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ABSTRACT

Monte Carlo simulation can be readily applied to asset
pricing problems with multiple state variables and possible
path dependencies because convergence of Monte Carlo
methods is independent of the number of state variables.
This paper applies Monte Carlo simulation to the problem of
determining free exercise boundaries for pricing American-
style options. We use a simulation-optimization method to
identify approximately optimal exercise thresholds that are
defined by a minimal number of parameters. We demonstrate
that asset prices calculated using this method are comparable
to those found using other numerical asset pricing methods.
1 INTRODUCTION

Monte Carlo simulation is a popular method for pricing
financial options and other derivative securities. Simulation
uses random sampling, rather than enumeration implicit in
lattice and finite-difference methods, so it can be more eas-
ily applied to problems with multiple state variables and
possible path dependencies. Convergence of Monte Carlo
methods is independent of the number of state variables,
whereas convergence in lattice methods is exponential in
the number of state variables; thus, simulation is partic-
ularly advantageous when the underlying asset follows a
process that produces difference equations that are difficult
or impossible to solve analytically.

Boyle (1977) offered Monte Carlo simulation as an
alternative to numerical integration and finite difference
approach methods for valuing European options on financial
assets. Under this method, the distribution of terminal
stock values is determined by the process generating future
stock price movements; this series in turn determines the
future distribution of terminal option values. To obtain an
estimate of the option value, a number of sample values
are picked at random from the distribution describing the
terminal values of the option. In turn, these terminal values
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are discounted and averaged over the number of trials.
Charnes (2000) adapts Boyle’s technique for use with various
exotic options and also demonstrates variance reduction
techniques to increase the precision of estimates of option
values obtained by simulation.

Applying Monte Carlo simulation to pricing of
American-style options remains a challenging problem.
Proper valuation of American-style options is more dif-
ficult than pricing European options because these options
can be exercised on multiple dates. The complexity in using
simulation lies in applying a forward-based procedure to a
problem that requires a backward method to solve. Pricing
an American-style security requires an appropriate estima-
tion of the early exercise rule for the decisions available in
American-style derivative contracts.

Barraquand and Martineau (1995) developed a numer-
ical method for valuing American options with mutiple
underlying sources of uncertainty which uses Monte Carlo
simulation. Their technique relies on partitioning the state
space of possible exercise opportunities into a tractable
number of cells, then computing an optimal Cash Flow
Management strategy (CMS) that is constant over each cell.
The option value is based on the CMS with the maximum
value.

Grant et al. (1997) consider how to incorporate opti-
mal early exercise in the Monte Carlo method by linking
forward-moving simulation and backward-moving dynamic
programming through an iterative search process. They
simplify the problem by optimizing the option value with
respect to a piece-wise linear early exercise hurdle, albeit at
the expense of biasing the option value downward. After the
exercise boundary is established at each potential exercise
point, the price is estimated in a forward simulation based
on the obtained boundaries.

American-style securities can be priced using simulation
(Broadie and Glasserman 1997) by developing a "high" and
"low" estimator, then using the average to estimate the value
of the option. While both estimators are biased, both are
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also consistent, so as the number of trials in the simulation
is increased, the error bounds on the estimate narrow.

Longstaff and Schwartz (2001) present another method
for valuing American options with simulation that utilizes
least squares regression. First, a number of paths of the
underlying asset are randomly generated and the cash flows
from a corresponding European option in the last period are
generated for each path. In the next to last period, the paths
that are "in the money" are selected and the cash flows are
discounted to the current period. To estimate the expected
cash flows from continuing the option’s life conditional on
the stock price in the next-to-last period, the discounted
option payoffs are regressed on basis functions of the stock
price. With this conditional expectation function, the value
of immediate exercise in the next to last period and the value
from continuing the option can be compared. Using the
optimal decision, the cash flow matrix for the next-to-last
period is generated and the process is repeated. Given the
sample paths, a stopping rule is created for each sample
path. These cash flows are then discounted to the current
period and averaged over all paths to estimate the option
value.

Fuetal. (2001) introduces a simulation-based approach
that parameterizes the early exercise curve and casts the
valuation problem as an optimization problem of maximizing
the option value with respect to the associated parameters.
This approach simultaneously optimizes the option value
with respect to a parameter vector by iterative updates
via a stochastic approximation algorithm. This approach
is compared with two dynamic programming techniques
(Tilley 1993, Grant et al. 1997) and the stochastic mesh
and simulated tree methods of Broadie and Glasserman
(1997a, 1997b, 1998) on a test bed of several American-
style options. Wu and Fu (2003) gives further details of the
application of this technique to American-Asian options.

Additional implementations of Monte Carlo simula-
tion for pricing American-style options are described by
Bossaerts (1989), Fu (1995), Fu and Hu (1995), Carriere
(1996), Raymar and Zwecher (1997), and Ibanez and Zap-
atero (2004).

This paper addresses the ongoing challenge of devel-
oping a flexible framework for paramterizing the early ex-
ercise boundary for American-style financial options. Such
a framework should provide the correct value for the op-
tion so that it can be appropriately be used for efficient
management of risk. The framework must also provide an
exercise rule for the option in terms of observable stochastic
variables, e.g. stock prices. Glasserman (2003) notes that
an approximate boundary is often adequate to provide a
good estimate of the option value. Thus, we can develop
an exercise rule for an American-style option by using just
a few parameters to define the optimal exercise boundary.

We study several formulations for an approximately
optimal exercise boundary required to value and manage a
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financial option, and parameterize the boundaries using a
simulation-optimization method. Because we use relatively
few parameters, we define a procedure that uses only forward
simulation to identify approximately optimal parameters.
Additionally, we parameterize a “random exercise region”
to understand the sensitivity of the option value to the exact
placement of the exercise boundary.

The remainder of the paper is organized as follows.
Section 2 defines the notation required to implement the
simulation-optimization approach for determining optimal
exercise boundaries. Section 3 defines two types of ex-
ercise boundaries and the “random exercise region” used
to price American-style options. Section 4 implements the
simulation-optimization approach by determining optimal
exercise boundaries and regions for pricing an American call
option on a stock paying continuous dividends. Section 5
gives a summary and conclusions.

2 SIMULATION-OPTIMIZATION APPROACH
2.1 Overview

The simulation-optimization method relies on a discounted
cash flows model to determine the value of the American-
style option. The inputs used in the discounted cash flows
model are classified as follows:

1. Decision variables — used to parameterize the early
exercise boundary or region and can be adjusted
to increase option value as required.

2. Stochastic inputs — random variables with known
or estimated probability distributions.
3. Deterministic inputs — based on established bench-

marks or option features.

We construct a simulation-optimization component
which interacts with the discounted cash flow model by
selecting different combinations of the decision variables
and generating random simulation trials using the stochas-
tic assumptions. The simulation-optimization component
tracks the mean discounted cash flows from the option for
each combination of the decision variables to determine the
optimal decision rule.

2.2 Notation

This section defines variables that will be used throughout
the remainder of the paper.

We use the simulation-optimization method to price
American-style options by assuming that exercise is re-
stricted to the discrete points ¢;, j =0, 1, ..., N.
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The stochastic assumptions are as follows:

S,(f) = Value of asset k in period ¢;
or = Volatility of asset k
dr = Continuous dividend paid on asset k.

In many cases, we will define o} and §; to be determin-
istic, but we can easily adapt the model to handle stochastic
volatility and/or stochastic dividend rates. Similarly, we

S(k) to be either

can define the initial value of asset k, P

deterministic or stochastic.
Deterministic assumptions are defined as follows:

K = Strike price of the option

N Number of exercise dates, including the
expiration date

r = The risk-free rate of return for the period
from 7y to ty (representing continuous
annual returns)

Al(f) = Dividend paid on asset k at time ¢;
T Time to expiration of the option (in years).

If we are valuing an option on only one underlying asset,
we drop the (k) superscript on all variables. The remaining
variables are deterministic, given a specific instantiation of
the decision variables and stochastic assumptions:

Y;; = Optimal exercise boundary in period 7;

Dy; Indicator variable representing comparison of
asset price to linear threshold in period ¢;

A;. = Indicator variable representing whether option

J
has been exercised prior to period ¢;.

2.3 Scatter Search

The optimal decision rule is determined by considering
many possible combinations of the decision variables which
parameterize the exercise boundary or region. We use a
scatter search algorithm to select decision variable scenarios
and obtain an approximately optimal solution without testing
a complete enumeration of the possible combinations of the
decision variables (for more information on the scatter search
algorithm, see Glover et al. (1996)).

Using the scatter search approach requires simulating
only forward paths of the underlying asset values, without
any backward recursion to price the option. We find that
searching a limited number of combinations of the decision
variables leads to approximately optimal values that are very
close to or the same as those found by other methods.
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3 FREE EXERCISE BOUNDARIES

To specify fewer decision variables than exercise dates to
price an American-style option, we can fit a threshold as a
function of time, thus only optimizing the parameters for
this function, as opposed to a threshold for each period. In
this section, we discuss possible exercise boundaries.

3.1 Piece-Wise Linear

We suppose that the optimal exercise boundary for an
American-style option is a smooth curve, but that this curve
can be approximated by a piece-wise linear function with
two sections. The decision variables required to implement
the two-piece linear threshold are

a; = Point on horizontal axis representing the start
of the second piece of the threshold;
ay =t; for exactly one j, 1 < j <N —1
by = Point on vertical axis representing
the start of the second piece of the threshold
b, = Point on vertical axis representing

the start of the first piece of the threshold,
i.e. the y-intercept of the threshold at #,.

The piece-wise linear threshold is then defined by the
following function:

bz-}-%'j, 0<j<a
Yt/'(j)z
- K—b K—b . .
(bl—N_af~a1)+N_uf-], ai<j<N

Depending on the type of option to be priced, i.e.
call or put, different constraints are placed on the decision
variables. These constraints ensure that the piece-wise linear
threshold is either monotonically increasing or decreasing.
A graphical representation of the piece-wise linear threshold
for an American call option on a dividend-paying asset is
shown in Figure 1.

3.2 Bézier Curve

A cubic Bézier Curve is defined by four points. The origin
endpoint is defined as (xg, yo) and the destination endpoint
is defined as (x3, y3). The control points are (x1, y;) and
(x2, y2). Two equations define points on the curve and
both are evaluated at an arbitrary number of values of m
between 0 and 1. The first equation yields the values of ¢;



Cobb and Charnes

0.b,)

(a,.b)

S

Stock Price (S)

K (N,K)

a

Time Period (t)

Figure 1: Piece-Wise Linear Threshold for an American
Call Option on a Single Asset Paying Continuous Dividends

(the x-coordinates for points on the curve):
tj(m)=axom3+bx~m2+cxom+to. 2)

The values of m can chosen to ensure that points between
to and ty are selected.

The second equation yields the values of Y;; (the y-
coordinates for points on the curve):

Yy, (m)=ay -m’+by-m*+cy - m+Y,. (3

The coefficients required are the following functions of
the control points and endpoints:

cx = 3(x1 —xo)

by = 3(x2—x1)—cx

ay = X3—X0—Cx — by
cy = 3(y1— o)

by = 32—y —cy

ay = y3—yo—cy—Dby.

In the simulation-optimization model, xo = 0, x3 = N, and
y3 = K. The other decision variables for the control points
and endpoints are identified in the simulation-optimization
routine, subject to constraints as required. A graphical
representation of the Bézier curve threshold for an American
call option on a dividend-paying asset is shown in Figure 2.

3.3 Random Exercise Region
Glasserman (2003) notes that for many options, the option

value is not very sensitive to the exact position of the exercise
boundary and that a rough approximation to the boundary

©0,y,)

Stock Price (S)

Time Period (t) (T,K)

Figure 2: Bézier Curve Threshold for an American Call
Option on a Single Asset Paying Continuous Dividends

gives an approximately optimal option price. We approxi-
mate a region over which the option value is continuous. If
the price of the underlying asset falls into this region, the
owner can apply any desired hold/exercise strategy, without
changing the expected payoff of the option.

We define this region as the space bounded by two
piece-wise linear thresholds. The decision variables required
to implement the random exercise region are the same as
those required for the piece-wise linear threshold, plus three
additional decision variables defined as

a; = Point on horizontal axis representing the start
of the second piece of the second threshold;
ay =t; for exactly one j, 1 < j <N —1

b3 = Point on vertical axis representing the start
of the second piece of the second threshold.

bs = Point on vertical axis representing the start
of the first piece of the second threshold,
i.e., the y-intercept of the threshold at 7.

A graphical representation of the random exercise region
for an American call option on a dividend-paying asset is
shown in Figure 3.

The lower piece-wise linear threshold of the random
exercise region is defined as in (1), but will be denoted
as Ylf in period j. The upper piece-wise linear threshold
bounding the random exercise region is defined by the
following function:

by + 220, 0<j<a

vy () = (s -

K—b. K—b . .
N_4~a1)+N_4'J, a < j=<N.

az az
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Figure 3: Random Exercise Region for an American Call
Option on a Single Asset Paying Continuous Dividends

We will ensure that the upper and lower piece-wise linear
thresholds bounding the random exercise region do not inter-
sect by placing linear constraints on the decision variables.
These constraints will be specified differently depending on
the type of option being valued in a particular application.

4 EXAMPLES

Consider an American call option on a single asset paying
continuous dividends, where § = 0.04, Sy $100, and
r = 5%. Initially, o0 = 20%, but we vary o in some cases
to determine the effect on the exercise boundary or region.
The values of T and K will be varied in each experiment.

When using the piece-wise linear or Bézier curve thresh-
olds to price the option,

D, =1 {Sf./ = Yt./} ’
where 1 {A} denotes the indicator of event A, i.e. 1{A} =1
if event A occurs and 1{A} = 0 otherwise. The indicator
variable A;) = Dy, and

j—1
Ay =1 ZD,Z =0
=0

foral j>0,j=1,.., N.

Let (A)T denote max[0, A]. The discounted payoff
function for the American call option on a single asset
paying continuous dividends is

N
Po=7 exp{ —rj-(T/N)}- Dy - Ay - (Sy; — K)T .
j=0
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Table 1: Values for American Call Options on a Single Asset
Paying Continuous Dividends Obtained Using a Piece-Wise
Linear Threshold

95% 95% Opt.
K T Pricer. Lower Upper Lattice Sim.
$80 0.5 20306 20.296 20.316 20311 96
$90 05 11.879 11.869 11.889 11.877 27
$100 0.5 5757 5747 5766  5.759 12
$110 0.5 2296 2.286 2306 2.294 78
$120 0.5 0.758 0.749 0.768  0.759 74
$80 1.0 21.103 21.093 21.113 21.103 66
$90 1.0 13.657 13.648 13.667 13.663 34
$100 1.0 8.104 8.094 8.113  8.106 3
$110 1.0 4432 4422 4442 4432 98
$120 1.0 2.247 2237 2257 2.250 3
$80 2.0 22579 22.559 22.598 22743 17
$90 2.0 16285 16.265 16.305 16.292 77
$100 2.0 11.271 11.252 11.291 11.280 3
$110 2.0 7589 7569 7.608  7.585 3
$120 2.0 4975 4955 4995  4.968 3
$80 3.0 24.012 23993 24.032 24.115 82
$90 3.0 18.172 18.153 18.192 18.232 38
$100 3.0 13.394 13.375 13.414 13.552 3
$110 3.0 9.855 9.836 9.875 9.936 3
$120 3.0 7.206 7.187 @ 7.226  7.197 72

4.1 Piece-Wise Linear Threshold

To determine the piece-wise linear exercise boundary, we
use the simulation-optimization routine and maximize the
value of Py over all possible values of aj, b1, and by, subject
to the constraints by > by and by < S,,4x, Where Sy,qy 18
the maximum stock price observed on a trial simulation of
the value of the underlying asset.

The values of American call options on an asset paying
continuous dividends (where § = 0.04, Sy = $100, o =
20%, and r = 0.05) are shown for various values of K and T
in Table 1, which also notes the number of the simulation that
identified the optimal decision variable values. The lattice
values are taken from Fu et al. (2001) and are obtained
using 500 time steps. In each scenario, twenty potential
early exercise dates are used. The simulation-optimization
method captures the lattice value within a 95% confidence
interval on all options where 7T < 2.0 (standard error of
estimate is $0.01 or less in all cases). For options where
T = 3.0, the option is slightly undervalued for options where
K < $110. By using additional exercise dates for options
with longer maturities, the option value can be increased.

Consider the option in Table 1 where K = $110 and
T = 0.5. Figure 4 shows four approximately optimal piece-
wise linear exercise boundaries that give the same option
value. Using a binomial lattice with 500 time steps, this
option is valued at $2.294 (Fu er al. 2001). Using simulation
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Figure 4: Multiple Piece-Wise Linear Early Exercise
Thresholds that Yield the Same Option Value for an
American Call Option on an Asset Paying Continuous
Dividends
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with each exercise boundary, the 95% confidence intervals
all contain the lattice value at a precision of $0.01 or less
standard error of estimate. In Section 4.3, we define the
optimal exercise region for this option to understand the
continuity of the option value across the boundary.

4.2 Bézier Curve Threshold

To determine the parameters for the Bézier curve threshold,
we use the simulation-optimization routine and maximize
the value of Py over all possible values of x1, x2, yo, y1,
and y;, subject to the constraints yo > y1 > y2, Yo < Smaxs
y2 > K, and x > x;. The constraints ensure that the Bézier
curve is monotonically non-increasing. The constants a,,
by, ¢x, ay, by, and ¢y are calculated from the optimal values
of x1, x2, Y0, y1, and y». The coordinates for the Bézier
curve are calculated using equations (2) and (3). We solve
for the values of m1, ...m4¢ such that t;(m) =1, ¢;(m2) =
2,...,tj(m4o) = 40. The values established for my, ...m49
are then used to calculate Yt_/ for j =1, ...,40. Thus, we
are calculating the option value based on 40 potential early
exercise dates.

For the test option with K = $110 and T = 0.5, the
optimal values of the decision variables are x; = xp = 32
and yo = y1 = y2 = Spax = 167.30. With x3 = 40
(which is the number of early exercise dates) and y3
K = $110, this creates the Bézier curve threshold shown in
Figure 5 overlayed on the various optimal piece-wise linear
thresholds.
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Figure 5: Bézier Curve Threshold for an American Call
Option on a Single Asset Paying Continuous Dividends
Overlayed on the Piece-Wise Linear Thresholds from Fig-
ure 4

Using the Bézier curve threshold with the simulation-
optimization method yields an option value of $2.290 with
a 95% confidence interval of [$2.270, $2.310].

4.3 Random Exercise Region

To price the American call option on a single stock paying
continuous dividends using the random exercise region, we
define

U
b, =1ls, = v/}
An additional indicator variable is defined as

L U
R =1 {(Y,j <S$, < Y,j)ﬂ (U, < E,j)] ,

where Utj are i.i.d. Uniform[0, 1] random variates and
Ey; is a random exercise threshold established for each
tj, j =0,...,n. The second criteria used to determine if
Ry, = 1 is an arbitrary random exercise rule and could
be replaced by any other rule created by the owner of the
option.

The indicator variable A;, = Dy, and

j—1
Ay =133 (D, +Ry) =0

£=0

forall j >0, j=1,.., N.
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Figure 6: Random Exercise Region for an American Call
Option on a Single Asset Paying Continuous Dividends

The discounted payoff function for the American call
option on a single asset paying continuous dividends—using
the random exercise region—is

N
Pro= Y exp{—rj-(T/N)}-(Dy,+Ri))-Ar, (S, —K)'*.
j=0

The difference in the payoff function above and the one
established for the piece-wise linear payoff function is that
the option is exercised if the stock price exceeds the upper
piece-wise linear boundary, or if the stock price falls between
the lower and upper piece-wise linear boundaries and the
random exercise criterion is met.

To determine the parameters for the random exercise
region, we use the simulation-optimization routine and max-
imize the value of Pgg over all possible values of ap, as,
and by, ..., ba, subject to the constraints by > bz > by > by,
by < Spax, and ar > a;. The constraints ensure that the
upper and lower-boundaries of the random exercise region
are monotonically non-increasing and that the boundaries
do not cross. The boundaries could coincide, which would
reduce the model to the piece-wise linear model.

The random exercise region for the test option with
K =$110 and T = 0.5 is shown in Figure 6, along with
the random exercise regions for similar options with volatility
parameters of 0 = 10%, 0 = 30%, and 0 = 40%. For the
case where o = 20%, the decision variable values which
define the random exercise region are a; = 17, ap = 18,
b1 = 135.75, by = 152.09, b3 = 155.69, and b4 = 158.03.
This region is shown in Figure 7 overlayed on the various
piece-wise linear exercise thresholds depicted in Figure 4.
These values were obtained by using a value of E;; = 0.5
for all j =0, ..., 20.

Using the random exercise region with the simulation-
optimization method yields an option value of $2.283 with
a 95% confidence interval of [$2.263, $2.303]. Using the
same values for the decision variables defining the random
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Figure 7: Random Exercise Region for an American Call
Option on a Single Asset Paying Continuous Dividends
Overlayed on Piece-Wise Linear Thresholds from Fig-
ure 4
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Table 2: Values for American Call Options on a Single Asset
Paying Continuous Dividends

95% 95%
Method E;,,  Price Lower Upper
PW Linear — 2296 2286 2.306
Random  0.25 2286 2266 2305
Random  0.50 2283 2.263 2.303
Random  0.75 2.282 2262 2.302
Lattice — 2.294 — —

exercise region, we also value the option using values for Ey;
0of 0.25and 0.75 forall j =0, ..., N. A comparison of option
values for each random exercise rule is shown in Table 2.
The value shown for the “PW Linear” method corresponds
to the value for the option with the same parameters in
Table 1.

5 CONCLUSIONS

We have demonstrated a method for parameterizing optimal
exercise boundaries for pricing American-style options that
uses simulation and optimization. By employing a scatter
search approach and defining boundaries parameterized by
just a few parameters we are able to use only forward
simulation to identify the approximately optimal exercise
boundary. The prices found for American options on a
single asset paying continuous dividends are found to be
comparable to those found using lattice methods. In future
work, we plan to apply these methods to other American-
style and exotic options.
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