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ABSTRACT 

Simulation is an essential tool for performance evaluation 
of many practical systems where planners typically want to 
know how the system will perform under various  parame-
ter settings.  Since  large-scale simulation may require 
great amount of computer time and storage,  appropriate 
statistical analysis can become quite costly.  In this paper, 
we develop an interpolation technique as an effective  tool 
for estimating system respones to parametric perturbations 
in simulation.  We also analyze  the usefulness of the con-
tinuous–time Markov chains  frame-work to find the likeli-
hood ratio (Radon- Nikodym derivative)  for Markovian 
single server queueing models. We provide numerical ex-
periments that demonstrate how the interpolation technique 
significantly outperform the likelihood ratio performance 
extrapolation technique in the context of the Markovian 
queueing models in transient analysis. 

1 INTRODUCTION 

In designing, analyzing  and operating real-life complex 
systems,  we are interested, however, not only in perform-
ance evaluation but in sensitivity analysis and optimization 
as well. Planners typically want to know how the system 
will perform under various parameter settings.  To deter-
mine this,  a computer simulation model may be developed 
and then run for these parameter settings. One problem 
with Monte Carlo analysis is its expensive use of computer 
time. To address this problem, we propose an efficient 
technique for estimating the expected performance of a 
stochastic system for various values of the parameters from 
a single simulation of the nominal system. Given the per-
formance measure at two values of the input distribution 
parameters, the proposed technique provides the ability to 
interpolate the simulation results at different values of  
these parameters. This technique is based on the likelihood 
ratio performance extrapolation (LRPE). Arsham et al. 
(1989) showed that using the likelihood ratio (Radon-

 

Nikodym derivative) approach, one can estimate simulta-
neously the performance measure at various parameter 
values from a single simulation run. 

Consider a stochastic simulation system parameterized 
by a real vector Θ∈θ  of continuous parameters, where 

Θ  is some open subset of nR . We are interested in per-
formance measures that are based on the behavior of the 
stochastic system in some time interval T, where T is a 
stopping time. Suppose we have independent simulation 
results of the system at parameter Θ∈1θ   and want to es-
timate the transient performance measure of that system at 
parameter Θ∈0θ , ( )I|0θl , where I represents the initial 
conditions used to start the simulation at time 0. 
     The basic idea of LRPE is that ( )I|0θl can usually be 
viewed as the expectation of some function of 0θ  and the 
sample path ω , say )ω,( 0θh , with respect to a probability 
measure 

0θP . Suppose that 
0θP is absolutely continuous 

with respect to 
1θP ,i.e., for every measurable set B, if 

)(
1

BPθ = 0 then )(
0

BPθ = 0. In this case, one can write 
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where ))(/(),,(

1010 ωdPdPTL θθθθ =  is the Radon-

Nikodym derivative of 
0θP with respect to 

1θP  or the like-
lihood ratio of the process up to stopping time T. The sub-
script 0θ  in [ ]),(E 00

ωh θθ  means that the expectation op-

erator is induced by 
0θP .  
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Typically ω  could be the set of values taken by a fi-
nite sequence of independent (possibly multivariate) ran-
dom variables Y with probability density function f(y,θ ). 
For example, consider an M/M/1 queue and let ( )I|0θl  be 
the expected mean waiting time in the system for the first T 
customers in the system, provided that the initial condi-
tions used to start the simulation at time 0 is I. In this case, 
ω  could be the set of actual interarrival and service times 
and )(

0
ωdPθ   is the product of their densities. We have 

 
        ( ) [ ]),(EI| 00 0

θθ θ Yh=l   (1) 
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It is important to note that the original expectation of 

h(Y) in (1) is taken with respect to the underlying pdf 
),( 0θyf , whereas that given in (2) is taken with respect to 

the pdf ),( 1θyf . It follows that changing the probability 
density from ),( 0θyf  to ),( 1θyf , we can express the 
performance measure )|( Iθl for all Θ∈θ as an expecta-
tion with respect to ),( 1θyf and then estimate it accord-
ingly. In terms of simulation, this means that in principle, 
one simulation at 1θ  can produce estimates of the per-
formance measure at all "valid" values of  θ .  
     Estimating ( )I0θl  using the Radon-Nikodym approach 
yields computational savings, but reduces precision. By 
generating a sample nY,...,Y,Y 21  from ( ) , 1θyf ,we can 
estimate ( )I|0θl  by the corresponding sample mean 

( )I|~
0θl = ( )[ ]∑

=

n

i TLh
n 1i

10 ,,)(1 θθy . The accuracy of the 

estimator ( )I|~
0θl is determined by its variance, 

( )I|~Var 0θl ( )[ ]10 ,,)(Var1
1

θθθ TLh
n

Y= . Note that the 

farther 01  from is θθ , the higher variance of the estima-

tor ( )I|~
0θl , i. e., the variance of the LRPE estimators 

grows quite fast as the length of the perturbed parameter 
increases.  For simplicity, in the sequel of the paper we 
suppress the initial condition I from the transient perform-
ance measures and their estimates.  

Implementation of the LRPE approach requires com-
putation of the likelihood ratio (Radon-Nikodym deriva-
tive) of the underlying stochastic system.  In this paper we 
use the continuous-time Markov chain frame-work to find 
the likelihood ratio  for   a class of queuing model ( see 
Nakayama et al. (1994)). Continuous-time Markov chains 
are good models for many stochastic systems, including 
certain queuing systems, inventory systems, and reliability 
and maintenance systems. While the basis of the LRPE 
technique (Rubinstein (1986, 1989), Glynn (1986, 1987, 
1990), Reiman and Weiss (1989), L’Ecuyer (1990, 1995)) 
has been known for some time, the technique works only 
for perturbations of limited size due to its high variance. 

In this paper, we develop an interpolating technique as 
an effective tool for estimating system response to para-
metric perturbations in simulation. We show that the pro-
posed technique is an effective tool for measuring parame-
ter sensitivity in the context of the Markovian queueing 
models in transient analysis. There are many instances in 
which the transient behavior of stochastic systems is im-
portant. Since the characteristics of most real systems 
change over time, the stochastic processes for those sys-
tems do not have steady-state distribution. For example, in 
a manufacturing system the production scheduling rules 
and the facility layout (e.g., number and location of ma-
chines) may change from time to time. 

The rest of the paper is organized as follows. Section 2 
develops the proposed technique as an efficient method for 
estimating the transient performance measures of stochas-
tic systems. Section 3 gives the Radon-Nikodym derivative 
for the M/M/1 queueing systems and provides our compu-
tational experiments that demonstrate the efficiency of the 
proposed technique. Finally, section 4 contains some con-
cluding remarks. 

2 THE INTERPOLATION APPROACH  

In this section, we discuss the interpolation technique as an 
efficient method for estimating the transient performance 
measures. Suppose we have independent simulation results 
of a stochastic system at two values of the parame-
ter Θ∈θ , say 21  and θθ , and consider the expected per-
formance of the system at 0θ . Then, we have 
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An estimator of  ( )0θl  is  

( )0
~ θl  =  ( )[ ]∑

=

n

i
i TLh
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                              ( )[ ]∑
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and  its variance is given by 
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It can be shown that the value of α  that minimizes 
( )0

~Var θl is given by   
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2.1  Illustrative Example  (Poisson Rates)  

Consider a system with a Poisson arrival process that runs 
for a time T. Assume that the Poisson process can be con-
structed to be independent of the rest of the system. Given 
the simulation results at arrival rate 1θ , ( )1θl , we want to 
estimate the performance measure for arrival rate 0θ , say, 

( )0θl . That is, we choose to simulate at arrival rate 1θ and 
use LRPE to estimate the performance measure for arrival 
rate 0θ as follows:  

 
( )0θl ( ) ( )[ ]10 E

1
θθθ ,T,Lh Y= , 

where ( ) ])([exp )( ,, 10
N(T)

1

0
10 TTL θθ

θ
θ

θθ −−= .  

Here T is the duration of the simulation and N(T) is the 
number of Poisson events up to time T. Consider for sim-
plicity the case where h(Y) = 1, then a point estimate for  
 

( )0θl is given by  ( )0
~ θl ( )∑

=
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n

1i
10 ,,1 θθTL

n i  and its vari-

ance is given by ( )0
~Var θl ( )[ ]10 ,,Var1
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θθθ TL

n
= . 

 
 The following lemma presents the variance of the LRPE 
estimator, ( )0

~Var θl .  
Lemma 1    For the system with Poisson arrival proc-

ess of example 2.1, the variance of the LRPE estimator is 
given by   
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It appears that attempts to extrapolate for large values pro-
duce misleading estimates. Take for example, T = 1, 1θ =1, 
and 0θ = 4, then ( )[ ] =101

θθ ,T,LVarθ 8102.084. 
Using the interpolation technique, suppose we have 

two independent simulation runs of the system at 
21  and θθ .   We can estimate the performance measure at 

0θ as follows: 
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Consider for simplicity the case where h(Y) = 1, then a 
point estimate for ( )0θl is given by   
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Consider the case with T = 1, 1θ =1, 0θ = 4, and 2θ = 7. 

Then ( )0
~Var θl = 2.616, and thus very substantial decrease 

in the variance compared with the LRPE from 1θ  

( ( ) 084.8102~Var 01
=θθ l ). Table 1 presents a comparison 

of LRPE and the interpolation variances for example 2.1 
with T = 1, 1θ =1, and 2θ =1.1, for different values of 0θ . 
Note that, in all cases significant variance reductions were 
achieved using the interpolation approach.   
 
Table 1: Comparisons of LRPE and Interpolation  
Approach (INT) for Example 2.1 

0θ  Variance of 
LR1            LR2          INT 

Ratio of Var’s 
INT/LR1      INT/LR2 

1.2 0.041 0.009 0.007 0.183 0.817 
1.3 0.094 0.037 0.026 0.282 0.718 
1.4 0.174 0.085 0.057 0.329 0.651 
1.5 0.284 0.157 0.101 0.355 0.645 
1.6 0.433 0.255 0.161 0.371 0.629 
1.7 0.632 0.387 0.240 0.380 0.620 
1.8 0.896 0.561 0.345 0.395 0.615 
1.9 1.248 0.789 0.483 0.387 0.613 
2.0 1.718 1.088 0.666 0.388 0.612 

3 RADON-NIKODYM DERIVATIVE FOR  
THE M/M/1 QUEUING  SYSTEM 

In this section, we present the Radon Nikodym derivative 
for the M/M/1 queueing  system in transient analysis. Also, 
we present our computational experiments that show that 
the proposed interpolation approach is an efficient way to 
estimate transient measures of performance.  

The   M/M/1   queue can be analyzed as a birth–death 
process (see, e.g. Cooper (1981),   Gross and Harris (1998)  
and Kleinrock (1975)) by selecting the birth–death coeffi-
cients as follows: 

 
                      λλ =n           n =   0,   1,  2, ... 
                      µµ =n          n =   1,  2,  3, … 

 
For this queuing system, let  Xk   represent  the state of the 
system at the  kth transition, and define the following 
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The matrix   Q  is called the  infinitesimal  generator  ( or 
rate matrix or intensity matrix)  of the process;  and its 
elements,  qij ,   give the “rates”  of going from state i  to 
state j.    The ith diagonal element is usually denoted by -qi 
; qi, gives the rate of leaving state i to any other states.  The 
elements in each row of Q thus sum to zero. Given that the 
system has entered state i,  the holding time in state i,  is an 
exponential random variable with parameter λ + µ,   since 
it is the minimum of two exponential random variables,  
namely,  arrival time with parameter λ and service time 
with parameter µ. Given that a transition occurs from state 
i,  the probability that the transition  is due to an arrival      

( state increases to  i +1) is  
µλ

λ
+

 and the probability that 

is due to a service completion ( state decreases to i-1) 

is
µλ

µ
+

. Thus we have a process that stays in  state i  for a 

time that is exponential random  variable and jumps  to ei-
ther state  i +1  or  state i -1  with transition probabilities of   
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The following lemma gives the Radon-Nikodym derivative 
for the M/M/1 system. First, let  
No = number of state transitions from state 0, 
Nu = number of state transitions from state Xk to. Xk+1, 
Nd = number of state transitions from state Xk to  .1−kX    
Note that No+Nu represent the number of arrivals by time T 
and Nd represents the number of departures by time T. 
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Lemma 2    For the M/M/1 system,  let  T  be the stop-

ping time. The likelihood ratio with respect to parameter 
0λ   is given by  
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Proof    Let N(T) denote the number of transitions up 

to time T.  The likelihood of the sample path up to time  T 
under parameter λ  and µ  is  

{ }∏ −=Γ
−

=

1)(

0
),,(exp ),,(),,(

TN

k
kkk tXqXqT µλµλλµ  

{ }))(,,(exp),( )()(1 TNTNkk TTXqXXP −−× + µλ  

{ }( )[ ])(}0{ )1(exp       

)(exp)(       

)(exp)(exp  

)(

0

0

TNX

N

Nk
k

N
N

Nk
k

N

Nk
k

N

TT

t

tt

TN

d

d

d

u

u

u

−−+−×









+








∑+−+







+

×









∑+−+








∑−=

=

∈

∈∈

µµλ
µλ

µµλµλ
µλ

λ

µλµλλλ

{ }

{ }. (1exp          

expexp

)(}0{

)(

)(

0

0

TNX
NN

NTNk
k

N

TT

tT

TN
du −−×









∑−⋅−=

≠

−∈

µµλ

µλλ
 

 
For a given parameter value 0λ , the Likelihood ratio is 
given by  
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For a given parameter value 0µ , the Likelihood ratio is 
given by  
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3.1 Example 

Consider an M/M/1 system which starts empty and runs for 
time T.  We  are interested in knowing the average number 
in the system at time T,  for various arrival rates.  Assume 
we are not aware that this can be solved analytically. We 
             

simulate at arrival rate  λ and use LRPE to estimate the av-
erage number in the system at time T for several other arri-
val rates 0λ = ∆+λ .  It has been shown that as ∆ increases, 
the variance of the LRPE estimate increases very rapidly 
(Rubinstein (1986); Arsham et al. (1989)). For the interpola-
tion approach we simulate at arrival rates 21  and λλ  to esti-
mate the average number in the system at time T for several 
other arrival rates .0λ The M/M/1 model was simulated us-
ing the following parameters. Arrival rates λ1 = 1 and  λ2 = 
2, service rate µ = 2, and T = 3. The LRPE was applied to 
estimate the average number in the system at time T for 9 
perturbed arrival rates between 1 and 2.   Table 2 presents 
the crude Monte Carlo simulation for the average number in 
the system at time T, LRPE estimates for the nine rates from 
λ1, and  the interpolation estimates with their corresponding 
variances. It is clear from this table that the interpolation ap-
proach leads to smaller variances. 

 
Table 2: M/M/1 Example 

0λ CMS LRPE INT 
 ( )0

~ λl  Var ( )0
~ λl  Var ( )0

~ λl  Var 
 1.1 0.88 1.31 0.88 1.67  0.84 0.84 
 1.2 1.07 1.87 1.00 2.60 1.01 0.98 
 1.3 1.22 2.08 1.12 4.18 1.13 0.99 
 1.4 1.34 2.39 1.20 6.50 1.21 1.08 
 1.5 1.44 2.35 1.32 10.4 1.41 1.14 
 1.6 1.64 2.83 1.33 16.2 1.55 1.27 
 1.7 1.77 3.18 1.46 25.0 1.72 1.58 
 1.8 1.96 3.66 1.57 37.2 1.87 2.05 
 1.9 2.16 4.01 1.58 55.0 2.05 2.80 

4  CONCLUSION 

We have presented an interpolation technique that use the 
likelihood performance extrapolation approach to estimate 
the expected performance of a stochastic system for vari-
ous values of the input parameters from a single simulation 
of the nominal system. We have shown,  through extensive 
experimentation,  that the proposed technique is an effec-
tive tool for measuring parameter sensitivity in the context 
of the M/M/1 queueing models in transient analysis. We 
have presented the usefulness of the continuous time 
Markov Chain for computing the likelihood ratio ( Radom- 
Nikodym  derivative)  of the underlying stochastic system.   
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