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ABSTRACT

In financial risk management, a coherent risk measure equals
the maximum expected loss under several different proba-
bility measures, which are analogous to systems in ranking
and selection. Here it is the best system’s expected value
and not identity that is of interest. We explore the correct-
ness and computational efficiency of simulated confidence
intervals for a maximum of several expectations.

1 INTRODUCTION

Artzner et al. (1999) introduced coherent risk measures as
a recommendation for a basis of financial risk manage-
ment. Authors including Jaschke and Küchler (2001) and
Staum (2004) applied coherent risk measures to the problem
of pricing derivative securities. The practice of financial
risk management and derivative security pricing frequently
involves simulation. With this application in mind, we de-
velop a sequential (multi-stage) simulation algorithm which
generates a fixed-width, two-sided confidence interval for
a coherent risk measure that is the maximum among k

expectations.
Any coherent risk measure ρ has a representation of

the form ρ(Y ) = supP∈P EP[−Y/r], where Y is the value
of a portfolio at a future time horizon, r is a stochastic
discount factor which represents the time value of money,
and P is a set of probability measures (Artzner et al.
1999, Prop. 4.1). Equations of a similar form hold for
the related problems in derivative security pricing. We
simplify the problem somewhat by assuming that the set P
has only a finite number k of elements. This assumption
will often hold, for instance, when the decision maker
has designed the coherent risk measure (or the underlying
acceptance set, in the case of derivative security pricing)
by specifying k probability measures. If it does not hold, it
may nonetheless hold for an approximation to the original
problem, in which the new P has k elements whose convex
hull contains the original P . Financial simulations typically
require large samples, which allows us to assume further,
for purposes of theoretical analysis, that sample averages
will be approximately normally distributed. Also let X :=
−Y/r and µi := EPi

[X]. We now focus on inference for
maxi=1,...,k µi based on data points Xij ∼ N (µi, σ

2
i ) which

are independent of each other, and where the means and
variances are all unknown.

The set-up is the same as that studied in the literature
on ranking and selection, in which the primary goal is
inference not about the maximum, but about the identity of
the index attaining the maximum. Indeed, because of this
commonality, the results here are applicable to the problem
of selecting the best system, if one is also interested in
knowing the value of the best system. (This is different
from the value of the selected system.)

However, the problem of estimating the maximum is
more difficult than that of selecting the best. To see this,
we introduce some more notation. Define [i] as the index
of the ith smallest mean, µ[i]. Thus, in particular, µ[k] is
the largest: this is the quantity maxi=1,...,k µi we want to
estimate. Let X̄[i] be the average of a sample from the
population whose mean is µ[i]. The problem features a
natural bias: the most obvious estimator maxi=1,...,k X̄i is
an upper bound for, and has a larger expectation than, X̄[k],
whose mean is µ[k]. Even maximum likelihood estimation
for this problem is not simple and produces remarkable
results: see Dudewicz (1971).

Our point of departure is the theorem of Chen and
Dudewicz (1976) providing a fixed-width, two-sided confi-
dence interval for the maximum µ[k], based on a two-stage
sampling plan. We also draw on results of Nelson et al.
(2001) to analyze a multi-stage simulation with screening:
those systems which are very likely not to be the best are
discarded so that thereafter computational resources can be
devoted to simulating systems that are more likely to be the
best.
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2 ALGORITHMS WITH GUARANTEED
COVERAGE

We use as a standard the two-stage procedure of Chen and
Dudewicz (1976). In the first stage, it samples n0 obser-
vations from each system. It then estimates the standard
deviation of each system, and uses this to determine how
many additional observations are required for each system
to attain a minimum coverage guarantee for the confidence
interval. In the second stage, it samples this additional data.

For simplicity of presentation, we first consider a two-
stage algorithm with screening. It is a modification of the
Chen-Dudewicz procedure, in which we screen out those
systems which prove sufficiently uncompetitive in the first
stage. We sample only from the remaining systems in
the second stage. Subsequently we present a multi-stage
algorithm, in which screening takes place between every
stage.

To facilitate consistency of notation, henceforth let the
first stage be denoted the 0th and the second be denoted
the 1st. Let

X̄i := 1

n0

n0∑
j=1

Xij and S2
i := 1

n0

n0∑
j=1

(Xij − X̄i)
2

be the stage 0 sample average and sample variance. Then
X̄[i] is the stage 0 sample average associated with the
population whose mean is µ[i]. Let the total number of
samples from system i taken by the end of the stage 1 be
Ni ; this is specified later in Equation (6). Define the stage 1
sample average

¯̄Xi := 1

Ni

Ni∑
j=1

Xij .

Finally, let Fν be the t distribution with ν := n0 −1 degrees
of freedom.

We want a two-sided confidence interval of the form( ¯̄X(k) − a, ¯̄X(k) + b
)

(1)

with error bounds

Pr

[
µ[k] ≤ max

i∈I

¯̄Xi − a

]
≤ α (2)

and

Pr

[
µ[k] ≥ max

i∈I

¯̄Xi + b

]
≤ β (3)

and having fixed width L := a+b. The reason for specifying
the confidence for the lower and upper confidence limits
separately is the asymmetry of the financial problem. It
may be considered worse to underestimate risk than to
overestimate it; or worse to set the price of a derivative
security too low, thus incurring losses, than to set it too
high, thus failing to make sales. If so, one would choose
β < α.

2.1 A Two-Stage Algorithm

To begin with, choose a width L and confidence levels 1−α

and 1 − β. There is also freedom to choose the first-stage
sample size n0 and to decompose the upper confidence level
as 1 − β = (1 − β0)(1 − β1) where β0 is the error bound
allocated to screening and β1 is the error bound allocated
to mean estimation. Let

a = L
F−1

ν ((1 − α)1/k)

F−1
ν ((1 − α)1/k) + F−1

ν (1 − β1)
(4)

and

b = L
F−1

ν (1 − β1)

F−1
ν ((1 − α)1/k) + F−1

ν (1 − β1)
. (5)

Take the stage 0 sample of Xij for i = 1, . . . , k and
j = 1, . . . , n0. Compute the sample averages X̄i and
variances S2

i .
Construct the set

I := {
i|∀j �= i, X̄i ≥ X̄j − Wij

}
where

Wij := F−1
ν

(
(1 − β0)

1/(k−1)
) √

(S2
i + S2

j )/n0.

This is the set of systems which are not too unlikely to be
the best, in the sense of not being statistically dominated
by some other system at stage 0. Every i /∈ I has been
screened out.

For all i ∈ I , let the sample size by the end of stage 1
be

Ni := max

{
n0,

⌈(
SiF

−1
ν (1 − β1)

b

)2
⌉}

(6)

and sample Xij for i ∈ I , j = n0 + 1, . . . , Ni . Compute

the stage 1 sample averages ¯̄Xi , choose the greatest, and
from it compute the confidence interval as in (1).

There is a tension in choosing n0. If it is too large,
then excessive resources are spent, as one may wish to have
Ni < n0, which is impossible. If it is too small, then there
is insufficient information to screen out poor systems. This
motivates the introduction of a multi-stage algorithm, which
provides multiple opportunities to screen out poor systems.
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2.2 A Multi-Stage Algorithm

In this algorithm, there are m screening stages and one final
estimation stage. The upper confidence level decomposes as
1 −β = ∏m

�=0(1 −β�) where βm is for the final estimation
stage and β0, . . . , βm−1 are for the m screening stages.

Stage 0 is the same as in the previous subsection, with
sample size n0 for each system. Construct in the same way
the set I of systems that are not screened out. We need
at this point to compute the total sample sizes Ni(�) for
system i achieved by the end of each stage � > 0. There
is substantial freedom to do this.

We choose to do so on the following principles. First,
the standard error of the sample average should be equal
for all systems that have not been screened out. Second,
this standard error should decrease by a constant factor C

between each stage 1, . . . , m. Third, the final sample size
should be (much as in the previous subsection)

Ni(m) = max

{
n0,

⌈(
SiF

−1
ν (1 − βm)

b

)2
⌉}

.

To satisfy these, use

Ni(�) =
⌈

n0

(
C�−1 Si

minj∈I Sj

)2
⌉

where

C =
(

F−1
ν (1 − αm) minj∈I Sj

b
√

n0

)1/(m−1)

.

After each stage � = 1, . . . , m, compute the sample
averages X̄i(�) := ∑Ni(�)

j=1 Xij /Ni(�) for those systems i

that have not been screened out, i.e. i ∈ I (�− 1) where the
screening procedure is defined by

I (�) := {
i|∀j ∈ I (� − 1) \ {i}, X̄i(�) ≥ X̄j (�) − Wij (�)

}
where I (0) = I and

Wij (�) := F−1
ν

(
(1 − β�)

1/(k−1)
) √

S2
i

Ni(�)
+ S2

j

Nj (�)
.

For ease of theoretical analysis, the preceding formula uses
stage-1 sample variances; they are not updated for purposes
of computing screening thresholds.

In the end, the confidence interval is as in (1), with
final sample average ¯̄Xi = X̄i(m).
3 COMPUTATIONAL RESULTS

We test the performance of our algorithms in pricing a basket
put option. This is a derivative security whose payoff at
a terminal time T is max{0, K − w�S(T )} where K is a
contractually specified strike price, w is a vector of weights,
and S(T ) is the vector of terminal prices of the securities in
the basket. The basket put is the right to sell the basket of
securities for the strike price K at time T . If the underlying
security price vector S obeys the Black-Scholes model, the
basket put’s price should be its expected discounted payoff.

Under this model, the price vector S follows multi-
variate geometric Brownian motion with drift r , the risk-
free interest rate, and some covariance matrix �. That
is, ln Sj (T ) = ln Sj (0) + (r − ‖σj‖2/2)T + AjZ where A

is a matrix satisfying AA� = � and Z is a multivariate
standard normal random vector. The short-term interest
rate r is observable, and there are standard methods for
calibrating the individual underlying securities’ volatility
magnitudes ‖σj‖, whether from historical data or by fitting
to observable prices of market-traded options on the un-
derlying securities. However, estimation of the correlation
matrix poses a greater problem. Unfortunately, the crucial
quantity ‖w��‖, the volatility of the basket, depends sig-
nificantly on the correlation matrix. There may be a range
of plausible correlations and thus a range of plausible prices
for the basket put.

We consider an example in which the basket is a
weighted average of three security prices with weights
w1 = 0.5, w2 = 0.3, and w3 = 0.2. The initial secu-
rity prices are all 100, and the strike price K = 85. The
interest rate r =5% and the volatilities have magnitudes
‖σ1‖ = 40%, ‖σ2‖ = 30%, and ‖σ3‖ = 20%. To account
for uncertainty about correlations, we use the k = 43 = 64
probability measures produced by allowing each of three
correlations to be 0.2, 0.35, 0.55, or 0.75. Although the
payoff in this example is far from normally distributed, the
sample averages were approximately normally distributed,
and the minimum coverage guarantees for the confidence
limits held in all of our computational experiments, which
include 300 independently simulated confidence intervals.

We report in Tables 1 and 2 efficiency improvements for
this example, expressed as the ratio of the average number
of samples required by the procedure of Chen and Dudewicz
(1976) to the average number required by our algorithms.
The results are reported for the two-stage algorithm with
various choices of n0, the initial (stage 0) sample size, and
for the multi-stage algorithm with 30 stages and n0 = 1000.
For each of four choices of confidence interval width, the
best efficiency improvement of a two-stage algorithm is
highlighted in bold type.

In all experiments, one fifth of the error is allocated to the
upper confidence limit, and four fifths to the lower confidence
limit. For example, in the results of Table 1 for a 99%
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confidence interval, the probability that the true maximum
mean exceeds the upper confidence level is guaranteed to
be no more than β = 0.2%, while the probability that it
falls below the lower confidence level is guaranteed to be
no more than α = 0.8%.

For ease of interpretation, we specify the confidence
interval width L relative to the true value µ[k], as estimated
in advance by a very precise simulation. To assign L equal to
a fraction of an estimate of µ[k] after stage 0 would introduce
additional complications. In financial applications, there is
often a previous simulation with similar parameters, which
can supply a value of L giving approximately the desired
relative precision.

Table 1 uses levels of confidence and precision appropri-
ate for a derivative pricing problem. The error probability
bound β = 0.2% is very low because offering to sell a
derivative security at a low price can lead to large losses,
which can be tolerated only infrequently. We consider con-
fidence interval widths of 0.1% to 1% of the true value,
which are comparable to or slightly smaller than typical
bid-ask spreads. That is, at greater widths, one would be
unable to quote competitive prices. Lesser widths would
be unnecessarily precise.

Table 1: Efficiency Improvement, 99% Confidence

Width of CI 0.1% 0.2% 0.5% 1%
2-stage, n0 = 50000 9.7 9.1 9.1 7.8
2-stage, n0 = 100000 13 14 12 8.3
2-stage, n0 = 200000 22 17 14 6.3
2-stage, n0 = 500000 39 29 9.8 3.4
2-stage, n0 = 1000000 35 22 6.0 1.7
multi-stage, m = 30 43 42 36 27

Table 2 is appropriate for a risk management problem
requiring lower confidence and precision. Risk management
is more a matter of decisions internal to a firm, so there are
no customers to take advantage of violations of the upper
confidence limit in the 1% of cases where it occurs, or
whose business is lost when the upper confidence limit is
too far above the true value.

Table 2: Efficiency Improvement, 95% Confidence

Width of CI 0.5% 1% 2% 5%
2-stage, n0 = 5000 2.6 2.7 2.6 2.3
2-stage, n0 = 10000 4.0 4.1 3.8 2.5
2-stage, n0 = 20000 6.3 5.8 4.8 2.0
2-stage, n0 = 50000 9.6 7.8 4.1 1.0
2-stage, n0 = 100000 14 7.6 2.7 0.5
2-stage, n0 = 200000 12 5.0 1.5 0.3
multi-stage, m = 30 36 24 13 4.5

These tables both show that the performance of the two-
stage algorithm depends significantly on the initial sample
size n0. When n0 is small, increasing it tends to lead
to improved screening, as more information at stage 0
allows more suboptimal systems to be screened out. If
n0 becomes too large, computational resources are wasted
on poor systems that could have been screened out earlier
and on systems with low standard deviation, for which one
would have liked to set Ni < n0 if this were possible—see
Equation (6). However, because many financial simulations
are repeated with parameters only slightly different from
those at the previous repetition, a good value of n0 may
well be known in advance.

Nonetheless, the performance of the multi-stage algo-
rithm is entirely superior in the examples here. It overcomes
limitations of the two-stage algorithm by using a small initial
sample size n0 = 1000, but continuing screening at subse-
quent stages. There seems to be little problem in choosing
the multi-stage algorithm’s parameters for an entirely unfa-
miliar simulation, which makes it superior to the two-stage
algorithm. The following investigation of the sensitivity of
the multi-stage algorithm’s performance to its parameters
is done at 95% confidence and for a confidence interval
width of 5%.

Figure 1 shows that the efficiency of the multi-stage
algorithm has low local sensitivity to the number of stages.
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Figure 1: Number of Stages and Efficiency

Figure 2 shows that the impact of initial sample size
n0 on the algorithm’s efficiency is not negligible, but is not
as dramatic as it is for the two-stage algorithm. Varying n0
from 200 to 2000 caused efficiency to change by less than
5%. However, n0 = 1000 is not very close to optimal, but
noticeably too large, if the required precision is low and the
variances are much smaller (say, one tenth as large) relative to
the differences in expectations. Still, the n0 problem is much
less severe than for the two-stage algorithm: n0 = 1000 is
close to optimal for a fairly wide range of variances and
confidence interval widths L.

The performance of the multi-stage algorithm also has
little local sensitivity to the decomposition of the upper
confidence level 1−β into confidence 1−βm for estimation
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Figure 2: Initial Sample Size and Efficiency

and 1 − β� for screening at stage � = 0, . . . , m − 1. In the
examples reported here, we have chosen β0 = · · · = βm−1
and

∏m−1
�=0 (1 − β�) = 1 − β/5, but as Figure 3 shows,

there is little change in performance for nearby values of
the overall screening confidence level. Allocating too little
of the error to screening makes it very difficult to screen
out systems; allocating too little of the error to estimation
inflates the required final sample size Ni(m) for a system
i ∈ I (m − 1) that is never screened out.
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Figure 3: Error Allocation and Efficiency

4 PROOF OF MINIMUM COVERAGE

We present a proof for the two-stage algorithm. A gener-
alization shows that the error bounds (2) and (3) hold for
the multi-stage algorithm too.
4.1 Lower Confidence Limit

The basis for bounding

p := Pr

[
µ[k] ≥ max

i∈I

¯̄Xi − a

]
≥ 1 − α

is the motivating observation that maxi∈I
¯̄Xi ≤

maxi=1,...,k
¯̄Xi . Even for a system j /∈ I , i.e. which has

been screened out, ¯̄Xj is defined on the probability space,
although we do not simulate it. So we have

p ≥ Pr

[
µ[k] ≥ max

i=1,...,k

¯̄Xi − a

]

= Pr
[
∀i = 1, . . . , k, ¯̄Xi ≤ µ[k] + a

]
≥ Pr

[
∀i = 1, . . . , k, ¯̄Xi ≤ µi + a

]
because µi ≤ µ[k]. Using independence,

p ≥
k∏

i=1

Pr
[ ¯̄Xi ≤ µi + a

]
=

k∏
i=1

Pr

[ ¯̄Xi − µi

Si/
√

Ni

≤ a
√

Ni

Si

]
.

From (4) and (5), a = bF−1
ν ((1−α)1/k)/F−1

ν (1−β1), while
from (6), b

√
Ni/Si ≥ F−1

ν (1 −β1). Therefore a
√

Ni/Si ≥
F−1

ν ((1 − α)1/k) so

p ≥
k∏

i=1

Fν

(
F−1

ν ((1 − α)1/k)
)

= 1 − α.

4.2 Upper Confidence Limit

The probability of interest is

q := Pr

[
µ[k] ≤ max

i∈I

¯̄Xi + b

]

≥ Pr
[
µ[k] ≤ ¯̄X[k] + b, [k] ∈ I

]
= Pr

[
µ[k] ≤ ¯̄X[k] + b,

∀j �= k X̄[k] ≥ X̄[j ] − W[k],[j ]
]
. (7)

Define

Zk :=
¯̄X[k] − µ[k]
σ[k]/

√
N[k]

and for j �= k,

Zj := (X̄[k] − X̄[j ]) − (µ[k] − µ[j ])√
(σ 2[k] + σ 2[j ])/n0

.
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The probability (7) can be rewritten as Pr[∩k
i=1Ei] where the

event Ek is that −Zk ≤ b
√

N[k]/σ[k] and for j �= k, the event

Ej is that −Zj ≤ (W[k],[j ]+µ[k]−µ[j ])/
√

(σ 2[k] + σ 2[j ])/n0.

Now we need to condition on the first-stage sample
variances, because they appear in the event Ej for j �= k

through W[k],[j ], and also determine the sample sizes N[k],
which is present in Ek . Let F represent the information
in (S2

1 , . . . , S2
k ). The conditional distribution of each Zi is

normal with mean 0. Their joint conditional distribution is
such that each Cov[Zi, Zj |F] > 0. By Slepian’s inequality
(Hochberg and Tamhane 1987, Thm. A2.2.1),

Pr[∩k
i=1Ei |F] ≥ Pr[Ek|F]

∏
j �=k

Pr[Ej |F].

Taking expectations,

Pr[∩k
i=1Ei] ≥ E


Pr[Ek|F]

∏
j �=k

Pr[Ej |F]



≥ Pr[Ek]
∏
j �=k

Pr[Ej ]

where the second line follows from Kimball’s inequality
(Hochberg and Tamhane 1987, Thm. A2.2.6).

The appendix of Nelson et al. (2001) shows that the
product over j �= k is greater than or equal to 1 − β0. This
relates to the probability of correct screening:

Pr[[k] ∈ I ] ≥
∏
j �=k

Pr[Ej ] ≥ 1 − β0.

The first factor

Pr[Ek] = Pr

[
−

¯̄X[k] − µ[k]
σ[k]/

√
N[k]

≤ b
√

N[k]
σ[k]

]

= Pr
[
µ[k] ≤ ¯̄X[k] + b

]

= Pr

[
−

¯̄X[k] − µ[k]
S[k]/

√
N[k]

≤ b
√

N[k]
S[k]

]
,

and by (6), b
√

N[k]/S[k] ≥ F−1
ν (1−β1), so this probability

is at least Fν

(
F−1

ν (1 − β1)
) = 1 − β1. This relates to the

probability of coverage without screening:

Pr

[
µ[k] ≤ max

i=1,...,k

¯̄Xi + b

]
≥ Pr

[
µ[k] ≤ ¯̄X[k] + b

]
= Pr[Ek] ≥ 1 − β1.

Putting all the pieces together, and using 1 − β =
(1 − β0)(1 − β1), we conclude that (3) holds.
5 CONCLUSIONS

We have introduced a multi-stage screening and selection
algorithm for producing a simulated confidence interval for
the maximum of several expectations. To choose good
values of the algorithm’s parameters (number of stages,
initial sample size, and error allocation) does not require
precise knowledge of the problem’s characteristics; this
and superior efficiency are advantages of the multi-stage
algorithm over the two-stage algorithm. For the financial
application of simulating a coherent risk measure of a basket
put option, this algorithm was between 4.5 and 43 times
faster than the procedure of Chen and Dudewicz (1976).
The efficiency improvement is greater when the required
levels of confidence and precision are higher, in which case
it is possible for substantial screening to occur while the
algorithm runs.
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