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ABSTRACT 

From the perspective of flow analysis, the more complex 
the project, the more wastes are prone to build up, due to 
the increasing number of interfaces between activities. 
When processes are further expanded beyond the jobsite to 
the scale of a supply chain, the complexity is usually be-
yond human perception. In order to provide a systematic 
approach to help management make correct and timely de-
cisions, an analytical approach capable of efficiently and 
economically modeling the complicated processes and to 
address various managerial questions is necessary. 

An analytical framework combining simulation, de-
sign of experiment, regression analysis, and mathematical 
programming is proposed to facilitate management to de-
termine the optimal design for a construction process under 
various constraints. A simplified concrete delivery process 
is used as an example to illustrate how the framework is 
implemented. Some implementation issues and other po-
tential applications will be discussed. 

1 INTRODUCTION 

Simulation is one of the most widely used operations-
research and management-science techniques (Law and 
Kelton 2000, p. 2). It takes advantage of the efficiency and 
reliability of modern computers to imitate the operations of 
various real-world processes. 

Computer simulation has been used for decades to 
model real-world problems ranging from designing manu-
facturing systems to analyzing financial or economic sys-
tems. Due to the complexity of these problems and the limi-
tations of human intelligence models, simulation provides a 
virtual world where the decision makers can better under-
stand the nature of the problem by conducting experiments 
in a more controllable and low-cost environment. 

2 SIMULATION IN CONSTRUCTION 

The use of simulation for studying construction operations 
was first proposed and developed by Halpin in the 1970s 

 

(Halpin 1973). He developed the CYCLONE (CYCLic Op-
erations NEtwork) modeling system that significantly simpli-
fies the simulation modeling process and makes it accessible 
to construction practitioners with limited simulation back-
ground (Sawhney et al. 2003). A computer program called 
MicroCYCLONE, based on the CYCLONE modeling ele-
ments was developed and became the most popular general 
purpose simulation program in the construction industry. The 
introduction of CYCLONE modeling elements and the Mi-
croCYCLONE simulation program brought the study of con-
struction operations to researchers’ attention, and there have 
been many construction simulation programs developed in 
the past two decades based on CYCLONE concepts. 

Simulation has been broadly used in analyzing con-
struction processes as simple as a mason supply system 
and as complex as projects such as the Isle of Palm Con-
nector Bridge. With the advent of the lean construction 
concept, a few researchers have begun to investigate the 
use of construction simulation in areas pertaining to 
work flow variability and other lean concepts (Sawhney 
et al. 2003). Tommelein’s paper (1998) is a classic ex-
ample of how simulation can be used in modeling lean 
construction processes. 

Traditionally, research in construction simulation in-
cludes process observation, duration and resource data col-
lection, process modeling using CYCLONE, process simu-
lation to estimate productivity, and performing sensitivity 
analysis to suggest alternatives to improve productivity. 

3 DEFICIENCIES IN PAST RESEARCH 

In a simulation study of a construction process, the follow-
ing questions are usually of interest – what is the impact of 
resource variation and other factors on the response of a 
given construction operation? What combinations of re-
sources will maximize the productivity? Sensitivity analy-
sis, or the so-called one-factor-at-a-time approach, is typi-
cally used in construction simulation to answer these 
questions. The general procedure is to subjectively select 
one of the most important factors and change the levels of 
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the factor while fixing the remaining factors in order to in-
vestigate system response. A similar procedure is then it-
eratively applied to the remaining factors based on the or-
der of importance until the answer is obtained. 

Although one-factor-at-a-time sensitivity analysis has 
been widely used in construction simulation studies, it has 
the following disadvantages when compared with the fac-
torial design method (Wu and Hamada 2000, p. 114): 

 
1. It requires more runs for the same precision in ef-

fect estimation. 
2. It cannot estimate some interactions between 

factors. 
3. The conclusions from this type of analysis are not 

general. 
4. It can miss optimal settings of factors. 
 
Another important issue overlooked in past construc-

tion simulation research is the statistical significance of 
process change. Suppose the output of a simulation model, 
e.g., productivity in construction simulation, denoted by Y, 
has an unknown distribution with a mean µ and a variance 
σ2. Assume the result of the sensitivity analysis shows that 
the productivity can be increased by δ by changing the 
number of masons from one to two, where δ is less than σ2. 
From the statistical point of view, the increase is not sig-
nificant enough since it could be due to noise or random 
error within the model. Hence, one cannot conclude this 
change is effective. However, most literature in construc-
tion simulation has not addressed this issue properly. 

4 COMPUTER EXPERIMENT 

Design of Experiment (DOE), or experimental design, has 
its origin in agriculture and laboratory experiments. The 
purpose of an experiment is to answer the questions of in-
terest and to understand or improve the systems. Statistical 
design of experiments refers to the process of planning the 
experiment so that appropriate data that can be analyzed by 
statistical methods will be collected, resulting in valid and 
objective conclusions (Montgomery 2001, p. 11). 

Traditionally, experimental designs are applied to 
physical experiments, such as agriculture field experiments 
and controlled clinical trials. When physical experiments 
are practically impossible, e.g., the numbers of input vari-
ables are too large or conducting physical experiments is 
costly or may involve ethical issues, computer experiments 
become a feasible alternative. Computer experiments differ 
from physical experiments because they use computer 
codes to generate data and create virtual environments to 
simulate experiments of interest. While many DOE tech-
niques were developed with physical experiments in mind, 
they can fairly easily be adapted for use in computer simu-
lation experiments as well (Kelton and Barton 2003). 

Among various experimental designs, 2k full factorial 
designs and fractional factorial designs are most commonly 
used in industrial experimentation. When the number of 
factors is large, these two designs are used to identify im-
portant factors in the early stage of an experiment and are 
often called factor-screening experiments. A complete in-
troduction to these two experimental designs can be found 
in classic design of experiment textbooks, such as Mont-
gomery (2001), Wu and Hamada (2000), Oehlert (2000), 
and Box, Hunter, and Hunter (1978). 

By performing experimental design, one can estimate 
main effects of factors and interaction effects between fac-
tors. Main effect measures the effect of each individual fac-
tor on the response. By assigning two opposite levels, 
namely high (+) and low (−) levels to each factors, one can 
estimate the main effect of each factor by taking the differ-
ence between the average of the responses of all observa-
tions at the high level (+) of a factor, say A, and the average 
of the responses of all observations at the low level (−) of A. 

The major disadvantage of the one-factor-at-a-time 
strategy is that it fails to consider any possible interactions 
between factors (Montgomery 2001, p. 4). Two factors A 
and B are said to interact if the effect of factor A depends 
on the levels of factor B, and the interaction between A and 
B is denoted as A×B or AB. For example, the productivity 
of a worker is affected by the models of the equipment the 
worker uses. Productivity tends to be higher when workers 
use the equipment with which they are familiar or that 
matches their body types. If one would like to investigate 
the factors that will influence the production rate of a proc-
ess, and both the number of workers and the models of the 
equipment are among the factors of interest, then the inter-
action between these two factors should be properly ac-
counted for because the interaction may affect the produc-
tion rate of the process. The interaction AB is called a two-
way interaction because there are two factors involved, and 
it measures the effect of one factor depending on the levels 
of the other factor. 

Discussion of three-way interactions, e.g., ABC, BCD, 
etc., or higher-order interactions can be found in the refer-
ences mentioned above. The presence of interactions usu-
ally makes the interpretation of the models difficult and it 
is almost impossible to clearly explain the models contain-
ing three-way or higher-order interactions. Fortunately, ac-
cording to the hierarchical ordering empirical principle, 
lower order effects are more likely to be more important 
than higher order effects. Therefore, in practice the effects 
of high-order interactions are often assumed negligible. 

2k full factorial design requires 2k simulation runs to be 
performed, i.e., if k = 4, 24 = 16 simulation runs are needed. 
If the number of factors in a process is large, the number of 
runs grows exponentially and it will become impractical and 
inefficient to perform all these simulation runs. For instance, 
if there are 10 factors of interest, i.e., k = 10, a 2k full facto-
rial design requires 210 = 1024 simulation runs, which will 
consume a considerable amount of time to complete. In ad-
dition, when the number of factors becomes large, most de-
grees of freedom will be used to estimate three-way or 
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higher-order interaction effects. As mentioned before, these 
high-order interactions are usually not significant. Therefore, 
it is not practical to commit a large number of degrees of 
freedom to estimate these insignificant effects. For these rea-
sons, fractional factorial designs, which consist of a subset 
or fraction of full factorial designs, are commonly used in 
place of full factorial designs. 

The concept of fractional factorial designs is based on 
the fact that if one can reasonably assume that certain high-
order interactions are negligible, then the main effects and 
low-order interactions can be obtained by running only a 
fraction of the full factorial experiment. Fractional factorial 
designs are among the most widely used types of design in 
industry (Myers and Montgomery 2002, p. 155) and they 
are often used for factor-screening purposes. 

Regression models can be used to fit the run data from 
the previous experimental designs. The fitted model is 
called a meta model, which is the statistical model of the 
simulation. The meta model acts as a proxy of the simula-
tion model and can be used to study the effects of input 
factors on the response. Furthermore, mathematical pro-
gramming techniques can be applied to search for the best 
combinations of input factors that maximize or minimize 
the response. 

5 EXAMPLE 

Assume that the productivity of Project A, measured in 
terms of truck-load per minute, is of interest. When a truck 
arrives at the jobsite, it must wait for the dump position to be 
available in order to proceed. Once the truck moves into the 
dump position, it waits for the hopper to become available 
for taking the concrete. After the truck finishes dumping the 
concrete to the hopper, it passes the counter, departs from 
the jobsite and returns to the batch plant. As soon as the 
truck departs, a dump position becomes available. 

Due to the limited capacity of the concrete batch plant, 
it is impossible for the supplier to fulfill customers’ needs 
all of the time. The service rate of Project A, the probabil-
ity that the batch plant is dedicated to serving Project A, or 
the ratio between the number of trucks traveling to Project 
A and the total number of trucks during the course of simu-
lation is defined to model this situation. For the purpose of 
this paper, the service rate is defined as the routing prob-
ability which indicates that a truck is allocated to Project A 
or Project B. In other words, service rate is the probability 
P that the truck moves from 12 to either 13 or 14 in Figure 
1. Once the batch plant is available, a signal will be re-
leased and if a truck happens to be idle, the truck will be 
assigned to either Project A or Project B (collectively 
represents all non-A projects) based on the service rate. Af-
ter the truck is loaded, it travels to the jobsite. Figure 1 is 
the CYCLONE network of the process. 

The process focuses on the delivery and receiving of the 
concrete supply process. In practice, the availability of hop-
pers is related to the concrete placement cycles, which defi-
nitely has an impact on the truck departure time. For the 
sake of simplicity, this part is not taken into account in the 
model. In addition, the duration data used in this example is 
hypothetical and may not reflect the real-world situation. 

6 IMPLEMENTATION 

Figure 2 is the flowchart for implementing the proposed 
framework to study construction processes. In the fol low-
ing sections, the simplified concrete supply process de-  
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Figure 1: CYCLONE Network of the Simplified Concrete Delivery Process 
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scribed in Section 5 is selected to illustrate the use of con-
struction simulation software WebCYCLONE (Halpin, 
Jen, and Kim, 2003) and 2k full factorial design as a factor-
screening procedure. After the important effects are identi-
fied, a regression model is fitted to the data and the fitted 
model will be used as an objective function in the mathe-
matical programming model. All of the statistical analyses 
are performed in SAS, and the best combination of re-
sources under constraints is obtained by using LINGO. 
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Figure 2: Flowchart for Implementing the Proposed 
Framework to Study Construction Processes 

6.1  Data Collection and Model Development 

Figure 1 is the CYCLONE model based on the observation 
at the batch plant and the jobsite. In addition, the duration 
for each activity and resource information are summarized in 
Tables 1 and 2 respectively. It is worth noting that the dura-
tion of Node 12 Batch Plant Decision is assumed to be 0, 
meaning that the assignment of trucks takes no time at all. In 
reality, it is possible that the management needs evaluate the 
priorities and consider which customer to serve first. 

 

Table 1: Summary of Duration Information 
Node Activity Duration 

2 Move into Position Normal (3.0, 1.0) 
5 Truck Dump Normal (10.0, 1.0) 
9 Depart from Position Normal (2.0, 0.8) 
10 Truck Return to Batch Plant Normal (12.0, 2.0) 
12 Batch Plant Decision Deterministic 0 
15 Load Truck for Project A Normal (7.0, 1.0) 
17 Load Truck for Project B Normal (7.0, 1.0) 
18 Service Project B Normal (35.0, 10.0) 
19 Travel to Project A Site Normal (15.0, 3.5) 

 
Table 2: Summary of Initial Resources 

Node Resource Quantity 
3 Position 1 
6 Hopper 1 

11 Truck 5 
16 Batch Plant 1 
20 Availability Signal 1 

6.2 Initial Simulation Run and Model Testing 

After the simulation model is developed, it is important to 
test how well the simulation output data resembles the field 
data. An easy way to examine the appropriateness of the 
model is to compare the major summary statistics of the 
simulation output, e.g., mean and variance of productivity, 
with those of the field data to see how close they are. There 
are also many classical statistical tests, such as two-sample 
chi-square test and two-sample t-test, which can be used to 
validate the simulation models. However, Law and Kelton 
(2000, p. 280) point out that many real-world systems and 
simulations are nonstationary and autocorrelated so that these 
tests are not directly applicable. Instead, they suggest using 
the inspection approach, confidence interval, and time-series 
approaches. Detailed discussion of these three approaches 
can be found in Law and Kelton (2000, pp. 283 – 290). 

Since there are no real-world data for comparison and 
validation, the simulation is assumed to be appropriate in 
this case study. 

6.3 Design of Experiment 

The model has four resource inputs and these are all factors 
of interest. “Signal availability” should be overlooked in 
this case because it only acts as a mechanism to trigger the 
probability assignment at the decision point. On the other 
hand, the “service rate” should be taken into account be-
cause the commitment of the batch plant is expected to 
have a critical influence on the progress of the jobsite op-
eration. Hence, there are four factors to be investigated. 
Since the number of factors is not large, a 24 full factorial 
design is appropriate; otherwise, a fractional factorial de-
sign should be used instead. Table 3 summarizes the fac-
tors for the 24 design. Table 4 is the design matrix and re-
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sponses for the 24 design with single replicate. The re-
sponses are generated from simulation with the same ran-
dom number seed. It is worth noting that the simulation 
study is deterministic in the sense that the same set of input 
parameters will generate the same output. If there is more 
than one replicate in the design, different random number 
seeds must be used for each replicate. Otherwise the re-
sponses for each replicate will be exactly the same. 

 
Table 3: Factors for the 24 Design 

Factor Factor  
Notation 

Low (-) 
Level 

High (+) 
Level 

Number of Trucks A 5.0 25.0 
Service Rate B 0.3 0.8 
Number of Positions C 1.0 8.0 
Number of Hoppers D 1.0 10.0 

 
Table 4: Design Matrix and Responses for the 24 Design 

A B C D Run 
# Truck Service  

Rate Position Hopper 
Y (load/min) 
Productivity 

1 - - - - 0.0316 
2 + - - - 0.0431 
3 - + - - 0.0652 
4 + + - - 0.0667 
5 - - + - 0.0319 
6 + - + - 0.0431 
7 - + + - 0.0777 
8 + + + - 0.0994 
9 - - - + 0.0316 
10 + - - + 0.0431 
11 - + - + 0.0652 
12 + + - + 0.0667 
13 - - + + 0.0321 
14 + - + + 0.0431 
15 - + + + 0.0802 
16 + + + + 0.1153 
 
The effect of each factor and the interactions between 

factors can be estimated by hand or by using statistical 
software packages. Table 5 is the summary of the esti-
mated effects ranked in descending order. Often three or 
higher interactions are assumed to be negligible in order to 
estimate the mean square error. However, this assumption 
might pool significant interactions. A normal probability 
plot is created to detect those significant effects. Usually, 
significant effects will not lie along the same line in the 
normal probability plot. Based on the estimates in Table 5 
and Figure 3, effects B, C, BC, and A are most significant 
and the further investigation should focus on them. 

The presence of the interaction of BC makes the model 
interpretation difficult. By examining the interaction plot 
(Figure 4), the effects of C appear to depend on the levels 
of B. When the service rate is fixed at 0.3, the use of eight 
positions and one position have almost the same effect on 
the productivity; when the service rate raises to 0.8, the 
 
process with eight positions has significantly higher pro-
duction than that with one position. 

 
Table 5: Estimated Effects (Descend-
ing Order) 

Factor Effect Factor Effect 
B 0.0421 BD 0.0023 
C 0.0137 BCD 0.0023 
BC 0.0135 AB 0.0018 
A 0.0131 ABD 0.0017 
ABC 0.0068 ABCD 0.0017 
AC 0.0066 AD 0.0017 
D 0.0023 ACD 0.0017 
CD 0.0023   

 

 
Figure 3: Normal Probability Plot for the Effects 

 

 
Figure 4: Interaction Plot for Factors B and C 

6.4 Model Fitting and Diagnostics 

Based on the assumption that three or higher interactions are 
negligible, along with the observations from the estimated 
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effects and normal probability plot, 16 observations gener-
ated from the 24 design were fitted to regression model 

 
0 1 2 3 23y A B C BCβ β β β β= + + + +  (1) 

 
and the fitted model is 

 
ˆ 0.0126 0.0007 0.0495

0.0023 0.0077 .
y A B

C BC
= + +
− +  (2) 

 
The model diagnostics showed that the assumption of 

constant error variance was violated. The Box-Cox vari-
ance stabilizing transformation was used to search for the 
best transformation to model the response. The result sug-
gested a log transformation of the response y (λ = 0) is ap-
propriate and the final fitted model is 

 
ˆ exp[ 3.7961 0.0117 1.0679

0.0270 0.0931 ].
y A B

C BC
= − + +

− +  (3) 

 
The negative estimated parameter associated with the 

number of positions available may contradict the intuition 
that a larger C will have a positive influence on the average 
productivity. Due to the presence of the BC interaction 
term, the fitted model should be interpreted with extra care. 
If the service rate B is fixed at 0.3, the fitted model can be 
simplified as 

 
[ ]ˆ exp 3.4757 0.0117 0.0009y A C= − + +  (4) 

 
, where C has a positive but relatively small coefficient, 
which suggests that by increasing one unit of the position 
in the jobsite when the service rate is 0.3 will only increase 
the average productivity by 0.09%. This extremely small 
amount of increase in the average productivity explains 
why the two lines in Figure 4 appear to intersect when B is 
at 0.3 (denoted by -1 in the interaction plot). When the ser-
vice is 0.8, the fitted model is reduced to 

 
[ ]ˆ exp 2.9418 0.0117 0.0475 .y A C= − + +  (5) 

 
One unit increase in C will raise the average productivity 
by 5%. The different rates in productivity improvement 
show B and C are not independent of each other. 

6.5 Developing Mathematical Programming Model 

Suppose the objective here is to maximize the productivity 
of the process. Without any constraint, the best resource 
combination would be A = 25, B = 0.8, C = 8, D = 10, 
which is exactly the same as the 16th run. In practice, there 
are always constraints on suppliers’ and contractors’ re-
source commitments. Assume the batch plant can only 
have a maximum of 15 trucks operating at the same time; 
the management is only willing to guarantee up to 60% of 
the service rate. Furthermore, the jobsite can only have five 
dump positions at most. Mathematically, the problem can 
be modeled as the following: 

 
Objective: Maximize
ˆ exp[ 3.7961 0.0117 1.0679

0.0270 0.0931 ]
Subject to:

5 15
0.3 0.6
1 5

y A B
C BC

A
B

C

= − + +
− +

≤ ≤
≤ ≤

≤ ≤

 (6) 

 
, where A and C are integers and B is a real number. This is 
a nonlinear mixed integer programming problem. The best 
solution obtained by using LINGO is 0.0587 truck-load per 
minute when A = 15, B = 0.6 and C = 5. 

Suppose the costs of using a truck and a hopper are 
$100 per hour and $50 per hour respectively. There is a 
$30 one-time fee for preparing and cleaning a dump posi-
tion, and the concrete supplier charges $10,000 for every 
10% increase in service rate. Furthermore, the contractor 
requires 40 truck-loads of concrete to be delivered within 
12 hours. The objective is to minimize the total costs. Then 
the problem can be modeled as shown in Table 6. 

 
Table 6: Optimization Model in LINGO 

MODEL: 
MIN=Cost_A+Cost_B+Cost_C+Cost_D; !Objective: 
Minimize the total cost; 
A <=15; 
A >=5; 
B <=0.6; 
B >=0.3; 
C <=5; 
C >=1; 
Productivity=60*@exp(-3.7961+0.0117*A+1.0679*B-
0.0270*C+0.0931*B*C); !unit: truck-load/hour; 
Productivity >= 3.3333; ! 40/12=3.3333 truck-
load/hour; 
Time = 40/Productivity; !unit: hour; 
Cost_A = 100*A*TIME; 
Cost_B = 10000*(B-0.3); 
Cost_C = 30*C; 
Cost_D = 50*Time; 
@GIN(A);@GIN(C); !Restrict A and C to integers; 

 
Again this is a nonlinear mixed integer programming 

problem. The minimum cost of $16,840 is attained by using 
11 trucks, a 60% service rate, and five dump positions. The 
predicted average productivity based on these parameters is 
3.3601 truck-loads/hour, or 0.056 truck-loads/minute. 

6.6 Validating the Solution in Simulation Model 

To validate if the solution obtained from 6.5 is close to the 
estimated productivity from the simulation model, it is 
necessary to conduct one more simulation run with the best 
combination of resources. The average productivity ob-
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tained by using A = 11, B = 0.6, C = 5, and D = 1 is 0.0836 
truck-loads/minute or 5.02 truck-loads/hour, which is sig-
nificantly higher than 3.36 truck-loads/hour from the fitted 
model. This suggests the regression model does not resem-
ble the simulation model very well. 

One of the possible reasons is due to the assumption of 
three or higher interactions are negligible. In fact, both Ta-
ble 5 and Figure 3 show the effect of the three-way interac-
tion ABC is ranked fifth and could be important too. By in-
cluding this term in the model, the fitted equation becomes 

 
ˆ 0.0194 0.0002 0.0495 0.0023

0.005 0.0002 .
y A B C

BC ABC
= + + −
+ +  (7) 

 
The output of LINGO by using the new fitted equation 

shows the minimum cost of $9,619 is substantially lower 
and can be obtained by using five trucks, 58.69% service 
rate, five dump positions, and one hopper. The estimated 
productivity of 3.33 truck-loads/hour is much closer to the 
3.47 truck-loads/hour from the simulation model, which 
shows the prediction of the fitted equation improves by in-
cluding the three-way interaction ABC in the model. 

One might argue that the effect of interaction AC is 
close to ABC and it should be included in the model too. 
By the law of parsimony, also known as Occam’s Razor, a 
simpler or more parsimonious model that describes the 
data adequately is preferable to a more complicated one 
which leaves little of the variability unexplained (Dobson 
2001, p. 34). Since the estimate from the fitted equation is 
good enough, there is no need to add one or more terms to 
increase the complexity of the model without improving 
the accuracy too much. 

7 REMARKS 

The fitted regression is a simplified equation used to model 
the relation between the predictor variables and the response 
variable. Sometimes, the estimates may not resemble the 
output from the simulation model. In addition, due to the 
characteristics of the objective function and the constraints, 
there is no guarantee that the global optimal solution is 
available in a nonlinear programming problem, which is the 
case here. However, the local optimal solutions can still be 
viewed as the best solution under the constraints of the com-
puting power and the optimal searching methods. Relatively, 
the appropriateness of the regression model is more influen-
tial, as shown in the case study. By including the three-way 
interaction in the model, the minimum cost significantly de-
creased from $16,840 to $9,619. This implies the outcome of 
the mathematical programming could be very sensitive to 
the appropriateness of the regression model. Therefore, the 
modeler should be very cautious when making assumptions 
as well as performing diagnostics and remedial measures for 
the regression models. 

More often than not, the fitted regression models are not 
in the form of first-order linear regression. Interactions and 
 
sometimes high-order linear terms are present in the fitted 
equations, which makes model interpretation difficult. In 
addition, as the complexity of the fitted equations increases, 
the global optimal solutions for the mathematical program-
ming model may not exist. Therefore, it is always desirable 
to follow the law of parsimony to strike the balance between 
the simplicity and the predictability of the fitted models. 

8 CONCLUSIONS 

A methodology combining simulation, design of experi-
ment, regression analysis, and mathematical programming 
is proposed to provide a systematic and analytical approach 
to analyze construction processes. A hypothetical case 
study was used to demonstrate the procedure of imple-
menting the proposed methodology and to highlight certain 
issues worth noting when using this methodology. 

Generally, the proposed method has the following 
advantages. 

 
1. The methodology can identify the focal points of 

the problem. The use of planned simulation ex-
periments is able to answer the questions of inter-
est effectively. By estimating the effects of all of 
the factors and their interactions, the criticality of 
each effect can be ranked, which provides a start-
ing point for management to redesign the process. 
For illustration purposes, the process in the case 
study is relatively simple and not many factors 
were involved. Therefore, the effectiveness of the 
proposed method is not obvious and it is possible 
to identify the most important factors by intuition 
or by observing run data. However, when the 
processes of interest have more factors, say 10, 
then it is practically impossible and unscientific to 
manually identify the factors that have a signifi-
cant impact on productivity. In addition, there is 
no way to assess the interaction effects by just 
looking at the simulation outputs. 

2. The methodology can integrate cost, time, and 
other constraints by using mathematical pro-
gramming. Existing construction simulation soft-
ware packages emphasize analyzing construction 
processes to improve productivity. Constraints on 
resources, time, and costs are only briefly ad-
dressed. Regression analysis and mathematical 
programming are used to exploit the benefits of 
construction simulation and at the same time take 
into account the constraints that cannot be explic-
itly modeled in simulation. 

3. The obtained optimal solution sets a goal for con-
tinuous improvement. By comparing the best 
combination of resources maximizing the produc-
tivity with the current status and considering the 
existing constraints, a guideline for process im-
provement can emerge. Figure 5 is the contour 
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plot based on the final fitted equation when C is 
set at 5. All of the combinations of factors A and 
B that lead to the same productivity are linked by 
a contour line. In the case study the highest pro-
ductivity that can be achieved is 0.08 truck-
loads/minute, which is represented by the line on 
the top-left corner of the plot. Suppose the current 
status of the process is at point A. To achieve the 
highest productivity, there are several options, as 
shown in the figure. Management can consider the 
resource availability, as well as time and cost con-
straints to decide which option is more appropri-
ate. This technique is called the Response Surface 
Method (RSM), which has been widely used in 
optimizing manufacturing processes. Finally, in 
light of the difference between simulations and 
field operations, the optimal solution may not be 
achievable. However, it can be viewed as a goal 
that management can continuously redesign the 
process in order to achieve. 

 

 
Figure 5: Contour Plot for Factors A and B, Given C is 
Fixed at 5 Dump Positions 

REFERENCES 

Box, G., Hunter, W. G. and Hunter, J. S. (1978). “Statistics 
for Experimenters.” John Wiley & Sons, Inc. 

Dobson, A. J. (2001). “An Introduction to Generalized 
Linear Models.” 2nd Ed. Chapman & Hall/CRC Press. 

Halpin, D. W. (1973). “An Investigation of the Use of 
Simulation Networks for Modeling Construction Op-
erations”, Ph.D. thesis, The University of Illinois at 
Urbana-Champaign, Illinois. 

Halpin, D. W., Jen, H., and Kim, J. (2003). “A Construc-
tion Process Simulation Web Service.” Proceedings of 
the 2003 Winter Simulation Conference, S. Chick, P. J. 
Sánchez, D. Ferrin, and D. J. Morrice, eds., 1503 – 
1509. Institute of Electrical and Electronics Engineers, 
Piscataway, New Jersey. 

A 
 
Kelton, W. D., and Barton, R. R. (2003). “Experimental De-

sign for Simulation.” Proceedings of the 2003 Winter 
Simulation Conference, S. Chick, P. J. Sánchez, D. Fer-
rin, and D. J. Morrice, eds., 59 – 65. Institute of Electri-
cal and Electronics Engineers, Piscataway, New Jersey. 

Law, A. M., and Kelton, W. D. (2000). “Simulation model-
ing and analysis.” McGraw Hill, New York, NY. 

Montgomery, D. G. (2001). “Design and Analysis of Ex-
periments.” 5th Ed. John Wiley & Sons, Inc. 

Myers, R. H., and Montgomery, D. C. (2002). “Response 
Surface Methodology: Process and Product Optimi-
zation Using Design Experiments.” John Wiley & 
Sons, Inc. 

Oehlert, G. (2000). “A First Course in Design and Analy-
sis of Experiments.” W. H. Freeman and Company, 
New York. 

Sawhney, A., Bashford, H., Walsh, K., and Mulky, A. R. 
(2003). “Agent-based Modeling and Simulation in Con-
struction.” Proceedings of the 2003 Winter Simulation 
Conference, S. Chick, P. J. Sánchez, D. Ferrin, and D. J. 
Morrice, eds., 1541 – 1547. Institute of Electrical and 
Electronics Engineers, Piscataway, New Jersey. 

Tommelein, I. D. (1998). “Pull-driven Scheduling for Pipe-
Spool Installation: Simulation of Lean Construction 
Technique.” ASCE, Journal of Construction Engi-
neering and Management, 124 (4) 279-288. 

Wu, J. and Hamada, M. (2000). “Experiments: Planning, 
Analysis, and Parameter Design Optimization.” John 
Wiley & Sons, Inc. 

AUTHOR BIOGRAPHIES 

SHIHYI WANG is a Ph.D. candidate in the Division of 
Construction Engineering and Management and a Master 
student in Department of Statistics at Purdue University 
in West Lafayette, Indiana. He received a B.S.C.E. degree 
from National Chiao-Tung University at Hsinchu, Taiwan 
in 1999 and M.S.C.E. from Purdue University in 2000. 
He is currently a research assistant for the Construction 
Safety Alliance project. His email address is <wang16@ 
purdue.edu>. 

DANIEL W. HALPIN is Professor and Head of the Divi-
sion of Construction Engineering and Management at Pur-
due University in West Lafayette, Indiana. He received a 
B.S. degree from the U.S. Military Academy at West Point 
in 1961. He received M.S. and Ph.D. degrees in Civil En-
gineering from the University of Illinois in Champaign in 
1969 and 1973 respectively. He was on the faculty at 
Georgia Tech (1973-1985), and held the A. J. Clark Chair 
Professor Position at University of Maryland (1985-1987). 
He developed the CYCLONE methodology for construc-
tion simulation. He has received many awards, including 
the Huber and Peurifoy Awards, for his contributions to 
computer applications in civil and construction engineer-
ing. His email address is <halpin@ecn.purdue.edu> 


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	01: 1252
	02: 1253
	03: 1254
	04: 1255
	05: 1256
	06: 1257
	07: 1258
	08: 1259


