): d = 1, ρi,j = 0, T = 1, σ = 0.5, r = 0.05,
S(0) = 100, and K = 100. We first take c = 5, then
c = 10. We consider the payoff based on the arithmetic
average (4). The exact values and the MC variance per
observation (the values of µ and σ 2) are approximately
11.72 and 305 for c = 5, and 9.207 and 145 for c = 10.

Table 1 gives the empirical variance reduction factors
observed for (a) Sobol’ nets with a random digital shift (DS)
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only, (b) Sobol’ nets with a left matrix scrambling (LMS)
followed by DS, (c) Korobov lattice rules with a random
shift modulo 1, and (d) Korobov lattice rules with a random
shift modulo 1 followed by a baker transformation. The
list of primitive polynomials and the direction numbers for
the Sobol’ sequence were taken from (Lemieux, Cieslak,
and Luttmer 2004). The lattice rule parameters are from
(L’Ecuyer and Lemieux 2000). The variance reduction
factor (VRF) is defined as the Monte Carlo variance (per
observation) divided by n times the variance of Qn for the
randomized QMC method. Everywhere in this paper, the
RQMC variance was estimated by making m = 100 inde-
pendent replications of the randomization. These VRFs are
noisy, with a standard error of 10 percent or more. The sim-
ulations were written in Java using the SSJ library (L’Ecuyer
2004), which contains implementations of RQMC methods
and facilities to generate stochastic processes encountered in
finance, among other things. The list of primitive polynomi-
als and the direction numbers for the Sobol’ sequence were
taken from (Lemieux, Cieslak, and Luttmer 2004). The
lattice rule parameters are from (L’Ecuyer and Lemieux
2000). All random variables were generated by inversion.

Table 1: Variance Reduction Factors for Example 1 for
c = 5 (Left Number) and c = 10 (Right Number)

Sobol’ Nets
n = 214 n = 216 n = 218

DS 953, 168 2363, 162 7156, 180
LMS+DS 733, 112 2265, 174 7058, 253

Korobov Lattice Rules
n = 16381 n = 65521 n = 262139
a = 5693 a = 944 a = 21876

Shift 178, 74 312, 21 416, 117
Shift+baker 376, 77 440, 89 3434, 425

We see that the VRFs (i.e., efficiency gains) increase
rapidly with n for the 5-dimensional problem, especially for
the Sobol’ net, but much less rapidly in the 10-dimensional
case. For the Korobov rules, the baker transformation helps
significantly, but the Sobol’ nets are doing even better, with
or without LMS. For c = 5 and n = 218, they reduce the
variance by a factor of 7000 compared with ordinary MC.
All methods require approximately the same CPU time for
a given value of n. This means that they require (at least)
7000 less CPU time than MC to compute an estimator of
comparable precision. We also tried the i-binomial scram-
bling and the striped matrix scrambling in place of LMS for
the Sobol’ nets and we observed no significant difference.
With the Faure nets (in their original versions), we obtained
much smaller efficiency improvements than with the Sobol’
nets, using LMS+DS.

In Table 2, we find VRFs for the same example, except
that ρi,j = 0 is replaced by ρi,j = 0.4 for i 	= j . All
values are for c = 10, for which we have µ ≈ 15.77 and
σ 2 ≈ 674. We compare two ways of sampling the vector Y
by transforming a 250-dimensional vector of independent
standard normals: (a) the usual Cholesky factorization (left
number in each table entry) and (b) PCA (right number in
each table entry). PCA definitely outperforms the standard
Cholesky factorization, and the combination of PCA with
randomized Sobol’ nets gives the largest VRFs.

Table 2: Variance Reduction Factors for Example 1(b)
for Cholesky (Left Number) and PCA (Right Number)

Sobol’ Nets
n = 214 n = 216 n = 218

DS 305, 10800 640, 19280 971, 50180
LMS+DS 418, 5834 519, 13530 798, 34880

Korobov Lattice Rules
n = 16381 n = 65521 n = 262139
a = 5693 a = 944 a = 21876

Shift 90, 890 32, 2135 198, 6276
Shift+baker 222, 6978 242, 8289 626, 16530

Example 2 For our second illustration, we slightly
modify an example from Imai and Tan (2002): we take
c = 10, d = 25 (they have d = 250), ρi,j = 0.4 for all
i 	= j , T = 1, σi = 0.1 + 0.4(i − 1)/9 for all i, r = 0.04,
S(0) = 100, and K = 100. This gives a 250-dimensional
integration problem. The exact value and the MC variance
are µ ≈ 5.818 and σ 2 ≈ 72.3.

The results are in Table 3, in the same format as for
Table 2. They are similar. The main difference is that
here we have a 250-dimensional problem instead of a 10-
dimensional one, so PCA has more room to reduce the
effective dimension. The VRFs are much smaller than in
Table 2 with Cholesky, but the improvement provided by
PCA over Cholesky is much larger.

Table 3: Variance Reduction Factors for Example 2 (250
Dimensions) with Cholesky (Left) and PCA (Right)

Sobol’ Nets
n = 214 n = 216 n = 218

DS 12, 4188 21, 7545 41, 12580
LMS+DS 12, 4382 24, 7951 49, 14780

Korobov Lattice Rules
n = 16381 n = 65521 n = 262139
a = 5693 a = 944 a = 21876

Shift 15, 1128 14, 1524 10, 2141
Shift+baker 46, 2184 54, 5478 49, 4232

Example 3 Here we consider an Asian option on a
single asset (c = 1) whose price follows a GMB process.
The payoff is based on the arithmetic average (4). In this
context, Kemna and Vorst (1990) suggested using the payoff
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based on the geometric average (3), whose expectation is
known, as a control variate (CV) to reduce the variance.
Here, we look at the improvement of RQMC over MC with
and without the CV, with sequential sampling, Brownian
bridge sampling, and PCA, for an example with S(0) = 100,
T = 1, r = ln(1.09), for d = 10 and 120, and for K = 90
and 100.

Table 4 gives estimates of the exact value µ and of the
MC variance σ 2 with and without the CV. We immediately
see that the CV alone (without RQMC) reduces the variance
by a huge factor, especially when d is small. For K =
90 and d = 10, for example, the VRF is approximately
105.2/6.89 × 10−5 ≈ 1.53 × 106.

Table 4: Estimates of µ and σ 2 for Example 3

K d µ σ 2 without CV σ 2 with CV
90 10 13.844 105.2 6.89E-5

120 11.532 41.4 8.17E-3
100 10 7.031 61.5 5.97E-5

120 3.464 20.2 6.30E-3

Table 5 gives the VRFs of RQMC over MC, with and
without the CV. In each table entry, the left value is for
sequential sampling the middle one is for bridge sampling,
and the right one is for PCA. The optimal CV coefficient was
estimated by pilot runs for MC and for each combination
of sampling scheme and RQMC method. It is important to
recall that the optimal coefficient may vary a lot when we
change these methods, because it depends on the estimator’s
variance and its covariance with the CV, which may vary
significantly across the methods (Hickernell, Lemieux, and
Owen 2004).

Without the CV, RQMC reduces the variance by a huge
factor, especially when combined with bridge sampling or
PCA. With the CV, significant additional VRFs are obtained
by the RQMC methods on top of those obtained by the
CV alone. As an illustration, for K = 90 and d = 10,
Sobol’ with PCA, LMS+DS, and n = 218 points reduces
the MC+CV variance by a factor of around 45000, whereas
the CV alone was already providing a VRF of around
1.53 × 106. By combining them, we reduce the variance
approximately by a factor of 6.9 × 1010. The CPU times
per run are roughly the same in this case, so plain (naive)
MC would take 6.9 × 1010 times more CPU time to yield
an estimator with equivalent precision. For d = 120, PCA
sampling needs around 50% more CPU time per run than
MC. In most cases, the randomly shifted Korobov point
sets with the baker transformation are competitive with the
randomized Sobol’ nets.
3.3 An Asian Option Under a Variance Gamma Process

We consider now an asset price that evolves according to a
variance-gamma (VG) process S defined as follows (Madan,
Carr, and Chang 1998, Avramidis, L’Ecuyer, and Tremblay
2003):

S(t) = S(0) exp{rt + B(G(t; 1, ν), θ, σ ) + ωt},

where B is a Brownian process with drift and variance
parameters θ and σ , G is a gamma process (a process with
independent gamma increments) with mean and variance
parameters 1 and ν, B and G are independent, and ω =
ln(1 − θν − σ 2ν/2)/ν. We want to estimate by simulation
the value of an Asian call option, given by E[e−rT max(S̄−
K, 0)] where S̄ = (1/d)

∑d
j=1 S(tj ) and tj = jT /d for

0 ≤ j ≤ d.
Here, the vector (S(t1), . . . , S(td)) is not multinormal,

so the general setting of the previous subsection does not
apply. However, the processes G and B (and therefore S)
can be generated by either sequential or bridge sampling,
as explained in Avramidis, L’Ecuyer, and Tremblay (2003)
and Ribeiro and Webber (2002). In the sequential sampling
approach (BGSS), we generate τ1 = G(t1), B(τ1), τ2 =
G(t2), B(τ2), etc., in that order. This requires the generation
of d gamma variates and d normal variates, all indepen-
dent. In the bridge sampling approach (BGBS), we gener-
ate τd = G(td), B(τd), τd/2 = G(td/2), B(τd/2), τd/4 =
G(td/4), B(τd/4), τ3d/4 = G(t3d/4), B(τ3d/4), . . . , in
that order. This is easy to implement because for any
given values ta < t < tb and τa < τ < τb, the distri-
bution of G(t) conditional on (G(ta), G(tb)) is beta with
known parameters, and the distribution of B(τ) conditional
on (B(τa), B(τb)) is normal with known parameters. This
method requires the generation of one gamma variate, d −1
beta variates, and d normal variates. Yet another method,
explained in Avramidis, L’Ecuyer, and Tremblay (2003), is
double gamma bridge sampling (DGBS). It requires two
gamma variates and 2d − 2 beta variates.

Example 4 For a numerical illustration, we take
the following parameters from Avramidis, L’Ecuyer, and
Tremblay (2003): θ = −0.1436, σ = 0.12136, ν = 0.3,
r = 0.1, T = 1, K = 101, and S(0) = 100. The exact value
and the MC variance are µ ≈ 6.065 and σ 2 ≈ 33.22. Table 6
gives the variance reduction factors of QMC compared with
MC. DGBS provides the best improvement.
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Table 5: Variance Reduction Factors for Example 3 Without CV, with Sequential Sampling (Left), Bridge
Sampling (Middle), and PCA (Right)

Sobol’ Nets without CV

K d n = 214 n = 216 n = 218

90 10 DS 33930, 69240, 48960 33560, 3.1E+5, 97330 1.6E+5, 9.1E+5, 4.9E+5
LMS+DS 24290, 56290, 20110 40730, 2.2E+5, 1.7E+5 1.3E+5, 6.3E+5, 5.0E+5

120 DS 209, 14120, 2.1E+5 318, 15080, 3.7E+5 660, 34590, 1.3E+6
LMS+DS 334, 10350, 1.3E+5 307, 18090, 4.3E+5 406, 31090, 1.8E+6

100 10 DS 19240, 62190, 23100 18590, 1.1E+5, 1.4E+5 66240, 3.7E+5, 3.7E+5
LMS+DS 10620, 32650, 24180 21260, 96810, 1.2E+5 42690, 3.0E+5, 3.2E+5

120 DS 29, 3002, 69170 34, 3895, 1.6E+5 44, 5607, 4.3E+5
LMS+DS 33, 2472, 53590 51, 3612, 1.7E+5 56, 4908, 4.5E+5
Korobov Lattice Rules without CV

K d n = 16381 n = 65521 n = 262139
a = 5693 a = 944 a = 21876

90 10 Shift 2614, 2962, 1016 6908, 5683, 541 13860, 17630, 1432
Shift+baker 4186, 40980, 31830 78120, 4.3E+5, 32730 29380, 1.1E+6, 2.4E+5

120 Shift 212, 1392, 3739 206, 1592, 10310 248, 3682, 38060
Shift+baker 505, 2520, 1.2E+5 373, 11910, 3.4E+5 362, 20000, 9.1E+5

100 10 Shift 1769, 1935, 1314 1889, 4109, 818 5182, 10360, 1507
Shift+baker 1815, 17370, 22860 28220, 28540, 17140 26680, 1.9E+5, 1.9E+5

120 Shift 32, 682, 1731 29, 538, 5735 27, 982, 28510
Shift+Baker 41, 1050, 32660 45, 1744, 1.3E+5 36, 4343, 4.3E+5
Sobol’ Nets with CV (compared to MC with CV)
d = 10 d = 120

K n = 214 n = 216 n = 218 n = 214 n = 216 n = 218

90 DS 60, 120, 7519 100, 232, 10950 174, 160, 88540 3, 48, 275 4, 57, 542 5, 62, 636
LMS+DS 54, 160, 3020 100, 156, 13190 115, 200, 45260 4, 45, 350 3, 66, 423 4, 81, 572

100 DS 25, 52, 2346 41, 71, 13000 38, 148, 43230 4, 41, 160 4, 48, 173 3, 47, 504
LMS+DS 27, 63, 3026 33, 80, 9115 47, 104, 28700 4, 43, 155 3, 40, 254 2, 48, 418
Korobov Lattice Rules with CV (compared to MC with CV)
d = 10 d = 120

K n = 16381 n = 65521 n = 262139 n = 16381 n = 65521 n = 262139
a = 5693 a = 944 a = 21876 a = 5693 a = 944 a = 21876

90 Shift 18, 38, 114 15, 43, 46 19, 80, 108 4, 39, 93 4, 45, 83 6, 30, 118
Shift+B. 39, 71, 7080 94, 202, 2837 79, 211, 22710 8, 46, 258 7, 61, 205 12, 42, 400

100 Shift 10, 19, 216 13, 38, 81 12, 57, 253 4, 19, 41 4, 23, 27 4, 24, 134
Shift+B. 12, 50, 2064 36, 52, 930 47, 69, 12380 7, 29, 88 9, 36, 141 7, 47, 307
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Table 6: Variance Reduction Factors for Example 4 with
BGSS (Left), BGBS (middle), and DGBS (right)

Sobol’ Nets
n = 214 n = 216 n = 218

DS 39, 322, 903 98, 755, 1134 66, 1340, 2760
LMS+DS 56, 222, 329 125, 791, 1031 75, 1165, 2031

Korobov Lattice Rules
n = 16381 n = 65521 n = 262139
a = 5693 a = 944 a = 21876

Shift 39, 97, 151 8, 14, 254 40, 208, 680
Shift+bak. 75, 343, 72 33, 72, 672 131, 662, 2596
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