
Proceedings of the 2004 Winter Simulation Conference
R .G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, eds.

EFFICIENT PROCESS INTERACTION SIMULATION IN JAVA:

IMPLEMENTING CO-ROUTINES WITHIN A SINGLE JAVA THREAD

Richard M. Weatherly
Ernest H. Page

The MITRE Corporation

7515 Colshire Drive
McLean, VA 22102, U.S.A.

ABSTRACT

The genesis of a research effort to develop a Java-based
process-oriented simulation framework is described. A key
enabler to the framework is an efficient co-routine mecha-
nism implemented within the context of a single Java
thread. A design for such a co-routine mechanism is de-
scribed and some initial results of an implementation
within the IBM Jikes Reference Virtual Machine are given.

1 INTRODUCTION

The history of languages and environments for discrete
event simulation is a rich one (Nance 1993). Debates on the
suitability of general-purpose languages for the simulation
task gave rise to the birth of special-purpose simulation lan-
guages in the 1960s and 1970s. These languages proliferated
and flourished during the 1970s and 1980s. During this pe-
riod, the notion of holistic programming environments
emerged in the software engineering community with the
Ada Programming Support Environment (Oberndorf 1988),
and a shift from language-focus to environment-focus also
occurred in the simulation community (Balci 1986; Balci et
al. 1990) and has continued for the past two decades. That’s
at least one way to look at our history as a community. As
Nance points out, though, histories are rarely quite as tidy as
historians would like them to be.

In reality, the application of general-purpose pro-
gramming languages to the simulation task has persisted
since the earliest days of simulation. Simulation packages
based on Pascal (Barnett 1986; Malloy and Sofa 1986;
Seila 1986; Uyeno 1980), Ada (Samuels and Speigel
1987), Modula-2 (L’Ecuyer and Giroux 1987), C and C++
(Bagrodia 1991; Fishwick 1992; Lomow and Baezner
1990; Schwetman 1986 and 1994), Smalltalk (Drolet at al.
1991; Knapp 1986) and Prolog (Adelsberger 1984; El-
maghraby 1988; Le 1993), for example, have all appeared.
Many of these packages were developed within the aca-
demic community as pedagogical aids. But several of the

commercial simulation tools you see in the vendor spaces
at the Winter Simulation Conference (WSC) are based on
general-purpose languages. Within the military simulation
domain, most of the larger systems contain a mixture of
languages, as one might reasonably expect. Our informal
survey of systems currently under development suggests
that the use of general-purpose languages is dominating the
use of simulation languages.

With the appearance of the Java programming lan-
guage circa 1995, it wasn’t long before Java-based simula-
tion packages also began to appear. A large number of
Java-based simulation packages have been developed, in-
cluding: SimKit (Buss 2000, 2001), JSIM (Miller, Ge and
Tao 1998), J-Sim (Tyan 2002), DESMO-J (2004), Silk
(Kilgore 2000), SimJava (Howell and McNab 1998; Page,
Moose and Griffin 1997), PsimJ (Garrido 2001; Garrido
and Im 2004) and SSJ (L’Ecuyer, Meliani and Vacher
2002) to name only a few.

In this article we discuss a MITRE Sponsored Re-
search project to develop a Java-based simulation frame-
work. The primary goal for the project is not to create yet-
another-Java-based-simulation-language. The primary
goal of the project is to develop technology that supports
the construction of large-scale simulation systems by small
teams. This primary goal is enabled by a number of secon-
dary objectives:

1. Apply and evaluate open-source technologies to

develop the simulation framework.
2. Create a simulation-specific application pro-

grammer’s interface that supports the construction
of efficient simulation while retaining access to all
existing Java language features.

3. Develop an efficient co-routine mechanism for
Java.

4. Shepherd the integration the framework into the
Java language standard through the Java Commu-
nity Process, and

5. Apply the framework to realistic problems within
the military and civil domains.

Weatherly and Page

The focus of this article is on the third objective—

developing an efficient co-routine mechanism for Java.
The remainder of the article is organized as follows. Sec-
tion 2 provides background and motivation for working
within Java. Section 3 presents an initial study of Java
thread performance. Section 4 describes our approach and
design for a Java co-routine mechanism. Our initial im-
plementation within the IBM Jikes Reference Virtual Ma-
chine, and some preliminary performance results are dis-
cussed in Section 5. Conclusions and directions for future
work appear in Section 6.

2 MOTIVATION

A primary stimulus for this research was the experience of
the first author as Chief Engineer for the Joint Simulation
System (JSIMS) (see USJFCOM 2004) during the period
2000-2003. This experience revealed a number of challenges
in the construction of large-scale simulation systems:

• First, traditional systems engineering and govern-

ment acquisition processes are ineffective in this
domain—staging requirements definition, then de-
sign, construction, and system integration. The in-
herent flexibility of simulation invites requirement
inflation, especially when the cost of a requirement
is not considered in the overall design.

• Second, large developer teams are expensive and
unresponsive—teams of a hundred developers ad-
just slowly to changes in requirements or design.

• Third, the current infrastructure for building dis-
tributed simulations is too complex for the aver-
age developer.

One approach to resolving these problems uses small,

responsive teams of developers to create significant simu-
lations. Not only are small teams less expensive and more
agile, but their speed and agility allows iterative develop-
ment of simulations. Thus requirements can be refined as
their cost becomes evident. But how can we enable small
teams to build very large simulation systems quickly?

Large-scale simulation systems typically involve a great
deal more than a core simulation. Such simulation systems
require graphical user interfaces, database connections,
XML and other data parsers, map displays and other visuali-
zation, and communication with other computers. Access to
these ancillary functions is not provided to any real degree in
extant discrete event simulation programming languages.
Most of the large-scale military and civil simulation systems,
therefore, are constructed using general-purpose program-
ming languages. And with the rising popularity of Java,
many of these systems are being built in Java.

Java, like other “mainstream” programming lan-
guages, has a variety of development tools, including inte-
grated development environments (compilers, debuggers,
build tools), and code profiling and optimization tools. The
range of tools available to Java programmers exceeds that
available to programmers in most simulation languages.
Theoretically, at least, these tools make it easier to con-
struct large systems of any sort—including simulations.
Java literature and training are extensive. Java is the domi-
nant teaching language for Computer Science in the U.S.,
which ensures a steady stream of graduates comfortable
with the Java platform.

However, Java tends to scale poorly as a simulation
language, especially in the context of the process interaction
world view. The primary reason for this is a simple one:
within standard Java Virtual Machines, Java threads are tied
to underlying operating system threads. In Java-based proc-
ess-oriented simulations, each object (or logical process) is
typically assigned its own thread. On commodity Windows
and Linux platforms, this limits the number of logical proc-
esses to a few thousand (see Section 3). Large-scale military
and civil simulations, on the other hand, can require hun-
dreds of thousands of logical processes.

One way to support very large numbers of logical
process is to use multiple physical processors (i.e. parallel
or distributed simulation). Another approach to provide an
efficient co-routine mechanism for Java—one that does not
rely on operating system threads.

3 A QUICK LOOK AT JAVA THREAD
PERFORMANCE

To establish a baseline for the number of concurrent
threads supportable in the Sun Microsystems Java Virtual
Machine (JVM), we constructed a simple benchmark that
creates logical processes until a java.lang.Out Of Mem-
ory Error: unable to create new native thread er-
ror is generated. The benchmark creates a “main” entity
that advances time in equal steps. At each timestep, the
main entity creates a new instance of a “null” entity. The
null entities each execute an indefinite wait.

The benchmark was run on two platforms. The first is
a Dell D600 (1.3 Ghz processor, 1 Gb RAM) running
Windows XP and Java HotSpot(TM) Client VM 1.4.2_03-
b02. The second is a Dell 4300 (two 2-GHz processors, 2
GB of RAM) running Linux kernel 2.4.20-24.9smp
(Redhat 9) and Java HotSpot(TM) Client VM 1.4.2_02-
b03 (a slightly older version of the JVM).

We examined the effects of varying the thread stack
size (-Xssn argument to the JVM) and the memory alloca-
tion area (-Xmxn argument to the JVM). In each case,
when varying one of these parameters, the other was left at
its default value. The results, which appear in Table 1, in-
dicate a limitation of, roughly, 8000 threaded entities for
Windows and 4000 for Linux.

Weatherly and Page

Table 1: Upper Bounds for Thread Creation in Sun JVM
Platform JVM argument #entities created
Dell, Windows -Xss5k 7240
 -Xss10k 7240
 -Xss20k 7240
 -Xss50k 7240
 -Xss400k 1847
 -Xss10m 176
 -Xmx8m 7386
 -Xmx16m 7386
 -Xmx32m 7366
 -Xmx64m 7240
 -Xmx128m 6987
 -Xmx256m 6481
 -Xmx640m 4963

Dell, Linux -Xss5k Stack size too
small

 -Xss96k Stack overflow
error

 -Xss100k Stack overflow
error

 -Xss200k 3459
 -Xss400k 3459
 -Xss10m 178
 -Xmx32m 3459
 -Xmx100m 3459
 -Xmx400m 2985

4 DESIGN OF A CO-ROUTINE
MECHANISM FOR JAVA

Within our framework, recently dubbed Tortuga, interact-
ing processes are created by extending class Entity, creat-
ing instances of those extended classes, and registering
those instances with the simulation executive. Each entity
has an agenda() method. The agenda is where simulation
developers place code to model the proactive aspects of en-
tity behavior. The Tortuga framework provides the usual
set of services to allow an entity to sense the simulated en-
vironment and control the advance of simulation time.

The simple entity depicted in Figure 1 illustrates the
major points in the control of interacting processes. When,
at time t, an instance of class MyEntity is registered with
the simulation executive, the executive invokes the
agenda() method. Computation at lines 3 and 4 takes place
at time t. In line 4, the entity requests a delay of 5.0 simula-
tion time units using framework method waitForTime().
Method waitForTime() transfers control to the simulation
executive. After simulation time advances 5.0 time units,
the executive transfers control back to line 5 where code at
that point experiences a simulation time value t + 5.0.
When the agenda() code is complete, control returns to the
simulation executive. The executive then excludes the en-
tity from future scheduling consideration and makes it
available for garbage collection.

1 class MyEntity extends class Entity {
2 public void agenda() {
3 // time is now t
4 waitForTime(5.0);
5 // time is now t + 5.0
8 }
9 }

Figure 1: Simple Entity

The interaction between the simulation executive and

the entities that comprise a simulation can be generalized
to four operations. These operations are defined below:

• Elaborate(p) - Invocation of the agenda() method

of entity p. This is done by the executive after the
entity is registered.

• Yield to Executive – Used by an entity to transfer
control to the simulation executive when the en-
tity needs to wait for the passage of time or some
other change in the environment.

• Yield to Process(p) – Used by the simulation ex-
ecutive to transfer control from the simulation ex-
ecutive to entity p when some specified conditions
are met.

• Terminate(p) – Used by the simulation executive
or by an entity to remove entity p from further
consideration by the simulation executive. This
operation takes place implicitly after the agenda()
method is complete.

All Java-based process oriented frameworks have op-

erations similar to those above. In all cases some sort of
thread manipulation is needed to achieve the co-routine
semantics required by Yield to Executive and Yield to
Process. Typically, a unique Java thread is assigned to the
simulation executive and to each of the entities. The thread
manipulation needed to implement the four operations are:

• Elaborate(p) – Create a new thread for entity p.

Let the new entity thread begin execution of the
entity agenda() method. Suspend the executive
thread while this is taking place.

• Yield to Executive – Suspend the thread of the
entity that invoked the Yield to Executive op-
eration. Awaken the simulation executive thread.

• Yield to Process(p) – Suspend the simulation ex-
ecutive thread and awaken the thread for entity p.

• Terminate(p) – Awaken the simulation executive
thread if needed and destroy the thread for entity p.

Given an understanding of how threads are used to co-

ordinate the interaction between the simulation executive
and a group of entities, we can make the following obser-
vations. Threads are a more capable, and unfortunately

ly and Page
Weather

more complex and expensive, control mechanism than is
really needed to support the four operations defined above.
Specifically, there is no need for true parallelism as pro-
vided by threads. Additionally, as used by the four opera-
tions, all threads are awakened explicitly by executive or
entity code. One of the powerful, and again expensive, fea-
tures of threads is their ability to link awakening to asyn-
chronous events such as hardware interrupts. But this ca-
pability is not needed to implement the four operations.

Note also that there are n + 1 threads needed to im-
plement a simulation with n entities. Effectively, only one
thread is actually executing at any given time even if more
than one physical processor is available. This means that
there will be n + 1 execution stacks in the JVM but only
one of them will be changing at a time.

These observations led us to investigate a single thread
approach. Given that it is not possible in “pure” Java to
implement the four operations above without using multi-
ple threads, the research goal became the isolation, defini-
tion, and implementation of the smallest set of JVM exten-
sions needed to support co-routines. The experimental
vehicle for the investigation is the IBM Jikes Reference
Virtual Machine (RVM) (2004). The IBM RVM was cho-
sen because it has good performance, is written in Java,
was designed for experimentation, is available as open
source, and is self hosting. This last point is significant as
Jikes may be the only JVM written in Java that runs on it-
self and does not require a second JVM.

The essence of the project is to convert a single thread
with its single method invocation stack into a cactus stack
(see Sardesi, McLaughlin and Dasgupta 1998) without ad-
versely effecting the operation of the RVM. The left side
of Figure 2 shows the normal situation where each thread
has a conventional, linear frame stack. As one method in-
vokes another, a new frame is pushed onto the top of the
stack and the frame pointer (FP) is advanced upward to
keep track of the currently executing method. Each frame
contains references to the method code for that invocation,
the saved instruction pointed for the method that invoked it
(the one beneath it), a pointer to the stack frame beneath it,
and other saved state such as hardware registers.

FP
FP1

FP2

FP3

FP
FP1

FP2

FP3

Figure 2: Conventional and Cactus Stacks

In a cactus stack, as seen on the right of Figure 2, there

are multiple arms at a single level and a common base. The
cactus stack data structure allows arbitrary levels of
branching but only one level is needed for this design.
Each arm has its own frame pointer, FPi, and is used to
manage the execution of a single entity. The common base
contains the frames created by the runtime environment to
start the thread and those of the simulation executive.

The four operations needed to coordinate the interac-
tion between the simulation executive and the entities, de-
fined above, also govern the major cactus stack actions.
When the simulation executive uses Elaborate(p) to create a
new entity, a new arm is added to the stack. Symmetri-
cally, operation Terminate(p) removes the arm on which en-
tity p was executing. Operation Yield to Executive,
when invoked within arm i, causes execution at FPi to stop
and execution at the top frame of the common stack base to
resume. Yield to Process(p) is always called from the
simulation executive, the top frame of common stack base,
and causes execution to resume at frame FPi where arm i is
the stack for entity p.

5 IMPLEMENTATION AND RESULTS FOR THE
IBM JIKES REFERENCE VIRTUAL MACHINE

Most of the work within the Jikes RVM focused on creat-
ing the cactus stack semantics within the context of the
single conventional stack organization expected by the
RVM design. Our approach swaps the cactus stack arms on
and off the conventional thread stack in a way that does not
disturb normal RVM function.

5.1 Elaborate(p)

Creating a new entity does not require any special stack
manipulation. The simulation executive uses Elabo-

rate(p) to start the execution of an entity for the first time.
This eventually results in the invocation of the agenda()
method on entity p. Figure 3 shows the state of the stack
after the simulation executive invokes Elaborate(p)
which in turn has invoked the agenda() of entity p. The
frame pointer, FP, points to the agenda() frame showing
that the agenda() is currently executing.

Executive

system

Elaborate(p)

FP
Entity p agenda()

Executive

system

Elaborate(p)

FPFP
Entity p agenda()

Figure 3: Initial Invoca-
tion of an Entity Agenda

Weatherly and Page

5.2 Yield to Executive

The left side of Figure 4 shows the continued execution of
entity p. The agenda() code invoked framework method
waitForTime(5.0) indicating that entity p should be sus-
pended until 5.0 units of simulation time have passed.
Framework method waitForTime() does the necessary
bookkeeping to schedule the reactivation of entity p and
then uses the coordination operation Yield to Executive
to pass control to the simulation executive.

Executive

system

Elaborate(p)

FP

Entity p agenda()

waitForTime(5.0)

Yield to Executive

Executive

system

FP

Elaborate(p)

Entity p agenda()

waitForTime(5.0)

Yield to Executive

Saved Segment

Executive

system

Elaborate(p)

FP

Entity p agenda()

waitForTime(5.0)

Yield to Executive

Executive

system

Elaborate(p)

FPFP

Entity p agenda()

waitForTime(5.0)

Yield to Executive

Executive

system

FP
Executive

system

FPFP

Elaborate(p)

Entity p agenda()

waitForTime(5.0)

Yield to Executive

Saved Segment

Elaborate(p)

Entity p agenda()

waitForTime(5.0)

Yield to Executive

Elaborate(p)

Entity p agenda()

waitForTime(5.0)

Yield to Executive

Saved Segment

Figure 4: Saving Entity Execution State

Yield to Executive searches the stack from the point

of its invocation downward until it finds the stack frame
for the simulation executive. It then copies the stack frames
from the top of the stack downward to the frame just above
the simulation executive to a holding pool elsewhere in
memory. Finally, Yield to Executive repositions the
frame pointer, FP, to the simulation executive stack frame.
As shown on the right side of Figure 4, this movement of
the FP makes it appear to the simulation executive that its
invocation of Elaborate(p) has returned.

5.3 Yield to Process(p)

This operation resumes entity p execution after is has been
suspended by the Yield to Executive operation. It lo-
cates the stack segment for entity p in the holding pool and
copies it back to the frame stack where it will then resume
execution. In the Jikes RVM, stack frames contain absolute
memory pointers to other frames in the stack. This means
that when a segment is moved out of the holding pool and
back onto the frame stack it must be replaced in exactly the
same memory locations from which it was found. This
leads to a collision between the stack frame supporting op-
eration Yield to Process(p) and the Elaborate(p) stack
frame in the stack segment being restored. Said another
way, the Yield to Process(p) operation will overwrite
its own stack frame while coping the entity p stack seg-
ment back on to the frame stack.

A solution to the problem is to divide the restoration
of the stack segment into two parts. In the first part, Yield
to Process(p) determines where the top of the frame
stack will be when the entity p segment is restored. At this
position it creates the stack frame for the invocation of
method Restore Segment. This is shown on the left side of
Figure 5. In the second part, Restore Segment copies the
stack segment to the memory that has been reserved be-
neath itself. It safely overwrites the Yield to Process(p)
stack frame in the process because the active part of the
frame stack is at Restore Segment and above.

Elaborate(p)

Entity p agenda()

waitForTime(5.0)

Yield to Executive

Restored Segment

Executive

system

FP
Elaborate(p)

Entity p agenda()

waitForTime(5.0)

Yield to Executive

Restore Segment

Executive

system

FP
Restore Segment

Yield to Process(p)

Reserved Space

Elaborate(p)

Entity p agenda()

waitForTime(5.0)

Yield to Executive

Restored Segment

Elaborate(p)

Entity p agenda()

waitForTime(5.0)

Yield to Executive

Elaborate(p)

Entity p agenda()

waitForTime(5.0)

Yield to Executive

Restored Segment

Executive

system

FP
Elaborate(p)

Entity p agenda()

waitForTime(5.0)

Yield to Executive

Restore Segment

Executive

system

FPFP
Elaborate(p)

Entity p agenda()

waitForTime(5.0)

Yield to Executive

Restore Segment

Executive

system

FP
Restore Segment

Yield to Process(p)

Reserved Space

Executive

system

FPFP
Restore Segment

Yield to Process(p)

Reserved Space

Figure 5: Restoring Entity Execution State

Once the entity p stack segment is copied into place,

the FP is moved down three stack frames. This is shown in
the middle of Figure 5. Control leaves Restore Segment
and enters waitForTime(5.0) which itself returns. From
the perspective of the entity p agenda(), the method wait-
ForTime(5.0) has just returned and the next statement in
the agenda() can be executed.

5.4 Terminate(p)

This operation is used when the simulation executive de-
termines that an entity will never need to be restored. Usu-
ally this occurs when the entity agenda() is complete. Ter-
minate(p) does not require extraordinary frame stack
manipulation. It simply removes the entity p stack segment
from the holding pool.

5.5 Initial Results

Initial results confirm the potential power of the cactus
stack approach. Controlled benchmarks are able to create
and manage up to 42,000 entities using as little as 100MB
of memory. This compares favorably with the modest
numbers of entities (less that 8,000) that can be created us-
ing conventional thread-based implementations. Before a
robust implementation of the cactus stack can be consid-
ered for practical use, more work must be done on the in-
terface to the garbage collection system.

Support for garbage collection is a powerful feature of
Java. The essence of garbage collection is to separate por-
tions of memory that are reachable by program reference
from memory that has been allocated but is no longer
reachable. Memory that is no longer reachable is garbage
and can be collected and made available for future
reallocation. Garbage collectors may examine the frame
stack in the process of locating all the reachable memory in
a program. The cactus stack manipulation adds an
additional step to conventional garbage collection. After

Weatherly and Page

step to conventional garbage collection. After the garbage
collector examines the frame stack it must also examine all
the stack segments in the holding pool. This is needed be-
cause a stack segment may contain the only reference to an
object that, if not taken into account, could be mistaken for
garbage. The segment may also have references to objects
that are moved by the garbage collector and need to be up-
dated with the new object location. This also includes ref-
erences to code objects, such as saved instruction pointers,
that must also be updated if a code object moves.

6 CONCLUSIONS AND FUTURE WORK

Work to extend one of the Jikes RVM garbage collectors
has been fruitful. The extended garbage collector success-
fully includes saved stack segments in its analysis and
properly updates references to relocated objects. Work re-
mains to improve the efficiency of the stack segment hold-
ing pool and the overall implementation robustness.

Once the IBM Jikes implementation of the single
thread simulation executive is made robust enough for pro-
duction use, attention will turn to the Sun JVM. It is hoped
that similar success with the Sun JVM will support the ar-
gument that co-routines would be a useful extension to the
Java language and a useful tool to the growing Java-based
simulation market.

ACKNOWLEDGMENTS

The work described here is MITRE Sponsored Research
funded through the MITRE Technology Program. The
support of Al Grasso, Steve Huffman and Dave Lehman
is gratefully acknowledged. The concepts and implemen-
tation described in this paper reflect significant contribu-
tions by Fred Kuhl, Rob Mikula, Keven Ring, Dave
Seidel and Bill Weiland.

REFERENCES

Adelsberger, H.H. 1984. Prolog as a Simulation Language,
In: Proceedings of the 1984 Winter Simulation Con-
ference, ed. S. Sheppard, U. Pooch, and C. Pegden,
500-504, Dallas, TX, 28-30 December.

Bagrodia, R.L. 1991. Iterative Design of Efficient Simula-
tions Using Maisie, In: Proceedings of the 1991 Win-
ter Simulation Conference, ed. B. Nelson, W. Kelton,
and G. Clark, 243-247, Phoenix, AZ, 8-11 December.

Balci, O. 1986. Requirements for Model Development En-
vironments, Computers and Operations Research,
13(1):55-67.

Balci, O., R.E. Nance, E.J. Derrick, E.H. Page, and J.L.
Bishop. 1990. Model Generation Issues in a Simula-
tion Support Environment, In: Proceedings of the
1990 Winter Simulation Conference, ed. O. Balci, R.
Sadowski, and R. Nance, 257-263, New Orleans, LA,
9-12 December.

Barnett, C.C. 1986. Simulation in Pascal with Micro
PASSIM, In: Proceedings of the 1986 Winter Simula-
tion Conference, ed. J. Wilson, J. Henriksen, and S.
Roberts, 151-155, Washington, DC, 8-10 December.

Buss, A. 2000. Component-Based Simulation Modeling,
In: Proceedings of the 2000 Winter Simulation Con-
ference, ed. R. Barton, J. Joines, P. Fishwick, and K.
Kang, 964-971, Orlando, FL, 10-13 December.

Buss, A. 2001. Discrete Event Programming with Simkit,
Simulation News Europe, 32/33:15-25, November.

DESMO-J Available online via <www.desmoj.de> (ac-
cessed July 14 2004).

Drolet, J.R., C.L. Moodie and B. Montreuil. 1991. Object-
Oriented Simulation with Smalltalk-80: A Case Study,
In: Proceedings of the 1991 Winter Simulation Con-
ference, ed. B. Nelson, et al., 312-322, Phoenix, AZ,
8-11 December.

Elmaghraby, A.S. 1988. A Prolog Simulation for a Delphi-
based Problem Solver, Simulation Digest, 19(4):36-43.

Fishwick, P.A. 1992. SimPack: Getting Started with Simu-
lation Programming in C and C++, in: Proceedings of
the 1992 Winter Simulation Conference, J. Swain, D.
Goldsman, R Crain, and J. Wilson, 154-162, Arling-
ton, VA, 13-16 December.

Garrido, J.M. 2001. Object-Oriented Discrete Event Simu-
lation with Java: A Practical Introduction, Kluwer
New York, NY: Academic / Plenum Publishers.

Garrido, J.M. and K. Im. 2004. Teaching Object-Oriented
Simulation with PsimJ Simulation Package, In: Pro-
ceedings of the 42nd Annual ACM Southeast Regional
Conference, 422-427, Huntsville, AL, 2-3 April.

Howell, F. and R. McNab. 1998. Simjava: A Discrete
Event Simulation Package for Java with Applications
in Computer Systems Modelling, In: Proceedings of
the First International Conference on Web-Based
Modeling and Simulation, San Diego, CA, January.

IBM Jikes Reference Virtual Machine. 2004. Available
online via <www.ibm.com/developerworks/
oss/jikesrvm/> (accessed July 14 2004)

Kilgore, R.A. 2000. Silk, Java and Object-Oriented Simu-
lation, In: Proceedings of the 2000 Winter Simulation
Conference, ed. R. Barton, et al., 246-252, Orlando,
FL, 10-13 December.

Knapp, V. 1986. The Smalltalk Simulation Environment,
In: Proceedings of the 1986 Winter Simulation Con-
ference, ed. J. Wilson et al., 125-128, Washington,
DC, 8-10 December.

L’Ecuyer, P. and N. Giroux. 1987. A Process-Oriented
Simulation Package Based on Modula-2, In: Proceed-
ings of the 1987 Winter Simulation Conference, ed. A.
Thesen, H. Grant, W. Kelton, 136-145, Atlanta, GA,
14-16 December.

 and Page
Weatherly

L’Ecuyer, P., L. Meliana and J. Vaucher. 2002. SSJ: A

Framework for Stochastic Simulation in Java, In: Pro-
ceedings of the 2002 Winter Simulation Conference,
ed. C. Chen, P. Sanchez, D. Ferrin and D. Morrice,
234-242, San Diego, CA 8-11 December.

Le, T.V. 1993. FPOSS: A Fuzzy Prolog-based Object-
Oriented Simulation System, In: Proceedings of the 6th
Australian Joint Conference on Artificial Intelligence,
Melborne, November.

Lomow, G. and D. Baezner. 1990. A Tutorial Introduc-
tion to Object-Oriented Simulation and Sim++, In:
Proceedings of the 1990 Winter Simulation Confer-
ence, ed. O. Balci, et al., 149-153, New Orleans, LA,
9-12 December.

Malloy, B. and M.L. Soffa. 1986. Simcal: The Merger of
Simula and Pascal, In: : Proceedings of the 1986 Win-
ter Simulation Conference, ed. J. Wilson, et al., 397-
403, Washington, DC, 8-10 December.

Miller, J.A., Y. Ge and J. Tao. 1998. Component-Based
Simulation Environments: JSIM as a Case Study Us-
ing Java Beans, In: Proceedings of the 1998 Winter
Simulation Conference, ed. D. Medeiros, E. Watson, J.
Carson, and M. Manivannan, 373-381, Washington,
DC, 13-16 December.

Nance, R.E. 1993. A History of Discrete Event Simulation
Programming Languages, ACM SIGPLAN Notices,
28(3):149-175.

Oberndorf, P.A. 1988. The Common Ada Programming
Support Environment (APSE) Interface Set (CAIS),
IEEE Transactions on Software Engineering,
14(6):742-748.

Page, E.H., R.L. Moose, Jr. and S.P. Griffin. 1997. Web-
Based Simulation in Simjava using Remote Method
Invocation, In: Proceedings of the 1997 Winter Simu-
lation Conference, ed. S. Andradottir, K. Healy, D.
Withers, and B. Nelson, 468-474, Atlanta, GA, 7-10
December 1997.

Samuels, M.L., and J.R. Spiegel. 1987. The Flexible Ada
Simulation Tool (FAST) and its Extensions, In: Pro-
ceedings of the 1987 Winter Simulation Conference,
ed. A. Thesen, et al., 175-184, Atlanta, GA, 14-16
December.

Sardesai, S., D. McLaughlin and P. Dasgupta. 1998. Dis-
tributed Cactus Stacks: Runtime Stack-Sharing Sup-
port for Distributed Parallel Programs, In: Proceed-
ings of the 1998 International Conference on Parallel
and Distributed Processing Techniques and Applica-
tions, Las Vegas, NV,13-16 July.

Schwetman, H. 1986. CSIM: A C-Based Process-Oriented
Simulation Language, In: Proceedings of the 1986
Winter Simulation Conference, ed. J. Wilson, et al.,
387-396, Washington, DC, 8-10 December.

Schwetman, H. 1994. CSIM17: A Simulation Model-
Building Toolkit, In: Proceedings of the 1994 Winter
Simulation Conference, ed. J. Tew, S. Manivannan, D.
Sadowski, and A. Seila, 464-470, Orlando, FL, 11-14
December.

Seila, A. F. 1986. Discrete Event Simulation in Pascal with
SIMTOOLS, In: Proceedings of the 1986 Winter
Simulation Conference, ed. J. Wilson, et al., 141-150,
Washington, DC, 8-10 December.

Tyan, H.-Y. 2002. Design, realization and Evaluation of a
Component-Based Compositional Software Architec-
ture for Network Simulation, Ph.D. Thesis, The Ohio
State University, Columbus, OH.

USJFCOM. 2004. Joint Simulation System (JSIMS).
Available online via <www.jfcom.mil/about/
fact_jsims.htm> (accessed July 14 2004).

Uyeno, D. 1980. PASSIM, A Discrete Event Simulation
Package for Pascal, Simulation, 35(5):479.

AUTHOR BIOGRAPHIES

RICHARD M. WEATHERLY is a Consulting Engineer
with The MITRE Corporation. He received a Ph.D. in
Electrical Engineering from Clemson University in 1984.
He led the technical development of the Aggregate Level
Simulation Protocol, DoD High Level Architecture (HLA)
for Modeling and Simulation, and the HLA Runtime Infra-
structure Verification Facility. His email address is
<weather@mitre.org>.

ERNEST H. PAGE is a Principal Scientist with The
MITRE Corporation. Since receiving the Ph.D. in Com-
puter Science from Virginia Tech in 1994, he has worked
primarily in the defense simulation arena. He served as
ACM SIGSIM Chair (1999-2001) and is currently an As-
sociate Editor for the Journal of Defense Modeling and
Simulation, and the ACM Transactions on Modeling and
Computer Simulation, and Area Editor for Military Appli-
cations for SCS Simulation. He has served on the Board of
Directors for Winter Simulation Conference since 2001.
His email address is <epage@mitre.org>.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 1437
	02: 1438
	03: 1439
	04: 1440
	05: 1441
	06: 1442
	07: 1443

