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ABSTRACT 

In this paper, we focus on the implementation of a localiza-
tion algorithm for sensor networks using a discrete event 
simulation (DES) architecture. In this implementation, 
DES is used to calculate the distances between the sensors 
in terms of hop lengths and to implement a mass-spring op-
timization scheme.  This implementation allows us to esti-
mate the number of packets required during the localiza-
tion process after the deployment of the sensors. 

1 INTRODUCTION 

Recent advances in micro-electro-mechanical systems 
(MEMS) technology, wireless communications, and digi-
tal electronics have enabled the development of low-cost, 
low-power, multifunctional sensor nodes that are small in 
size and that communicate in short distances. These tiny 
sensor nodes, which consist of sensing, data processing, 
and communications components, leverage the idea of 
sensor networks based on collaborative effort of a large 
number of nodes. 

The typical characteristics of wireless sensor networks 
are as follows (Akyildiz et al. 2002) : 
 

• Sensor nodes are densely deployed. 
• Sensor nodes are prone to failures. 
• The topology of a sensor network changes very 

frequently. 
• Sensor nodes mainly use broadcast communication 

paradigms whereas most ad hoc networks are based 
on point-to-point communication paradigms. 

• Sensor nodes are limited in power, computational 
capacities, and memory. 

• Sensor nodes may not have global identification 
(ID) because of the large amount of overhead this 
requires and the large number of sensors. 
• Since many sensor nodes are densely deployed, 
neighbor nodes may be very close to each other. 
Hence, multi-hop communication in sensor net-
works is expected to consume less power than the 
traditional single hop communication. Further-
more, the transmission power levels can be kept 
low, which is highly desired in covert operations. 

• Sensor nodes carry limited, generally irreplace-
able, power sources. As such, once the power 
supply is exhausted, the sensor is no longer func-
tional.  Therefore, while traditional networks aim 
to achieve high quality of service (QoS) provi-
sions, sensor network protocols must focus pri-
marily on power conservation.  

 
The inherent characteristics of a wireless sensor net-

work make a node’s location an important aspect of the 
network. For such networks, location is being used (i) to 
identify the location which sensor readings originate, (ii) in 
novel communication protocols that route to geographical 
areas instead of IDs, (iii) when providing other location 
based services and the location directory service (He et al. 
2003). The localization problem has received considerable 
attention and several techniques have been used to satisfy 
the requirements imposed by the different uses of node lo-
cations. The Global Positioning System (GPS) is undoubt-
edly the most well known location service in use today. 
However, GPS is generally not suitable for low-cost wire-
less sensor networks, since it is based on extensive infra-
structure (i.e. satellites) (Hightower and Borriello 2001). 

A sensor network is used to discover or monitor a 
phenomena. For example, it may detect the presence and 
movement of objects or monitor temperature. A Sensor 
network may be deployed to monitor temperature in a for-
est in order to identify and locate forest fires as discussed 
in (Min et al. 2002). This would require dense deployment 
in a large area. The deployment of sensor nodes is not or-
ganized, hence the sensors are scattered randomly in the 
defined area; therefore, the exact and relative position of 
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the nodes is not predetermined. For example, a network of 
temperature sensing nodes may be airdropped into a forest. 
In this paper, we focus on the problem of estimating the 
individual sensor positions (localization) and the impact on 
the design and/or selection of the specific sensors to be 
used in the actual network. In this type of network, it is 
costly to use GPS technology.  

Anchor free algorithms use local distance information 
to attempt to determine node coordinates when no nodes 
have a pre-configured position. Anchors with a priori 
knowledge of their location are not used in this type of lo-
calization algorithm. However, this group of localization 
schemes is based on the capability to measure the distance 
between directly connected nodes in the network. Of 
course, any such coordinate system will not be unique and 
can be embedded into another global coordinate space in 
infinitely many ways, depending on global translation, ro-
tation, and possibly flipping. This limitation is fundamental 
to the problem specification. 

The common limitation of these algorithms is that they 
require more expensive and energy-consuming sensors (Pat-
wari et al. 2003). Moreover, it is hard to guarantee the ro-
bustness of distance estimations between sensors using sig-
nals (e.g. received signal strength to estimate the distance). 

In this implementation, we used the algorithm named 
Anchor-Free Localization (AFL) (Priyantha et al. 2003). 
This algorithm attacks the following problem: “Given a set 
of nodes with unknown position coordinates, and a mecha-
nism by which a node can estimate its distance to a few 
nearby (neighbor) nodes, determine the position coordinates 
of every node via local node-to-node communication.” 

We have used this algorithm to demonstrate the applica-
tion of DES architecture to a localization problem in order to 
present a simulator and development environment for sensor 
networks that enables network designers/programmers to 
profile the performance and energy efficiency of the software 
embedded in the sensor and hardware over different operat-
ing conditions. Our DES model provides the infrastructure to 
observe the traffic in the network during the localization 
process after the actual deployment of the sensors. This im-
plementation allows us to estimate the number of packets re-
quired during the localization process after the deployment of 
the sensors, which is an important parameter to determine the 
specifications of the sensor to be used in the network. 

The rest of the paper is structured as follows; Section 
2 introduces the anchor free distributed localization algo-
rithm, Section 3 describes the shortest path algorithm on 
DES architecture, Section 4 explains mass spring optimiza-
tion, Section 5 presents the results obtained, and finally we 
conclude in Section 6.   

2 ANCHOR-FREE DISTRIBUTED 
LOCALIZATION ALGORITHM (AFL) 

The AFL algorithm is described by Priyantha et al. (2003). 
AFL algorithm consists of two phases. The first phase pro-
duces a fold-free graph embedding which “looks similar” to 
the original embedding. The relative locations within the 
sensor network are found only using the hop counts as a dis-
tance measure for the network. The locations calculated in 
phase 1 may or may not represent the actual locations. The 
second phase uses a mass-spring based optimization to cor-
rect and balance localized errors in estimated locations. Each 
phase is explained in detail in the following paragraphs. 

The sensor network on which the AFL algorithm runs 
is created randomly by uniformly distributing the sensors 
over the defined area. An example 1000 × 1000 unit2 area 
with 25 sensors is shown in Figure 1.  

 

 
Figure 1: Randomly Generated Sensor 
Network with 25 Nodes 

 
The first phase of the algorithm proceeds by selecting 

five reference nodes. First it selects a node n1 at the periph-
ery of the graph. Next it selects node n2 which is a maxi-
mum hop count away from n1. Next, the node at a maxi-
mum hop count away and equidistant in hop counts from  
n1 and n2 is selected as n3. Node n4 is the node at maximum 
hop count from n3 and  equidistant in hop counts from n1 
and n2. Finally node n5 is selected to be the one  equidistant 
in hop counts from  n1, n2, n3, and n4. All these nodes are 
selected using a straightforward variant of distributed 
leader election (Priyantha et al. 2003). 

Then, for each node ni, use the hop-counts h1,i, h2,i, h3,i, 
h4,i,and h5,i from the chosen reference nodes to approximate 
the polar coordinates (ρi, θi), where hi,j is the distance be-
tween node i and node j in hop counts. Here, R is the 
maximum radio range. 

 
ρi = h5,i × R. 

θi = tan−1 (h1,i − h2,i)/( h3,i − h4,i). 
 
The second phase of the AFL algorithm performs a lo-

cal mass spring optimization of the current estimated coor-
dinates of each node in parallel. Using the current esti-
mated position, each node ni calculates the estimated 
distance j,id  to each neighbor nj. It also knows the meas-
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ured distance ri,j to each neighbor nj .Let j,iv  represent the 
unit vector in the direction from ip  to jp . The error be-
tween the estimated and the measured distances is repre-
sented by a force jiF ,  in the direction jiv , . 

This force is defined as 
 

)j,irj,id(j,ivj,iF −= . 

 
The resultant force on the node i is given by 
 

∑=
j,i j,iFiF . 

 
Each node i updates its estimated coordinates by 

“moving” in the direction of the resultant force. The new 
estimated coordinates are selected such that it reduces the 
energy of the node and the movement is less than | iF | 
/(2mi), where mi is the number of neighbors. 

The energy Ei,j of nodes ni and nj due to the difference in 
the measured and estimated distances is the square of the 
magnitude of j,iF , and the total energy of node i is equal to 
 

∑ ∑ −==
j j

)j,irj,id(j,iEiE 2 . 

 
The energy Ei of each node ni reduces when it moves 

by a small amount in the direction of the resultant force 
iF . In the algorithm, it is ensured that the new position has 

a smaller energy than the original position. 

3 SHORTEST PATH CALCULATION USING DES 

Before continuing, let us formally define the shortest path 
problem. A network is a graph G = (N, A) consisting of an 
indexed set of nodes N with n = |N| and a spanning set of 
undirected arcs A with m = |A|. Each arc is represented as a  
pair of  nodes, in the form of node i to node j, denoted by 
(i, j). Each arc (i, j) has an associated numerical value, dij, 
which represents the distance or cost incurred by traversing 
the arc. We assume that bidirectional travel between a pair 
of nodes i and j is represented by one undirected arc (i, j). 
Given a network G (N, A) with known arc length dij for 
each arc (i, j), the shortest path problem is to find the 
shortest distance (least cost) path from a source node s to 
every other node in the node set N (Zhan and Noon,1998). 

In addition to dij, each arc has a second associated nu-
merical value, cij which represents the cost of interest. The 
objective is to find a path from a source to each of the 
nodes in N which minimizes the total cij.   

Let us express sensor network terms in DES termi-
nology. Each sensor is a resource. A data packet is an en-
tity, in other words data packets are the active compo-
nents of simulation model. The arrival of data packets at 
sensors is the event.  
In a sensor network, the neighbors are determined 
based on each sensor’s transmit range assuming that hear-
ing range is equal to the transmit range. If  sensor i is in the 
range of sensor j, then sensor i is an immediate neighbor of 
sensor j. Immediate neighbors of each sensor are deter-
mined during the simulation initialization.  

In our case, the objective is to find the shortest path 
(number of sensors visited) from a reference sensor (source) 
to all other sensors. The value of cij on each arc is 1. Hence, 
the objective can be expressed as reaching from the source 
to a sink by visiting minimum number of sensors. 

A data packet includes the event time, the reference 
sensor (source) information, recipient information, and to-
tal cost since the packet is introduced to the network. The 
data packets are stored in the future event list. The future 
event list is a priority queue. The prioritization is achieved 
based on the event times. The critical component of DES is 
the event time. We have assumed the packet delay time be-
tween two sensors is a function of dij.  A pseudo code for 
initial packet creation procedure is presented in Figure 2. 
At the end of this procedure the future even list will con-
tain a data packet for each neighbor of the source. 

 
 
… 
simulation time = 0; 
si = reference node; 
neighbors = neighbors of si 
cij = 1; 
source = si; 
cost = 0; 
for (j=0..number of neighbors){ 
 sj = jth neighbor; 
 dij = distance between sensor i and sensor j; 
 delay time = dij / media speed; 
 event time = simulation time +delay time; 
 recipient = sj; 
 cost = cost + cij; 

ndp = new Data Packet(event time, source, 
recipient, cost ); 

 put ndp in future event list; 
} 
… 
 

Figure 2: Pseudo Code for Creation of Initialization 
Process for Finding Shortest Path 

 
The simulation starts by retrieving the first event from 

top of the future event list. The simulation time is ad-
vanced to the time of the pulled event. The recipient of the 
packet is responsible for processing the packet. If the 
source is not in recipient’s local table or the cost to the 
source is less than the cost in the local table, the recipient 
updates it’s local table. Otherwise, the data packet is dis-
carded. If the local table is updated, the recipient increases 
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the cost value by cij  and creates new data packets for its 
neighbors using a similar algorithm described in Figure 2.  

The shortest path simulation stops when the future 
event list is empty. Each sensor will have a record contain-
ing the lowest total cost to go from the source to that sen-
sor at the end of the simulation. 

4 MASS SPRING OPTIMIZATION USING DES 

The anchor-free algorithm is a two stage algorithm as de-
scribed in Section 2. First, reference nodes are found. Six 
separate simulations are run to calculate the shortest path 
in hop counts between the reference nodes and other nodes. 
After each run, hop counts calculated are used to select the 
next reference node. After all the reference nodes and the 
hop counts between reference nodes and other nodes are 
found, each node assigns an initial estimation for its loca-
tion using the equations in Section 2. This concludes the 
first stage. 

Second stage is mass-spring optimization. Mass spring 
optimization is also performed on our simulation architec-
ture. As described in Section 2, mass-spring optimization 
runs concurrently on the nodes of the network. Whenever a 
node receives a location update from its neighbors, it recal-
culates the total force on itself and updates its location if 
that move results in with a lower energy level. The packets 
used in mass spring optimization includes event time, ref-
erence (source) sensor information, recipient information, 
and the updated location estimate of the source sensor.  

Mass-spring optimization starts with the calculation of  
a new estimated location for sensor 0. After this new loca-
tion found, sensor 0 broadcasts its new estimated location 
to all of its neighbors. This is done by inserting new pack-
ets in the future event list. After this step, each sensor re-
ceiving an update from one of its neighbors calculates the 
total force acting on it and based on this total force, it cal-
culates a moving direction for updating its location. The 
node calculates its new estimated location by moving a 
small amount on the direction of total force. If this move-
ment decreases the energy of the node, the location of the 
node is updated and the node broadcasts its new location to 
its neighbors. If the movement doesn’t result in a energy 
decrease, no action is performed. The terminating condi-
tion for mass spring optimization is the consumption of all 
packets in the future event list. 

5 SAMPLE RUNS 

AFL algorithm was run for several configurations in 1000 
× 1000 unit2 area. The configurations and results are pre-
sented in Table 1. In this table, sensors denote the number 
of sensors in the network, range is the maximum radio 
range, movement is the allowed movement size in each lo-
cation update, total packets are the number of packets gen-
erated by the simulation and total energy is the energy of 
the system when the simulation terminated. Our simulation 
terminates when there are no location update packets left in 
the event list. Total energy presents the performance of the 
algorithm for the configuration since total energy is a func-
tion of the difference in the measured and estimated dis-
tances. Each configuration is run for only one replication 
and hence, the results are not statistically justified. How-
ever, they are informative in terms of the response of the 
AFL algorithm to different input parameter values. The 
purpose of this experiment is to demonstrate the use of 
DES in localization problem to provide input for the design 
process of the network. Therefore, we have avoided an ex-
tensive analysis on the outputs and we haven’t performed 
multiple replications. AFL algorithm performance is ana-
lyzed and presented by Priyantha et al. (2003). 

 
Table 1: Results of Sample Runs 

Sensors Range Movement Total Packets Total Energy
20 1000 Force/(1.5×  ni) 75026 28,014 
20 1000 Force/(2 ×  ni) 88328 116,107 
20 800 Force/(1.5×  ni) 31466 3,694,546 
20 800 Force/(2 ×  ni) 51988 2,302,183 
20 800 Force/(2.5×  ni) 65992 2,505,730 
20 800 Force/(3 ×  ni) 51711 3,494,716 
25 800 Force/(1.5×  ni) 83293 1,839,193 
25 800 Force/(2 ×  ni) 24698 999 

 
The simulation can be repeated for different values of 

input parameters. Sensor range, distance measurement er-
ror, and sensor density are the key input parameters that 
derive the cost and effectiveness of the sensor network.  
The simulation structure presented in this study can be 
used to obtain optimal/best values for these parameters. 

The number of packets generated during the simulation 
is a good estimate of the communication traffic in the sensor 
network after deployment during the localization stage. This 
number can then be used to estimate the energy require-
ments of the sensors in order to determine the specifications 
of the sensors to be used in the actual deployment.  

The result of AFL algorithm for a sensor network of 
20 sensors each with a range of 1000 units in 1000 × 1000 
unit2 area is presented in Figure 3. This configuration cor-
responds to row 2 in Table 1. Figure 3 (a) is the actual (and 
unknown) network, Figure 3 (b) is estimate of the network. 
We have converted the estimated polar coordinates to spa-
tial coordinates using the actual location of the reference 
node n5 for representation purposes. 

There are two random components associated with this 
experiment. The first one is the real locations of the sen-
sors, since they can not be determined before the actual 
deployment. There could exist many sensor networks to-
pologies with the identical configuration (first three col-
umns in Table 1 corresponds to a configuration). From the 
network designer’s perspective,  it is important to evaluate 
a specific configuration on several topologies.  
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 (a) (b) 

Figure 3: (a) Original Network, (b) Net-
work after Applying Anchor-Free Localiza-
tion Algorithm 

 
The second random component is the error associated 

with radio-signaling. In an actual deployment, there may 
be some errors in measuring the distances between the sen-
sor nodes using radio signals. This experiment can be ex-
tended by adding distortions to the measured distances. 

Therefore, running multiple replications for a specific 
configuration certainly helps to understand/evaluate the 
network’s behavior after deployment. 

In addition, further simulation runs can be performed 
for different combinations of configurations to estimate the 
sensitivity of the algorithm to different network topologies.   

6 CONCLUSION 

This study demonstrates how to find shortest paths and 
how to perform a mass-spring optimization at the localiza-
tion stage of the deployment, on a DES architecture. Mass 
spring optimization concurrently runs on each node and 
concurrency achieved by DES through the employment of 
simulation time.  

This algorithm can be implemented by methods other 
than DES. However, DES enables network designer/pro- 
grammer to see and evaluate the overall network behavior. 
Incorporation of DES in localization process generate valu-
able inputs for the design of the sensor network. Number of 
packets generated in localization may be used to estimate the 
initial energy requirements of the sensors. This is important 
since sensors have limited energy resource and become ob-
solete after they consume their energy resource.  
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