
Proceedings of the 2004 Winter Simulation Conference
R .G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, eds.

JOINT MODELING AND ANALYSIS USING XMSF WEB SERVICES

Arnold Buss

MOVES Institute
700 Dyer Road

Naval Postgraduate School
Monterey, CA 93943, U.S.A.

 John Ruck

Rolands & Associates Corporation
500 Sloat Avenue

Monterey, CA 93940, U.S.A.

ABSTRACT

This paper describes the creation of a new analytical mod-
eling capability by bringing together the Naval Simulation
System (NSS) for sea strike and COMBATXXI for littoral
and land warfare modeling. The models are linked by Web
services using principles from the Extensible Modeling and
Simulation Framework (XMSF). This implementation is an
exemplar for a transformational framework for design, de-
velopment, and integration of simulation models.

1 INTRODUCTION

This paper describes ongoing research and development us-
ing a transformational analytical modeling framework. Web
services are used in an innovative way to connect multiple
model components in a flexible, scalable, extensible archi-
tecture. Following the strategic trajectory of the XMSF ef-
fort, this work starts first with functioning exemplars, then
progresses to supporting tools, and then steps up to world-
class modeling challenges, analysis and results. Key sources
of functionality for these efforts include the Simkit discrete
event simulation application program interface (API) devel-
oped by the Naval Postgraduate School (NPS), Naval Simu-
lation System (NSS) developed by SPAWAR Systems Cen-
ter, San Diego, and COMBATXXI under development by the
Army and Marine Corps at the Army TRADOC Analysis
Center, White Sands Missile Range (TRAC-WSMR), which
already incorporates Simkit,

The research objectives are to produce new analytic
capabilities by connecting diverse tools using Web services.
This effort involves software analysis, design, and develop-
ment to review and upgrade existing code bases (Simkit and
NSS) leading to integration of functional capabilities with
the Simkit-based COMBATXXI simulation. The effort also
demonstrates the analysis capability of the hybrid tools
through design and conduct of an examination of specific
operational problems. The work thus spans the areas of Dis-
crete Event Simulation methodology, Operations Research,
and distributed programming. In addition to the specific
tools of Simkit, NSS, and COMBATXXI, emerging technolo-
gies are critical components, specifically ubiquitous use of
XML for data and of web services. Finally, the Open
Source model has proved its worthiness as a means by
which technically solid and robust standards and practices
can emerge. These form the basis for the Extensible Model-
ing and Simulation Framework (XMSF).Extensible Model-
ing & Simulation Framework (XMSF)

2 EXTENSIBLE MODELING AND SIMULATION
FRAMEWORK (XMSF)

The Extensible Modeling and Simulation Framework
(XMSF) provides the technical basis for transformational
interoperability via XML interchange, profiles, and rec-
ommended practices for web-based modeling and simula-
tion. Broad technical interoperability is provided by open
standards, XML-based markup languages, Internet tech-
nologies, and cross-platform Web services. XMSF sup-
ports diverse distributed modeling and simulation applica-
tions. It also enables simulations to interact directly and
scale appropriately over a distributed network through
composable and reusable model components. In addition
to employing mainstream practices of enterprise-wide
software development, XMSF provides support for all
types and domains of modeling and simulation (construc-
tive, live, virtual, and analytical).

XMSF is a natural foundation because of Open Source
philosophy underlying this research. XMSF offers compre-
hensive support by Open Standards in Web, Internet, and
XML technologies. As predicted by an authoritative research
workshop, Web services allow self-validating syntax + se-
mantics to achieve cross-cutting interoperability in modeling
and simulation. XMSF maintains active working-group ef-
forts in Simulation Interoperability Standards Organization
(SISO) (<http://www.sisostds.org>) and Web3D
Consortium (<http://www.Web3D.org>) and provides
a growing foundation in Web-based open standards.

This research does not utilize the full spectrum of sup-
port embodied in XMSF. Specifically, our efforts are fo-
cused on the use of simulation for analysis purposes. The
simulation methodology most useful for analysis purposes

Buss and Ruck

is Discrete Event Simulation (DES), and the models we
utilize all adopt a pure DES world view. Although some
interaction with real-time scenarios is envisioned for even-
tual implementation, the scope of the current effort remains
with DES (Blais 2002).

3 DISCRETE EVENT SIMULATION
COMPONENTS

This paper focuses exclusively on Discrete Event Simula-
tion (DES) models, which have proven to the be the most
useful for performing analysis. The web services that have
been implemented in the work are all based on a DES
world view. Specifically, both NSS and Simkit adopt the
DES world view, and COMBATXXI, the model that will
ultimately form the land asset portion of the joint model, is
likewise DES oriented. In fact, COMBATXXI uses Sim-
kit’s discrete event engine and utilizes Simkit’s component
design for its implementation.

We will now briefly describe, for completeness, the
DES world view. Further details can be found in most in-
troductory simulation textbooks, such as Law and Kelton
(2000). Following that, we will again briefly discuss Event
Graph methodology and the LEGO component framework
(Schruben, 1983; Buss 2000; Buss, 2001; Buss and San-
chez, 2002).

3.1 Discrete Event Simulation

Discrete Event Simulation (DES) methodology is based on
the concept of state together with a constraint on how state
variables change values. This in turn implies a means for
advancing the simulation clock in an efficient manner.

The ubiquitous concept of state incorporates a descrip-
tion of the model at a point in time, like a snapshot of the
system. Viewed temporally, state variables are quantities
that change (or at least have the potential to change) value
in the course of a single simulation run. The constraint ap-
plied to state trajectories in DES is that they only change
values instantaneously. A rule by which states change
value is termed an Event, and occurs in zero simulated
time. Equivalently, the collection of Events completely
describes the possible state transitions, and these transi-
tions occur instantaneously.

A DES is executed with the help of a Future Event
List (FEL) or simply “Event List.” The Event List is a set
of pending future events, sorted in increasing order of
scheduled occurrence. Because of the constraint on how
states can change value, at any point in time of the simula-
tion there is absolute certainty that no state will change
value prior to the next scheduled event. So the fundamen-
tal DES algorithm for time advancement works by advanc-
ing time to that of the next scheduled event, removing that
event from the Event List, and then processing its corre-
sponding state transition.
Another consequence of an Event occurring is the
scheduling of additional events or possibly the canceling of
some events that had previously been scheduled. When an
Event has completed its processing (state transition, sched-
uling, and canceling), control returns to the Event List,
which continues by advancing time to the next scheduled
event in the same manner.

The most straightforward way to describe a DES
model is using Event Graph methodology, introduced by
Schruben (1983), and briefly described next.

3.2 Event Graph Methodology

Event Graph methodology provides a small, stylized, yet
extremely powerful way to describe the structure of DES
models. An Event Graph model consists of three elements
(Schruben 1983; Buss, 2001): Parameters, a collection of
variables each of which stays fixed throughout a given
simulation run; State Variables, a collection of variables
that do change (or have the possibility of changing) in a
single simulation run; and an Event Graph, consisting of
nodes and edges, with the nodes representing the (instanta-
neous) state transitions and the edges representing schedul-
ing and canceling relationships between events. The con-
structs in the Event Graph are shown in Figure 1.

A B(k)j
(i)

A B(k)j
(i)

t

Figure 1: Basic Event Graph Constructs

The top structure in Figure 1 is a scheduling edge and

is interpreted as follows. When event A occurs, then if
boolean condition (i) is true, then event B is placed on the
event list with a delay of time t. When event B occurs, its
formal arguments, denoted by k, are passed the values in
the expression denoted by j on the scheduling edge. The
bottom structure is a canceling edge and is interpreted as
follows. When event A occurs, then the first scheduled
event named B whose parameters exactly match the ex-
pression j is removed from the Event List. If no such event
is scheduled when A occurs, then nothing happens and
there is no error.

For more information on Event Graph models,
Schruben, 1983; Buss, 2001; Buss 2004.

Event Graph Models can be used to create DES models
of any degree of complexity, at least in theory. In practice,
however, models with large number of nodes become in-

Buss and Ruck

creasingly unmanageable and difficult to modify. One rem-
edy that has been proposed is the use of Event Graph com-
ponents based on the Listener design pattern. These have
been dubbed Listener Event Graph Objects (LEGO), (see
Buss and Sanchez, 2002), and are briefly described next.

3.3 LEGO Simulation Components

The listener design pattern is used extensively in modern
software design, a most noteworthy example being graphi-
cal user interface design using Java’s Swing components.
The pattern consists of three actors: the event source, the
event listener, and the event. Note that “event” in this con-
text is not necessarily the same thing as an “event” as used
in Event Graph Models above. Event listener objects reg-
ister interest in an event source’s events. When the source
object fires the event, all registered listeners are notified
and a reference to the event is passed to the listeners. The
power of the listener pattern lies in its inherent loose cou-
pling. Both the source and listener classes can be designed
and implemented generically (e.g. using interfaces in Java,
or an equivalent construct in other object-oriented lan-
guages). Thus, neither the source nor the listener need be
“aware” of the other in their design. Note that this is in
contrast to the Observer pattern, in which a callback is
made from the listener to the source, a pattern that couples
the two more tightly than the listener pattern.

A special kind of listener pattern, the SimEventLis-
tener pattern, turns out to be a key enabler for creating
simulation components. In the SimEventListener pattern,
the event is in fact a SimEvent that had been previously
scheduled by a SimEventSource object. When the sched-
uled event occurs, the scheduling object is notified by the
Event List and passed a reference to the SimEvent in ques-
tion. A SimEventListener processes a heard SimEvent ex-
actly as if it had scheduled it itself. This is implemented in
Simkit using Java’s reflection, so that a modeler only has
to define the LEGO class and write an executive controller
that does the registration.

The SimEventListener pattern is shown in Figure 2.
As many or as few SimEventListeners may be registered
for a given SimEventSource.

SimEvent
Source

SimEvent
Listener

Figure 2: SimEventListener Example

4 JOINT MODELING COMPONENTS

The three components used for this implementation of dis-
tributed simulation consist of two existing simulation mod-
els and a Discrete Event Simulation (DES) API, Simkit.
One existing model, Naval Simulation System (NSS), is
particularly focused on modeling naval assets, while the
other, COMBATXXI, specializes in land combat. The DES
engine is provided by Simkit. Each component will now be
described in more detail.

4.1 Naval Simulation System (NSS)

The Naval Simulation System (NSS) is a closed-loop simu-
lation of naval warfare. It is implemented as an object ori-
ented, stochastic, discrete event simulation (DES). NSS is
written in C++ and is a collection of low to medium resolu-
tion warfare models. It contains a representation of surface,
subsurface, air, ground, and space assets. NSS is C4ISR-
centric. Each entity maintains its own perception of the bat-
tle space, with commander's orders explicitly represented.

NSS is intended to provide valid warfare models, cer-
tified data to populate the models, simulation capability to
execute the models over time, and support tools to assist
user in scenario setup and analysis of results. It has been
used in Naval and Joint operations planning and decision
support, C4ISR analyses and assessments, fleet and exer-
cises and experiments, and fleet training.

4.2 Simkit

Simkit is an Open Source engine for creating and executing
general Discrete Event Simulation (DES) models. It has
been used over the past several years to teach DES to stu-
dents at the Naval Postgraduate School and has been the ba-
sis for more than two dozen masters thesis models. As noted
above, Simkit is used as the model engine in COMBATXXI.
Additionally, its listener component implementation is used
in COMBATXXI to implement key functionality, including
detection and weapon effects events.

In the Web Service implementation described here,
Simkit is primarily used for its discrete event engine for
event processing. This is described in more detail in the
following section.

4.3 COMBATXXI

COMBATXXI is a high-resolution combat simulation cur-
rently under development at TRAC White Sands Missile
Range. COMBATXXI is intended to support modern model-
ing needs with a flexible, object-oriented implementation.
COMBATXXI uses Simkit’s Event List and many of Simkit’s
component features in its design. Work is currently under-
way to implement the capabilities of COMBATXXI in joint
modeling and analysis using the web-based approach de-
scribed in this paper. As of this writing, the COMBATXXI
web service component is being developed,. Initial indica-
tions are that its use of Simkit will enable the process to go
smoothly, with the ultimate joint model playing ground
forces in COMBATXXI and NSS playing the Naval forces.

Buss and Ruck

5 DESIGN OF THE WEB SERVICE

In this design, the simulations interact at the event level.
This differs from most previous efforts where the simula-
tions interact by publishing and subscribing to entity at-
tributes and therefore interacting at the entity level. The
simulations will make use of a shared event queue in order
to accomplish this goal. The simulations will schedule
events with the single event queue based on their internal
event logic [event graph?]. When an event reaches the top
of the queue, the owner and any simulations that have reg-
istered to be "event listeners" for the type of event being
processed, will be notified to process this event. The use of
the single shared event queue eliminates simulation time
synchronization issues and eliminates any requirement for
the models to be able to roll back time. This also supports
an additional goal to eliminate or at least minimize modifi-
cations required to existing simulations.

The design is implemented as a number of web ser-
vices. The Simkit Web Service exposes the event scheduling
and canceling methods of Simkit as web services. The vari-
ous Simulation Web Services act as clients to the Simkit
Web Service. The Simulation Web Services are used to
wrap an existing simulation to expose a method to process
events. The Simkit Web Service acts as a client of the Simu-
lation Web Services in order to pass events to be processes
to the simulations making up the composite simulation.

There are currently 2 Simulation Web Services im-
plemented. The NSS Web Service wraps NSS, replacing its
simulation engine with one that interacts with the Simkit
Web Service. A "Native" Simkit Web Services, that allows
an existing simulation written using the Simkit API to in-
teract with the Simkit Web Service.

5.1 The Simkit Web Service

As stated earlier, the Simkit Web Service exposes the simu-
lation engine of the Simkit API as a web service. The Simkit
Web Service exposes two web service methods. One allows
simulations to schedule events for execution; the other al-
lows simulations to cancel (interrupt) previously scheduled
events. After initialization, during which the individual
simulations schedule initial events, the Simkit web service
sends the next event to be processed to the simulations that
will process the event. The mechanism for determining
which simulations are notified of which events is discussed
below. While processing an event, a simulation may sched-
ule additional events with the Simkit Web Service.

The first step is to initialize the Simkit Web Service.
The control program calls the Simkit Web Service initializa-
tion method, passing in a control file. The control file (in
XML) contains elements to set up the participating simula-
tions and the relationships between the simulations. For each
simulation element in the control file, the Simkit Web Ser-
vice first instantiates a Simulation Instance object. This
Simulation Instance represents its corresponding simulation
in the Simkit event list. Each Simulation Web Service's ini-
tialization method is then called, passing it a control file spe-
cific to the underlying simulation. During this initialization,
the simulations may schedule their initial events. Next the
inter-simulation listeners are set up. The control file contains
elements that indicate which simulations will listen to (and
therefore process) which events from which simulations. Us-
ing the Simkit event listener pattern, the listening simula-
tion's Simulation Instance is set to listen to events of the
source simulation through a Simulation Event Filter that will
only pass the desired event types.

After initialization is complete, the Simkit Web Ser-
vice enters the run mode. The run method of the Simkit
Web Service starts the simulation loop of the underlying
Simkit Event List. The event list is a collection of pending
events sorted by event time. The next event on the list is
taken and passed to the Simulation Instance object that
originally scheduled it. The Simulation Instance then calls
the process event method on the web service for the under-
lying simulation. The Simulation Web Service will be re-
sponsible for determining which of the actual simulation
entities in a simulation need to process the event. Simula-
tion Web Service event processing will be discussed be-
low. After the original scheduler processes the event, any
simulations registered to listen are called to process the
event. When there are no more events in the event list, or
the time of the next event exceeds the optional stop time
set by one of the simulations, the Simkit Web Service run
method returns control to the main control program.

5.2 The Simulation Web Service

For each simulation participating in the composite simula-
tion there is a Simulation Web Service. The Simulation
Web Service exposes a process event method in addition to
its initialization method. The initialization method is spe-
cific to the type of underlying simulation and is further dis-
cussed in the sections below for the two specific simulation
web services. The process event method updates the simu-
lation time for its simulation based on the time of the cur-
rent event. The event is then passed to the Simulation
Proxy for this simulation for processing. The function of
the Simulation Proxy is discussed in the next section.

5.3 The Simulation Proxy

As with the Simulation Web Service, some parts of the
Simulation Proxy are specific to the underlying simulation.
The section will discuss the functionality common to all
Simulation Proxies. The Simulation Proxy acts as the client
to the Simkit Web Service for its corresponding simula-
tion. In addition the Simulation Proxy is the owner of all
events that are sent to and from the Simkit Web Service.

The Simulation Proxy takes requests to schedule
events for its simulation and passes them to the Simkit
Web Service. Since it is not possible to pass references to

Buss and Ruck

objects via a SOAP message, the event is wrapped and
identified with the name of the simulation so that when it is
processed, it will be passed to the correct simulation. The
simulation specific proxy may need to do some processing
of the event to be scheduled prior to passing it to the Simu-
lation Proxy. At a minimum, the simulation that is the
source of the event must be able to recover the original
event object so that it can be correctly processed. Since the
Simulation Proxy is a Simkit "Simulation Entity Base" any
events received for processing cause a method with a name
corresponding to the method to be called. Further process-
ing of these events is controller by the implementation of
the event methods in the simulation specific proxies.

5.4 The NSS Web Service

The NSS Web Service provides a wrapper around NSS al-
lowing it to interact with the Simkit Web Service. Since
NSS is not a Simkit based simulation, changes were re-
quired to allow NSS to use Simkit as its model engine. In
order to prove the concept of NSS using Simkit prior to in-
troducing web services, a version of NSS was developed
using the Java Native Interface (JNI), replacing the event
queue used by NSS with the Simkit event queue. This re-
quired limited changes to NSS. Originally NSS was a
Windows executable. The JNI classes were added and NSS
was re-built as a Windows dynamic link library (DLL).
The main JNI class is the NSS Proxy, which is discussed
next. Once is was demonstrated that NSS could be run us-
ing the Simkit event queue, then NSS was enabled as a
web service.

5.5 The NSS Proxy

When the Simkit Web Service calls the initialization method
on the NSS Web Service, the NSS control file is read. The
control file contains information on the location of the NSS
scenario file and the location of the NSS playback display.
Then an NSS specific Simulation Proxy is constructed, dur-
ing which the information from the control file is stored for
later use. The class implementing the NSS Proxy, being a
JNI class, is implemented using both C++ and Java. The
NSS Proxy is also a Simkit Simulation Entity. Therefore,
when the simulation starts, it will process a "Run" event. In a
Simkit Simulation, the Run event is a special event that is
automatically scheduled for the beginning of the simulation
when the entity is constructed. The NSS Proxy Run event
simply schedules an initialization event to execute immedi-
ately after all of the other entities Run events have initial-
ized. The initialization event calls an initialization method
on the C++ (or "native") version of itself.

The native initialization method takes the information
stored about the location of the scenario file and playback
location and calls the NSS main method. This causes NSS to
enter into an initialization state. During this initialization,
NSS will conduct internal entity initialization and schedule
its initial events. Normally after completing the initializa-
tion, NSS would shift to a running state. One of the modifi-
cations to NSS was to cause its main method to return rather
than continue to the running state. The NSS Proxy then sets
the Simkit Web Service's stopping time to the end time of its
scenario and schedules an event to conduct cleanup that, in
the unmodified NSS, would have been done by NSS shifting
from a running state to a cleanup state.

In order to schedule an event with the Simkit Web
Service, the NSS Proxy must first wrap the event and event
data in an event that will be understood in the composite
simulation. The NSS Proxy also stores the original event
locally to prevent having to send data not needed by the
composite to the Simkit Web Service. The event wrapping
mechanism provides a key to retrieve the original event
when it is time to process the event. The section below on
Data Translators contains more detail on the method of
wrapping events.

When an event that NSS will process occurs, it is
passed to the NSS Web Service from the Simkit Web Ser-
vice. The NSS Proxy is then called to retrieve the original
event. If the event being process was not originally sched-
uled by NSS an Event Adapter object is used to translate
the non-NSS event so that it can be properly processed by
NSS. The Event Adapter is further discussed below.

There is a special NSS event mentioned previously
that is processed at the end of the scenario in order to allow
the NSS code to perform any required cleanup.

5.6 The Native Simkit Web Service

The purpose of the Native Simkit Web Service is to allow
simulations written using the Simkit API to be run in the
web services environment. The Native Simkit Web Service
is a Simulation Web Service that will, based on informa-
tion in the control file, start a Simkit based simulation by
executing the main method of the given class. This is the
same main method that is run from the command line to
execute the simulation in its original implementation. To
accomplish this, calls to Simkit simulation engine are redi-
rected to the Simkit Web Service.

Similar to NSS, the Native Simkit Web Service wraps
events to avoid sending data to the Simkit Web Service
that will only be used by the Simkit simulation. Again, the
event wrapping mechanism is discussed below.

5.7 Data Translators

While the use of standard transport and data encoding
(SOAP and XML) methods solves the syntactic problems
of interoperability, the challenge of semantic differences
among data still remains. To overcome the semantic differ-
ences, we introduce the concept of data and event transla-
tors. Event based simulations may define hundreds of
unique events. Each of these events may also have unique
data objects associated with it. Some method was needed

Buss and Ruck

to translate the meaning of the events and data so that they
are understood by all simulations in the composite. How-
ever, there are many (if not most events) that do not need
to be processed by any but the source simulation and there-
fore do not need to be translated.

The design defines a default event for each simulation
to represent those events that are not translated. To other
simulations, these non-translatable events appear to all be
of the same type. This allows these events to be ignored
outside of their source simulation.

For events that are made available to other simula-
tions, translation is required. Each Simulation Proxy main-
tains a registry of local event names that are to be trans-
lated. This includes a mapping between the local name and
the name of the event exposed to the composite. In addi-
tion, any data available to the event has a data translator
object registered. This data translator takes data that is part
of the original event and extracts data that will be made
available with the event to the composite. One type of
translation that may be necessary is the conversion of units
of distance and time as each simulation and the composite
may be using different unit of measure systems.

5.8 Event Adapters

Through the inter-simulation listener pattern, a simulation
will be asked to processes an event translated from another
simulation. In some cases, the architecture of the simulation
may allow an entity in the simulation to directly handle the
event. In other cases, an Event Adapter is required. An event
adapter will implement the event it is responsible for and lis-
ten to events from the Simulation Proxy. The adapter can
then do any translation of the composite event and event
data as needed to support local processing of the event.

5.9 The Static Data Problem

During developmental testing, issues arose that were the
result of the architecture of web service containers. In one
case, an error inside of an existing simulation caused the
Tomcat web service container process to exit. In another
case, when a composite simulation was rerun on the same
Tomcat server, the state of the simulation was not correctly
restored to the starting state of the simulation.

In most cases, calls to web service methods are con-
sidered stateless calls. In other words, the current method
invocation does not depend on calls made prior to it or
other methods. In the case of this project, that is obviously
not the case. This statelessness is reflected in the architec-
ture of the Tomcat server in that when the simulations are
initialized, they are not started as a separate process, but
are run as the same process as the server. In the case of the
Java based portion of the simulation, it is run in the same
Java virtual machine (JVM) and is initiated as a method
call from the servlet container. Therefore, there is no con-
cept of the beginning or end of a simulation execution. In
the case of NSS, once the NSS dynamic library is loaded,
is stays loaded. In the case of Java based code, once classes
are loaded, they stay loaded. This implies that any static
data is only initialized the first time a simulation is run.
Second and subsequent executions are done with any static
data in an unknown state.

The work around for this problem was to implement a
web service (the Tomcat Controller Web Service) that al-
lows the controller software to start and stop instances of
the servlet container. Therefore, when the controller de-
sires to start a composite simulation run, it directs the
Tomcat Controller Web Service to start additional Tomcat
processes. When the run is complete, it directs the Control-
ler Web Service to shutdown the processes.

5.10 Technology Used to Implement
the Web Services

In keeping with the spirit of XMSF, it was desired to use
some form of XML messaging implemented by Open
Source software. The web service calls between the simu-
lations and the Simkit Web Service were implemented us-
ing SOAP messaging. Specifically, the Apache Axis SOAP
implementation was used. The web services were deployed
in the Apache Tomcat servlet container.

6 SUMMARY AND ONGOING WORK

We have described a new way of implementing distributed
DES models using XML and web services. Currently, the
web services discussed above have been implemented and
tested. The final simulation web service using COMBATXXI
is in development as of this writing. Although COMBATXXI
uses Simkit’s Event List engine, enabling considerable reuse
of effort, work is still needed to create a fully featured im-
plementation.

ACKNOWLEDGMENTS

The authors wish to acknowledge insights and informative
discussions from colleagues, particularly Don Brutzman,
Don McGregor, Curt Blais, Rick Goldberg, and Michael
Bailey. This research was sponsored by OPNAV (N81) as
part of the World Class Modeling initiative. This support
is gratefully acknowledged.

REFERENCES

Blais, C 2002. Extensible Modeling and Simulation
Framework (XMSF) Exemplars in Analytic Combat
Modeling, 2004 Spring Simulation Interoperability
Workshop.

Buss, A. 2000. Component-Based Simulation Modeling. In
Proceedings of the 2000 Winter Simulation Confer-

Buss and Ruck

ence, ed. J. A. Joines, R. R. Barton, K. Kang, and P.
A. Fishwick, eds. 964-971. Piscataway, New Jersey:
Institute of Electrical and Electronics Engineers.

Buss, A. 2001. Discrete Event Programming with Simkit.
Simulation News Europe (32/33): 15-25.

Buss , A. and P. Sanchez. 2002. Building Complex Models
with LEGOs (Listener Event Graph Objects). In Pro-
ceedings of the 2002 Winter Simulation Conference,
ed. E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M.
Charnes, 732-737. Piscataway, New Jersey: Institute
of Electrical and Electronics Engineers.

Buss, A. 2004. Simkit Analysis Workbench for Rapid Con-
struction of Modeling and Simulation Components.
2004 Fall Simulation Interoperability Workshop.

Law, A. M., and W. D. Kelton. 2000. Simulation Modeling
and Analysis, 3rd edition. New York: McGraw-Hill.

Schruben, L. 1983. Simulation Modeling with Event
Graphs, Communications of the ACM 26: 957-963.

AUTHOR BIOGRAPHIES

ARNOLD BUSS is a Research Assistant Professor in the
MOVES Institute at the Naval Postgraduate School. He
received his MS in Systems Engineering from the Univer-
sity of Arizona and his PhD in Operations Research from
Cornell University. His research interests include Discrete
Event Simulation and component-based modeling. His e-
mail address is <abuss@nps.edu>.

JOHN RUCK is a Software Engineer with Rolands and
Associates Corporation in Monterey California. He re-
ceived his BS in Biomedical Engineering from Tulane
University and his MS in Operations Research from the
Naval Postgraduate School. His e-mail address is
<jlruck@nps.edu>.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 1032
	02: 1033
	03: 1034
	04: 1035
	05: 1036
	06: 1037
	07: 1038

