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ABSTRACT 

There have been recent advances in using queuing relation-
ships to determine lot sizes that minimize mean flowtimes 
when multiple product types are being produced at capac-
ity-constrained resources.  However, these relationships 
assume lot interarrival times are independent, which is not 
the case in most manufacturing scenarios.  This study ex-
amines the performance lot-sizing optimization relation-
ships based on GI/G/1 relationships when lot interarrival 
times are auto-correlated.  Simulation and response surface 
modeling are used to experimentally determine optimal lot 
sizes for a sample problem.  The flowtimes for “optimal” 
lot sizes determined analytically are found to compare 
poorly with with the best flowtimes obtained experimen-
tally.  An approah is then developed that uses feedback 
during simulation to adjust parameters within queuing heu-
ristics that support dynamic lot-size optimization.  Per-
formance using this approach compares well with the best 
performance obtained using the much more difficult ex-
perimental approach.   

1 INTRODUCTION 

The multi-item capacitated lot-sizing problem is important 
in batch production.  Complex work flow configurations, 
changing demand levels and other factors mean that lot in-
terarrival times are stochastic.  When there are setup times, 
lot sizes that are too small will result in very high utiliza-
tions due to excessive machine time dedicated to setups.  
This will cause lot flowtimes to be higher than necessary.  
Lot sizes that are too large will mean that machines are 
dedicated to one part type for long periods of time.  This 
means incoming lots of different part types will have to 
wait excessively long.  This extra queue time also results in 
flowtimes higher than necessary.  Therefore, a tradeoff ex-
ists even in the case of a single part type.  In multiple part 
type scenarios there are also interactions effects between 

 

the different part types.  Therefore finding the best combi-
nations of lot sizes across all part types is difficult. 

Analytical approaches to capacitated lot-size optimiza-
tion have been developed using queuing relationships.  
However, these approaches all assume that lot interarrival 
times are independent.  In other words, there is no auto-
correlation in the arrival stream.  In reality, this is not a 
good assumption.  For example, if lots are being fed from 
one machine to another, the minimum interdeparture time 
from the source machine will be the lot processing time at 
the source machine.  Under high utilization conditions, in-
terdeparture time variability will be low and auto-
correlation will be high.  This means that the lot interarri-
val times to the destination machine will also be auto-
correlated (i.e. they will not be independent).  If there are 
several streams merging at the destination machine, lot in-
terarrival time variability may increase but if each of the 
individual streams is auto-correlated the merged incoming 
stream will still not have independent interarrival times. 
 The objectives of this research are three fold.  The first 
objective is to demonstrate the effects of auto-correlation 
and show why it cannot be ignored.  The second objective 
is to develop a methodology for lot sizing that adjusts for 
auto-correlation effects.  Dynamic performance feedback is 
used to facilitate this.  The final objective is to demonstrate 
the feasibility and effectiveness of this new approach by 
comparing the results to those obtained through 
experimental methods. 

2 LITERATURE REVIEW 

The single machine lot-sizing problem of most practical 
interest is one based on GI/G/1 queuing assumptions.  
However, it is well known that there is no closed form so-
lution for queue time estimation.  Most approximations are 
based on the mean and variance of the interarrival and ser-
vice time distributions.  Examples can be found in Whitt 
(1983) and Buzacott and Shanthikumar (1993).  Although 
these approximations are generally presented in the context 
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of having entities of single items in queue, they also apply 
when the entities are product lots.  

Finding near, or approximately, optimal lot sizes to 
minimize flowtimes under GI/G/1 assumptions is impor-
tant if we are to apply queuing analysis to real production 
problems, especially where networks of machines are in-
volved.  Lambrecht and Vandaele (1996) dealt with this 
problem for a single product type.  Lot sizing considera-
tions in their research included the time to accumulate lots 
as well as lot flowtimes at the machine.  The solution pro-
cedure was based on a steepest decent search algorithm.  A 
further contribution was the development of flowtime dis-
tributions.  Lambrecht, Ivens and Vandaele (1998) ex-
tended the development of this lot-sizing approach, as part 
of a scheduling procedure called ACLIPS, to multiple 
product types moving through multiple machines.   
Fowler, et. al (2002) also investigated lot-size optimization 
in a multi-product, multi-stage facility by using queuing 
approximations and search techniques.  Enns and Choi 
(2002) investigated lot-size optimization using GI/G/1 as-
sumptions in an MRP environment.  This study used a so-
lution approach based on solving a set of first order differ-
ential equations.  Auto-correlation was not explicitly 
considered in any of these studies.  

3 MODELING A SIMPLE ENVIRONMENT 

A simple problem environment was developed to experi-
ment with lot-size optimization when interarrival times are 
correlated and there are capacity constraints.  This problem 
environment is shown in Figure 1.  There are two outlets at 
which individual customer orders are placed, with each out-
let providing a different product.  The customer order inter-
arrival times at the outlets are assumed to have a coefficient 
of variation of cc,j, where j is the stock keeping unit (SKU) or 
product type.  These customer orders are batched until a 
quantity of Qj orders have been received.  The lot-size orders 
are then released and take some time to arrive at the capac-
ity-constrained resource.  This order placement delay has a 
coefficient of variation of co,j.  When the orders are received, 
they are placed in queue at a single capacity-constrained ma-
chine with one processing stage.  The merged arrival stream 
for the orders has a coefficient of variation of ca.  The ma-
chine manufactures the product to fill the lot-size orders on a 
on a first-come-first-serve (FCFS) basis.  The processing of 
each lot-size order at the capacity constrained machine re-
quires a setup time and a processing time for each unit in the 
order.  The coefficient of variation of lot-size service times 
is designated as cs.  Once the lot-size order has been proc-
essed, the lot of units leaves the machine and is shipped to 
the outlet that placed the order.  The coefficient of variation 
of lot interdeparture times is designated as cd , while the co-
efficient of variation of lot transit times is shown as cf,j.  

The objective is to determine lot size quantities, Qj, 
that will minimize the replenishment time, defined as the 
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Figure 1:  Diagram of Experimental Scenario 

 
time from which a lot-size order is placed to the time it is 
received.  If the lot sizes are too small, there will be too 
many setups incurred at the capacity-constrained machine.  
Utilization will be high and long queue times will result. If 
the lot sizes are too large, the machine will be committed 
to one item type for too long and other orders will have to 
wait longer than necessary, causing average flowtimes to 
increase.  In this scenario, the lot delivery transit times are 
assumed to be independent of lot size and therefore have 
no effect on minimizing replenishment cycle times.  The 
order placement delays do have an impact if these are con-
sidered to be stochastic.  However, this impact is only on 
the queuing delay.  As the variability of order placement 
delays increases, the variability of lot order arrivals to the 
queue will increase and this will cause queue times to in-
crease.  Therefore, optimal lot sizes are simply those that 
minimize the average weighted lot flowtimes at the capac-
ity-constrained machine, defined as the sum of queue times 
and lot processing times.  
 This problem environment is designed to be simple.  
The intent is to allow analysis to be focussed on the per-
formance effects of lot sizing with auto-correlated interar-
rival times.  However, the problem environment can be 
easily extended to model more realistic scenarios.  For ex-
ample, lot order releases could be based on reorder points.  
In this case the reorder points would become another deci-
sion variable and performance would need to evaluated on 
both inventory levels, which are a function of the replen-
ishment cycle times, and delivery performance measures. 

In this research, the problems illustrated are based on 
the following set of assumptions.  The mean demand rates 
at the item types at each outlet, D1 and D2, are assumed to 
be 44 and 50 units per period, respectively.  The customer 
order interarrivals are described by a Poisson process, with 
each order quantity being 1.  Therefore, the coefficients of 
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variation for the order interarrival times, cc,j, are 1.  How-
ever, the lot-size order releases will have a lower coeffi-
cient of variation and will be auto-correlated if the lot size 
exceeds 1.  The order placement delays are all assumed to 
be lognormal with a mean of 5 periods and a standard de-
viation of 1.  Therefore, the co,j values are 0.20.   

The setup times, τ1 and τ2, are assumed to be 0.30 and 
0.20 periods per lot, while the part processing rates,  P1 and 
P2, are 120 and 140 units per period, respectively.  The 
setup and processing times were considered to be determi-
nistic since this simplifies the relationships later used for 
lot-size optimization.  Relationships can also be used that 
treat setup and processing times as stochastic variables but 
adding this complexity does not contribute to the objec-
tives of this research.  The transit times for lot shipments 
from the manufacturer to the retail outlets are also all as-
sumed to be lognormal with a mean of 5 periods and a 
standard deviation of 1.  Therefore, the cf,j values are 0.20.   

4 EXPERIMENTAL LOT-SIZE OPTIMIZATION 

The first stage of analysis was to determine the optimal lot 
size combination, Q1 and Q2, experimentally using dis-
crete-event simulation.  A model was built using ARENA 
5.0. (Kelton, et al., 2002) and experiments were run using 
the Central Composite Design (CCD) shown in Figure 2.  
The corner and axial points for this design were each run 
for two replications, while the center point was run for 10 
replications.  This resulted in a total of 26 runs.  A warmup 
time of 100 periods was used to reach steady-state condi-
tions and data collection continued for 40,000 periods in 
each run.  Common random numbers were used as a vari-
ance reduction technique. 
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Figure 2:  Central Composite Design 

 
 The average lot flowtime results at the capacity-
constrained machine were analyzed using Design Expert 
6.0.  A quadratic model, shown as Equation (1), fit the results 
nicely.  Lack-of-fit was not significant at the 95% confidence 
level and the resulting model had an R2 value of 93.44%.   
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 The response surface generated by this model is shown 
in Figure 3.  It is obviously quite flat through some lines of 
orientation through the optimum, indicating there will be a 
variety of lot size combinations performing well.  Figure 4 
shows a contour plot of the surface around the optimal. 
 The optimizer in Design Expert was used to deter-
mine the lot size combinations to minimize the mean flow-
times (Montgomery, 2001).  These values were found to be 
139 and 101, with a predicted minimum average flowtime 
of 1.97 periods per lot.  This optimal lot size combination,  
was used in running five additional replications.  The aver-
age flowtime was 1.966, the observed ca value was 0.721, 
and the utilization was 0.918. 
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Figure 3:  Response Surface for Flowtimes 
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Figure 4:  Contour Plot of Flowtimes 

 
In addition, the actual lot interarrival time data was 

collected so that auto-correlation could be evaluated.  Fig-
ure 5 shows a typical example of a correlogram created us-
ing Minitab 14 (Montgomery, 2001).  It is obvious that the 
lot interarrival times are highly auto-correlated. 

5 GI/G/1 LOT-SIZE OPTIMIZATION  

Lot-sizing relationships to minimize mean lot flowtimes or 
queue times have been developed in previous research.  
However, these are based on restrictive assumptions about 
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Figure 5:  Correlogram of Lot Interarrival Times 

 
the interarrival times.  If general interarrival time distribu-
tions are used, they are usually based on the assumption of 
independent arrivals.  This is clearly not the case in many 
applications involving lot sizes.  Therefore, it is necessary 
to evaluate if using these relationships still provide reason-
able flowtime estimates.  Good estimates of flowtimes fa-
cilitate finding optimal lot sizes that minimize flowtimes. 
 When the lot interarrival time distribution is assumed 
to be general, it is usually satisfactory to describe it in 
terms of the first two moments, the mean and standard de-
viation.  In this case, the following approximation is often 
suggested to estimate mean flowtimes, W, at a single ma-
chine (Whitt, 1983). 
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where Wq is the weighted mean time in queue, x  is the 
weighted mean lot service time, ca is the coefficient of varia-
tion for lot interarrival times, cs is the coefficient of variation 
for lot service times and ρ is the machine utilization rate. 
The subscript t indicates values are for the current time, if 
the parameters of the system change through time.  This re-
lationship is based on steady-state GI/G/1 queuing assump-
tions, with interarrival times being independent. 
 When the entities in queue represent lots of parts, the 
weighted mean lot service time, including setup times, for 
n part types processed on the machine is given by the fol-
lowing, 
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where j is the part type index, Dj is the demand rate, Qj is 
the part type lot size, Pj is the part processing rate, and jτ  
is the lot setup time. 
 The utilization rate, including setup times, is then 
given by the following. 
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This value is constrained to be less than 1 under steady-
state conditions. 
 If it is assumed the lot setup times and part processing 
times are deterministic, the squared coefficient of variation 
for the lot service times is expressed as follows, 
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 The objective is to solve for the lot sizes, Qj

*, that will 
minimize the lot flowtimes.  This can be done by taking the 
partial differential of Equation (2) with respect to each Qj, 
setting the resulting set of equations equal to 0 and then 
solving them simultaneously for Qj

*  (Enns and Choi, 2002).  
The resulting set of equations is shown as Equation (6). 
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This set of equations can be readily solved using various 
software packages, such as the Solver in Excel. 

When the simulation was run with the optimal lot sizes 
based on the response surface model developed previously, 
a ca value of  0.721 was observed.  If the this value is used 
in Equation (6), the best lot sizes are found to be 159 and 
158, with a predicted flowtime of 4.085.  These lot sizes 
are significantly larger than the optimal lot sizes of 139 and 
101 obtained experimentally in the previous section.  
Therefore, we conclude that violating the assumption of 
independence cannot be ignored when optimizing lot sizes 
with auto-correlated lot interarrival times. 

While it is possible to obtain optimal lot sizes experi-
mentally, this is impractical in real batch production envi-
ronments.  As well, the present analysis reveals it is insuf-
ficient to simply observe the lot interarrival coefficient of 
variation, ca, and compute the optimal lot sizes using 
GI/G/1 relationships.  Therefore, development of a practi-
cal approach that uses queuing relationships but takes auto-
correlation into account is desirable. 

6 DYNAMIC LOT-SIZE OPTIMIZATION  

It is difficult to deal with the problem of auto-correlated 
data analytically.  Auto-regressive models can be used to 
analyze the behaviour but queuing relationships that allow 
lot-size optimization with correlated data have not been 
developed.  Therefore, an alternative approach is investi-
gated.  In this approach it is assumed the GI/G/1 relation-
ships might prove satisfactory for lot-size optimization if ca 
could be replaced by some other suitable parameter which 
is not actually the coefficient of variation of the interarrival 
times.  In other words, it is assumed the form of Equation 
(2) is suitable and that Equation (6) could be used to find 
near optimal lot sizes if appropriate adjustments could be 
made to the parameter related to lot interarrival times, ca.  
This adjusted parameter will be designated as c’a. 
 The strategy is to use a dynamic feedback approach, 
implemented in a test bed where ARENA is linked to 
Excel through the use of Visual Basic for Applications 
(VBA).  This involves taking the terms in Equation (2) re-
lated to Wq,t, replacing ca  with c’a, and rearranging them as 
shown in Equation (7). 
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A dynamic estimate of queue time, Wq,t, can be ob-
tained using exponential smoothing.  Every time a lot is 
completed at the resource, the observed queue time for the 
lot is used to update Wq,t.  This value is then fed over to the 
Excel spreadsheet program where Wq,t is plugged into 
Equation (7), along with the current values of tx , tρ  and 
cs,t.  The value of c’a,t, which might be termed the implied 
lot interarrival time coefficient of variation, is then solved 
for.  In other words, this adjusted coefficient of variation 
value is the one that would result in the observed flow-
times, given independent lot interarrival times.  This im-
plied lot interarrival time coefficient of variation, c’a,t, is 
then used in solving for the current optimal lot sizes, Q*

j,t, 
using Equation (6).  As well, the values of tx , tρ , and cs,t 
are updated, based on the new Q*

j,t values.  Equations (3)-
(5) are used for this purpose.  Finally, the new lot sizes are 
dynamically fed back to the ARENA simulation program 
to determine the order quantity for any new order releases.   

This feedback approach for dynamic lot sizing was ap-
plied to the previous problem. A smoothing constant of 0.05 
was used and five replications were run, using a warmup pe-
riod of 100 and data collection over 40,000 time units. 

The average c’a value used in lot size computations 
was 0.355, which is considerably less than the observed ca 
of 0.695.  Figure 6 shows a typical plot of the dynamic c’a 
values through time.  The time-average values of Q*

i.t were 
120.65 and 139.95, respectively.  Figure 7 shows a typical 
plot of the dynamic lot sizes.  The average lot queue times, 
Wq,t, and lot flowtimes, Wt , were 0.767 and 2.018.  The av-
erage utilization was 0.906. 

The observed mean lot flowtimes using the dynamic 
lot sizing approach based on feedback were very close to 
the mean lot flowtimes obtained using the optimal lot sizes 
determined experimentally.  The flowtime value of 2.018 
obtained using dynamic lot sizing is around 2.6% higher 
than the flowtime value of 1.966 obtained using static lot 
sizes of 139 and 101.  Therefore, it can be concluded that 
the dynamic lot sizing approach works well and is suitable 
to situations in which lot arrivals are auto-correlated. 

7 CONCLUSIONS 

The dynamic lot sizing approach presented in this paper is 
practical to implement and yields lot sizes that come very 
close to minimizing lot flowtimes. The key requirements 
are the ability to obtain the necessary flowtime feedback 
by monitoring shop floor performance and the ability to 
implement the appropriate optimization procedure.  

More research is required to test the robustness of the 
approach and to apply it to multiple station scenarios.  As 
well, it appears this approach is well suited to situations 
where demand may be non-stationary.  Further testing is 
required to ensure the approach automatically adjusts the 
relative lot-sizing relationships adequately to accommodate 
time-varying demand levels.  
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Figure 6:  Implied Interarrival Time Coeff. of Variation 
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Figure 7:  Dynamic Lot Sizes 
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