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ABSTRACT 

Hierarchical production planning provides a formal bridge 
between long-term plans and short-term schedules.  A hy-
brid simulation-based production planning architecture 
consisting of system dynamics (SD) components at the 
higher decision level and discrete event simulation (DES) 
components at the lower decision level is presented.  The 
need for the two types of simulation has been justified.  
The architecture consists of four modules: Enterprise-level 
decision maker, SD model of enterprise, Shop-level deci-
sion maker and DES model of shop.  The decision makers 
select the optimal set of control parameters based on the 
estimated behavior of the system.  These control parame-
ters are used by the SD and DES models to determine the 
best plan based on the actual behavior of the system.  High 
Level Architecture has been employed to interface SD and 
DES simulation models.  Experimental results from a sin-
gle-product manufacturing enterprise demonstrate the va-
lidity and scope of the proposed approach. 

1 INTRODUCTION 

All decisions in a manufacturing enterprise involve interac-
tions between multiple departments or units, which are 
sometimes spread across geographic locations.  There are 
no isolated decisions taken by any single department.  For 
effective management of the enterprise, the global conse-
quence of local decisions needs to be estimated.  Global 
consequence refers to the impact of the policy decision of a 
department on both the policy selection of other depart-
ments and the future behavior of the entire enterprise.  For 
example, the optimal order-quantity level, which is deter-
mined by the assembly department,  influences (and is in-
fluenced by) the cycle time, the mode of transportation, 
shipment size and capacity requirements, all of which are 
determined by other departments. 
 Production planning is fundamental to the operation of 
a manufacturing enterprise.  The basic problem is to de-
termine the type and quantity of the products to produce, to 
meet uncertain demand in the future time periods.  This 
problem can be formulated analytically, but it often results 
in very large-scale mathematical programming models.  
The computational requirements to solve such a centralized 
planning problem, which makes both long-term and short-
term optimal decisions, are excessive.  Hence it becomes 
necessary to develop alternate techniques which are com-
putationally tractable and able to develop near optimal so-
lutions.  Decomposition techniques are one way to solve 
such large-scale models.  A Hierarchical Production Plan-
ning (HPP) approach proposed by Hax and Meal (1975) is 
one such technique that separates the planning problem 
into distinct sub-problems based on the length of planning 
horizon, time and cost.  The sub-problems correspond to 
different hierarchical levels of the manufacturing enter-
prise.  They are solved such that the solution of the lower-
level problem is constrained by the solution of the preced-
ing higher-level problem. 
 Fundamental advantages of the hierarchical approach 
to production planning (Vicens, Alemany, Andrés, and 
Guarch 2001) include reduction of complexity, gradual ab-
sorption of random events, increased insight due to the use 
of aggregated figures, reduced need for detailed informa-
tion, and better forecasting. 
 Numerous HPP models have been presented in the lit-
erature.  Typically HPP is modeled as a two-level hierar-
chy – aggregate-planning level and detailed-scheduling 
level.  The aggregate-planning level includes Master Pro-
duction Scheduling (MPS) and Material Requirements 
Planning (MRP).  At this level, three types of information 
aggregation are performed: parts to part families, time pe-
riod to aggregate time periods, machine production rates 
(or capacity) to shop production rates (or capacity).  The 
solution techniques depend on the scope and the specific 
manufacturing scenario.  They include heuristics based on 
linear programming (LP) (Mehra, Minis, and Proth 1996; 
Qiu and Burch 1997), stochastic programming (Sethi, 
Zhang, and Zhang 2000), Enterprise Resource Planning 
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(ERP) tools (Das, Rickard, Shah, and Macchietto 2000; 
McKay and Wiers 2003), and optimization coupled with 
simulation-based evaluation (Byrne and Bakir 1999).  
Some of the drawbacks associated with such methods are 
given below: 

 
• The use of deterministic data at the aggregate 

level does not account for the stochastic evolution 
of the actual system.  Usually worst-case per-
formance data are used at the aggregate level, 
leading to feasible but not optimal solutions.  In 
addition, the dynamics of the underlying system 
are absent. 

• Models assume infinite capacity and hence per-
formance is assumed to remain constant irrespec-
tive of workload.  This implies that Little’s Law 
(which states that Work-in-Progress = Through-
put * Cycle time) may be violated. 

• Major drawback of the techniques is that they re-
quire reruns in case of unexpected external or in-
ternal events (Vicens, Alemany, Andrés, and 
Guarch 2001).  Any exception (such as machine 
failures, new order arrivals) that endangers the va-
lidity of the current production plan leads to the 
regeneration of the entire plan.   

• The solution of the models are optimal and valid 
only when the assumptions are true.  Since the 
dynamics of the actual system is not accounted 
for, optimality is certainly questionable. 

• The models are suitable only for simple planning 
scenarios.  For more realistic scenarios, the se-
quential- solution approach may lead to sub-
optimality, inconsistency, or infeasibility (Vicens, 
Alemany, Andrés, and Guarch 2001). 

 
Similar kinds of uncertainties or disturbances occur at 

both the planning and scheduling levels.  However, they are 
handled independently at each level.  The interaction be-
tween the two levels are rarely considered.  This is supported 
by past literature, which can be classified into two distinct 
areas: handling uncertainty in aggregate-planning models 
(Sethi, Zhang, and Zhang 2000; Byrne and Bakir 1999) and 
handling uncertainty in detailed-scheduling models (Pira-
muthu, Shaw, and Fulkerson 2000; Maione and Nayo 2001).  
These researchers deal with disturbances such as machine 
breakdowns, change in job priority, new order arrivals, and 
process time variation – but at one level or the other.  This 
motivated our research to look at the impacts of planning 
level decisions on the scheduling function and scheduling 
level decisions on the planning function.   

In this paper, we consider a manufacturing enterprise 
producing multiple products over multiple time periods, 
where each product is made up of a number of component 
parts.  The focus here is to develop an integrated produc-
tion plan and schedule for the enterprise.  The manufactur-
ing enterprise, which has a single fabrication facility, is 
modeled at two levels: an aggregate level and a detailed 
level.  The aggregate model is used to generate the optimal 
assignment of production capacities to products over mul-
tiple time periods.  These capacities are fed forward to the 
detailed model, which generates a daily production sched-
ule.  A feedback mechanism is employed so that the mod-
els are linked in time and space.  The aggregate-level plan-
ning decisions are evaluated using a system dynamics (SD) 
model, in which the production activities are aggregated as 
flow rates over time.  The detailed-level scheduling deci-
sions are evaluated using a discrete event simulation (DES) 
model that captures the uncertainties in production.  

A brief overview of the architecture of the integrated 
simulation environment for HPP along with a feasibility 
study was presented in Venkateswaran and Son (2004a).  
In this paper we provide more details about the architec-
ture, specify the integration strategies, and discuss some of 
our experimental results. 

2 PROPOSED ARCHITECTURE 

We propose a two level HPP architecture, which is shown 
in Figure 1.  The following four modules are identified in 
the architecture: 
 

• Enterprise-level production planner 
• Enterprise-level decision maker, 
• System dynamics model of the enterprise. 

• Shop-level production scheduler 
• Shop-level decision maker, 
• Discrete event simulation model of the shop. 

 
The justification for using both a SD model and a DES 
model is presented below.  We also give a detailed descrip-
tion of the different modules and their interactions. 

The enterprise-level planner uses aggregated informa-
tion that is generated by the shop-level scheduler.  Four 
types of aggregation are performed: component parts into 
products; time period (minutes, hours) into aggregate time 
periods (weeks); machine production rates into shop produc-
tion rate; part inventory into product inventory.  We found it 
necessary to add the last one to the traditional approaches 
described above.  The long-term forecasting and customer 
order arrivals are external to the scope of the current system. 

The enterprise-level planner develops the production 
plan for products, and the shop-level scheduler develops 
the component-parts schedule.  The enterprise-level deci-
sion maker selects the optimal set of control parameters 
based on: (1) the forecasted demand over the entire time 
horizon, and (2) the estimated product cycle time.  The SD 
model captures the production and inventory dynamics of 
the enterprise, which are dictated by the decisions made by 
the shop scheduler.  These control parameters are used by 
the SD model to determine the planned production order
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Figure 1: Architecture of Hybrid Simulation-Based Production Planning System 

 

quantity to be released to the shop each period (a week).  
Further, the weekly production order release quantity of 
product is converted into daily order quantities and sent to 
the DES model of the shop.   

The DES model captures the detailed operational pro-
cedures of the shop.  The production order release quantity 
from the SD model is translated into release quantity of 
component parts whose flow through the shop is governed 
by queue rules or control policies.  A shop-level decision 
maker determines the optimal control policies based on the 
estimated production order release quantities (obtained from 
enterprise-level decision maker).  The daily update of work-
in-process (WIP), inventory and average cycle time of prod-
ucts is fed back to the SD model from the DES model. 

Feedback control loops are employed by the enterprise-
level planner and shop-level scheduler to monitor the per-
formance of the simulation models.  The enterprise-level de-
cision maker performs sensitivity analysis to determine the 
limits of variables (production completion rate of products 
and demand) for which the control parameters are still opti-
mal.  The performance of the SD model is monitored con-
tinuously; when the limits are crossed, the enterprise-level 
decision maker is invoked again to determine the new opti-
mal control parameters.  In a similar fashion, the shop-level 
decision maker monitors shop (DES model) performance 
and selects new control policies, as required.  The shop per-
formance is affected by disturbances such as machine fail-
ures and process time variations, which can be easily incor-
porated in to the DES model. 
2.1 Why SD for Enterprise-level Simulation Model? 

SD simulation consists of three core factors (Reid and Kol-
jonen 1999): (1) the structure of the system, expressed in 
the form of feedback-based causal loop diagrams, (2) the 
frequency and duration of time delay in the feedback loops, 
and (3) the amplification of the information flows through 
the feedback structure.  The behavior of the system is 
modeled as an interrelationship between the core factors.  
Thus, SD provides a framework to understand the opera-
tions of complex dynamic systems and view the impact of 
decisions on the entire enterprise. 

In this case, the decision whose enterprise-wide impact 
must be assessed is the aggregate production plan.  Tradi-
tional mathematical programming approaches to generate 
this plan use production capacity and demand forecasts as 
constraints, with both assumed to be known and fixed for 
each time period.  However, making a prediction of the 
manufacturing system capacity at the beginning of each pe-
riod is very difficult, often resulting in either overly opti-
mistic or overly pessimistic constraints.  This can result in 
sub-optimal or infeasible plans. 

SD presents a natural way to model the dynamics as-
sociated with the production rates in the system.  The inter-
relationships between the production rates with inventory, 
labor, and capacity utilizations can be explicitly modeled.  
The identification of the key factors, their relationships, 
and the time delays among those relationships can be cap-
tured in the causal feedback loops.  Simulating such  loops 
can provide insight into important causes and effects, 
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which can lead to a better  understanding of the dynamic 
and evolutionary behavior of the system as a whole.  
Hence, SD helps develop a time-based plan suitable to the 
actual dynamic system and not a predetermined plan based 
on a ‘virtual’ deterministic system analyzed by LP models. 

2.2 Why DES for Shop-Level Simulation Model? 

DES is typically used for performance data collection 
where important entities such as parts and resources are 
modeled using state variables that change only at discrete 
points in time, called event times.  The simulation model 
advances by executing specific procedures at these event 
times and terminates when all events have passed.  DES is 
a widely used method for studying the design and opera-
tions of manufacturing systems.  There are two main rea-
sons.  First, DES can describe the most complex manufac-
turing systems and include stochastic elements, which 
cannot be described easily by mathematical or analytical 
models.  Second, DES allows one to track the status of in-
dividual entities and resources in the facility and estimate 
numerous performance measures associated with those en-
tities.  These properties are especially important for the de-
tailed scheduling level. 

Traditional mathematical programming approaches to 
solving the detailed-level scheduling problem assume con-
stant  processing times, while in reality they are a function 
of the tool conditions, depth of cut, feed rate, etc.  The sto-
chastic events such as breakdowns, process time variations, 
deadlock, and new order arrivals cannot be considered.  
Hence, any violation of the aggregate plan by the detailed 
model or the violation of plan upon execution means that 
the entire HPP needs to be rerun. 

As noted above, DES can model the uncertainty and 
unforeseen disturbances typical of manufacturing systems.  
Additionally, with some modifications, DES can even use 
real-time data collected from the shop floor.  Hence, we 
believe that DES is the best choice to model accurately the 
required level of detail to ensure that the developed sched-
ule is valid and the predetermined production plan can be 
met.  Furthermore, the models can be changed easily and 
run quickly to reflect changes that occur in the real shop.  
When problems occur, the SD model can be informed im-
mediately, as described below. 

3 FUNCTIONALITY OF THE MODULES 

Four types of modules are identified in the architecture 
(see Figure 1).  The functionalities of the modules are pre-
sented in the following subsections. 

3.1 Enterprise-Level Decision Maker 

This module determines the optimal control parameters for 
use in the SD model.  The control parameters or decision 
variables are the weights for the WIP factor and for the in-
ventory factor; these weights are explained below.  We give 
a sample formulation where the objective function (1) strives 
to achieve the minimum cost assignment of the production 
quantities of multiple products over the time horizon. 
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The planned production quantity (POit) is represented as a 
function of the work-in-process adjustment (AWIPit), in-
ventory adjustment (AIit) and demand (Dit) (Equation 2).  
Equation (3) represents the WIP adjustment, with α as the 
weight for WIP factor.  Equation (6) represents the inven-
tory adjustment, with β as the weight for inventory factor.  
Equations (4)-(5) are the WIP balance equations and (7)-
(9) are inventory balance equations.  Production quantity 
(Xit) is further constrained by the expected performance 
(10) and the available capacity (11)-(12).  The projected 
demand (Dit) over the time horizon will be the ‘driving 
constraint’ of the model.   
 
 itititit DAIAWIPPO ++=  (2) 
 ( )ititiit WIPDWIPAWIP −= α  (3) 
  iitit KDDWIP ×=  (4) 
  itititit XPOWIPWIP −+= −− 11  (5) 
 ( )ititiit IDIAI −= β  (6) 
 itit DDI =  (7) 
 itititit DXII −+= −1  (8) 

 −+ −= ititit III  (9) 
 iitit KWIPX ÷= −1  (10) 
 titit TCpX ⋅≤  (11) 

 1
1

=∑
=

N

i
itp  (12) 

 
In the above formulation, i is the index of products 
{1…N}; t is the index of time periods {1…T} in weeks; cit, 
hit, sit are the production, holding & shortage costs of prod-
uct i in period t; Xit is the production quantity of product i 
in period t; POit is the production order release of product i 
in period t; AWIPit is the WIP adjustment of product i in 
period t; DWIPit is the desired WIP of product i in period t; 
WIPit is the actual WIP of product i in period t; AIit is the 
inventory adjustment of product i in period t; DIit is the de-
sired inventory of product i in period t; Iit is the inventory 
of product i at the end of period t with Iit

+ and Iit
- indicating 

positive and negative inventory; Ki is the estimated cycle 
time of product i; TCt the total available capacity at period 
t; pit the percent capacity allocated for product i in period t; 
and Dit is the projected demand of product i in period t. 
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 The output of the decision maker are two weights: the 
weight for the WIP factor (α), and the weight for the inven-
tory factory (β).  They are supplied to the SD model for use 
in calculating the weekly production order quantities.  Sen-
sitivity analysis on the values of α and β can be performed 
with respect to changes in the demand and the manufactur-
ing cycle time.  Limiting values of the demand and the cy-
cle time, for which α and β values are optimal is deter-
mined.  The performance of the SD model is continuously 
monitored and when the performance crosses the prede-
fined limits, the enterprise-level decision maker is invoked 
to determine the new optimal values of α and β. 

3.2 SD Model 

The SD model simulates the production dynamics in-
volved in the execution of the production plan.  The dy-
namics are the result of the interrelationships between the 
different variables illustrated by the causal loop diagram in 
Figure 2.  The enterprise decision maker supplies the in-
puts α and β, which are used in the calculations of normal-
ized WIP (NWIP) and normalized inventory (NINV), re-
spectively (Figure 2).  Under conditions when the demand 
and production rates of the SD model are same as those es-
timated in the enterprise decision maker, then the produc-
tion order release rate will match the values calculated in 
Equation (2).  To accommodate variations in the demand 
and production rates, the production order release quantity 
is determined by the SD model based on the current dy-
namics of the system.  The production rate (PD) can be 
more accurately represented as follows: 

 
PR = f(scheduling rules, resource status, WIP, CT). 
 

DES model 

SD model 

 
Figure 2: Causal Loop Diagram of the SD Model 

 
Hence, at each integral time step of one day, the production 
order release to shop is sent to the shop-level DES model, 
and the current WIP, current inventory and average cycle 
time is received as input from the DES model.   
3.3 Shop-Level Decision Maker 

The shop-level decision maker determines the optimal 
scheduling rules to be used within the shop based on esti-
mated production release quantities of products.  In gen-
eral, the schedule generated using optimization techniques, 
though provides optimal solution, cannot be directly exe-
cuted in the shop floor.  This prompted the use of dispatch-
ing rules and dispatching rule-based heuristic to decide as 
to which job is to be loaded next on a machine.  The use of 
such rules has been shown, using simulation studies, to 
provide near optimal solutions.  Adaptive scheduling tech-
nique is used in which the scheduling rules are tailored to 
the current state of the system.  Techniques that incorpo-
rate a learning methodology for relating the various system 
parameters in determining the appropriate schedule are 
used for construction of the state-dependent schedule.  The 
functions of the shop-level decision maker includes: 
 

• Selection of a complete set of scheduling rules, 
• Appropriate mapping of states to the scheduling 

rules, 
• Ability to learn from the past decisions. 

 
The queue rules thus selected are supplied to the DES model 
for use in determining the flow of the component parts. 
 Disturbances within the shop, such as machine break-
down or process time variations, cause deviations from the 
planned schedule.  The performance of the DES model is 
monitored by the shop-level decision maker and when it 
crosses the predetermined threshold, new control policies 
are determined by the shop-level decision maker. 

3.4 DES Model 

The DES model represents the detailed operations includ-
ing material processing, transfer and storage activities.  It 
receives as inputs the production order release quantity of 
the product and the actual sales quantity of the product 
from the SD model.  The production order release quantity 
of product is translated into release quantity of component 
parts.  The flow of parts through the shop is governed by 
the control policies obtained from the shop-level decision 
maker.  The current levels of inventory, WIP and cycle 
times are given as feedback to the SD model.  

4 EXPERIMENT AND RESULTS 

A manufacturing enterprise producing a single product con-
sisting of three part components, A, B and C is considered.  
The product is assembled from one unit each of components 
A and C and two units of component B.  Infinite supply of 
components is assumed available.  The manufacturing shop, 
operating 24 hours a day, consists of 6 machines of unit ca-
pacity each.  To account for real time variations in produc-
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tion, the processing time on each machine is represented as 
arbitrarily selected random distributions.  Inter-machine part 
routing times are ignored. 

4.1 Implementation Infrastructure 

The enterprise-level SD model, as shown in Figure 3 is 
modeled using PowerSim®.  The time units of simulation 
are in weeks.  The time step of integration is chosen to be 
one day, which is small enough to capture the time frame 
of interest in the enterprise-level planner.  The shop level 
DES model is built using Arena®.  At each time step of the 
SD model, the production order release quantity and sales 
quantity are to be sent to the DES model and the current 
values of WIP, inventory and cycle time are to be obtained 
from the DES model. 
 

 
Figure 3: System Dynamics Model of the Enterprise 

 
 The interfacing between the SD (PowerSim®) and DES 
(Arena®) models has been enabled using the High Level 
Architecture’s (HLA) RunTime Infrastructure (RTI) (Kuhl, 
Weatherly, and Dahmann 1999).  The distributed Manufac-
turing Simulation (DMS) adapter (McLean and Riddick 
2000) developed by NIST has been employed to interface 
the simulation models with the HLA/RTI.  Previous work in 
using HLA/RTI to integrate multiple DES models has been 
successfully carried out by Venkateswaran and Son (2004b).  
To the best of our knowledge, this is the first time to suc-
cessfully interface SD and DES models. 
 The sequence of interaction between the SD and DES 
models is illustrated in Figure 4.  The DES model computes 
and sends the WIP, Inventory and average Manufactur-
ing_Cycle_Time to the SD model (Figure 3).  Upon receiv-
ing the data, the SD model integrates a time step and the rate 
of change of the variables Production_Release_Rate and 
Sales_Rate (Figure 3) is sent to the DES model.  The prod-
uct production release quantity received by the DES model 
is converted into component parts production quantities and 
released to the shop.  The DES model is then simulated for a 
time period of 1 day, after which the feedback is sent to the 
SD model.  The exchange of data between the models is 
achieved by transmitting eXtensible Markup Language 
(XML) based messages via the HLA/RTI. 
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Figure 4: Sequence of Interaction between the SD and DES 
Models via HLA/RTI Platform 

4.2 Selection of Decision Variables 

The enterprise-level decision maker formulates and solves 
the non-linear program for a single product as specified by 
Equations (1)-(12) using LINGO®.  The demand for product 
is estimated to be 100 units/ week.  The cycle time is esti-
mated to be 1.8 hours based on preliminary runs of the DES 
model of the shop.  Upon solving the optimization program, 
the optimal values of control parameters α and β were found 
to be 1.  These values of α and β are used in the SD model.   
 Since only a single product is handled by the shop, the 
queue rule First-In-First-Out was found to be the optimal 
control policy for all the machines.   

4.3 Results 

An integrated hybrid simulation model of the enterprise 
consisting of SD and DES models has been analyzed.  
Monitoring of the performance and the selection of new 
optimal control parameters at the enterprise and shop levels 
by the corresponding decision makers is ongoing work.  In 
this paper, the interaction between the SD and DES models 
and the hybrid simulation infrastructure is validated. 
 The behavior of the hybrid simulation system in re-
sponse to different demand trends has been analyzed.  Under 
constant demand of 100 units/week, it is found that the 
simulation models reach steady state at week 8, as shown in 
Figure 5.  It is noted that the Customer_Order_Rate, Pro-
duction_Release_Rate, Desired_WIP and Desired_Inventory 
are obtained from the SD model while the Production_Rate, 
Inventory and WIP are obtained from the DES model. Under 
steady state, minor deviations of less than 5% from the Cus-
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tomer_Order_Rate are observed in the Production_Release 
_Rate and Production_Rate.  This is attributed to the process 
time variations within the shop, modeled by DES. 

 The stability of the system is studied under differ-
ent demand patterns.  A step increase of 10% in demand ap-
plied at week 18, resulted in the Production_Release_Rate 
to reach a maximum of 24% and the Production_Rate to 
reach a maximum of 18% (Figure 6).  A rectangular blip in 
demand applied between weeks 18 to 23 resulted in the Pro-
duction_Release_Rate to reach a maximum of 24% and 
minimum of -1% and the Production_Rate to reach a maxi-
mum of 18% and minimum of -8% (Figure 7).  

The above observations (Figures 5-7) indicate that:  
 
• The DES model behaves appropriately in re-

sponse to the decisions taken by the higher level 
SD model, 
 

• The SD model accurately accounts for the behavior 
of the lower level model.  This is evident from the 
slight perturbations in the production_release_rate 
which is influenced indirectly by the produc-
tion_rate from the DES model, 

• The hybrid simulation framework provides a 
seamless integration between SD and DES mod-
els.  Hence, this framework can be used to analyze 
the impact of higher level decision on the lower 
level and vice versa.  Also, a simultaneous study 
of local and global behavior of system is enabled. 

5 CONCLUSION AND FUTURE RESEARCH 

A novel approach in solving the hierarchical production 
planning problem has been presented.  The manufacturing 
enterprise is represented by an enterprise-level production 
 

 

  
Figure 5: Behavior of System in Response to Constant Demand 
  
Figure 6: Behavior of System in Response to Step Increase in Demand 
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Figure 7: Behavior of System in Response to Rectangular Blip in Demand 
 
planner (decision maker + SD model) and a shop-level 
production scheduler (decision maker + DES model).  The 
enterprise-level decision maker selects the optimal set of 
control parameters, that is, weight for WIP and weight for 
inventory.  These control parameters are used by the SD 
model.  The production order release quantity of product 
and the sales per period, calculated by the SD model are 
sent to the shop-level DES model. The current WIP, cur-
rent inventory and average cycle time are received as feed-
back from the DES model.  A shop-level decision maker is 
employed to determine the queue rules or control policies 
to govern the flow of parts within the shop.  Feedback con-
trol loops are employed at the enterprise-level and the 
shop-level to monitor system performance and update the 
control parameters. 
 The first stage of experiments has been conducted us-
ing a single-facility single-product manufacturing enter-
prise.  The interactions between the different modules of 
the hybrid simulation-based architecture have been de-
scribed.  The SD and DES models have been integrated us-
ing HLA/RTI and DMS adapter.  To the best of our knowl-
edge, this work is the first to successfully interface SD and 
DES models.  The validity of the hybrid simulation ap-
proach has been analyzed (Figures 5-7).   
   Work is currently being carried out to enhance and re-
fine the interactions between the modules.  Specifically, 
the selection of appropriate measure of performance for 
use in the feedback control loops; interface of the decision 
makers with the corresponding simulation models; and ex-
tensions to include multiple products.  The performance of 
the proposed hybrid simulation model is to be bench-
marked against existing HPP systems. 

PRODUCT DISCLAIMER 

Certain commercial software products are identified in this 
paper.  This use does not imply approval or endorsement 
by NIST, nor does it imply that these products are neces-
sarily the best available for the purpose. 
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