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ABSTRACT 

Simulation metamodels have been used for optimization, 
prediction, sensitivity analysis and understanding of com-
plex, real-world systems. Since most simulation models 
contain a large number of input parameters, it is of great 
interest to determine the most important ones to include in 
a metamodel given a particular modeling context, i.e. given 
a particular set of questions which are to be addressed by 
the metamodel. This paper employs Morris’ randomized 
one-at-a-time (OAT) design as a factor screening method 
prior to developing a number of simulation metamodels. 
The approach is illustrated with reference to a stochastic 
combat simulation, called SIMBAT.  

1 INTRODUCTION 

In computer simulation experiments, an important question 
is – which factors are really significant when there are po-
tentially a large number factors involved? This question 
seems rather prominent especially when the ultimate goal of 
the whole experimentation is to develop metamodels from a 
simulation. It is unlikely, though, that all of the input pa-
rameters of a simulation have a major impact on its re-
sponse, and generally it is assumed that only a subset of fac-
tors will be important (Morris 1987). For a simulation with 
even a moderately large number of factors, the number of 
possible factor-level combinations can easily explode far 
beyond anything remotely practical. To avoid this unneces-
sary explosion of simulation configurations, it is desirable to 
detect at an early stage of the experimentation which factors 
are important and which are not. The unimportant factors are 
then dropped from consideration by fixing them at some rea-
sonable values, and further experimentation will only be car-
ried out with the more important factors. The nature of the 
situation under study will often mean that many of the fac-
tors can be fixed at particular levels which are defined by the 
situation. Of the remaining factors, several will usually turn 
out to be unimportant in this situation. It is the role of a fac-

 

tor screening method to weed out these unimportant factors. 
For details on metamodeling, see Barton (1992); Kleijnen 
and Sargent (2000); Hurrion and Birgil (1999); Clarke, 
Griebsch and Simpson (2003). 
 We believe this factor-screening method is crucial 
when developing metamodels from a simulation with a large 
number of input factors and the response surface is complex 
or not very well-behaved. In the literature, screening designs 
include random designs, supersaturated designs (require 
fewer configurations than factors), group-screening designs, 
and so on (Kleijnen 1987). Several approaches have been 
proposed in the literature for factor-screening, e.g. Morris’ 
(1991) randomized OAT design, the iterated fractional fac-
torial designs (IFFDs) introduced by Andres and Hajas 
(1993) and the sequential bifurcation (SB) proposed by Bet-
tonvil and Kleijnen (1997). More recently, Trocine and 
Malone (2001) advocated a screening design employing ge-
netic algorithms. However, in general, relatively little atten-
tion has been paid to screening designs in metamodeling re-
search, despite its obvious importance. 
 Group screening designs, like SB, have been used in 
simulation, and proved effective for a small to medium 
number of factors. SB allows a large number of factors to 
be considered using a relatively small number of simula-
tion configurations. The underlying assumptions of SB are 
that a first-order polynomial, possibly augmented with two 
factor interactions, is an adequate function to approximate 
the simulation response surface, and the response function 
is either nondecreasing or nonincreasing. SB can provide 
efficient and accurate results if the above conditions are 
met. However, such conditions cannot always be assumed. 
For example, the underlying simulation considered in this 
paper produces a response surface which is complex by na-
ture, and which does not satisfy the conditions of SB.  
 Morris’ randomized OAT design is another factor 
screening method that has such flexibility. The advantage 
of this approach is that it does not make explicit assump-
tions about the system, e.g. there being relatively few fac-
tors that have significant influence on the simulation re-
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sponse, or the adequacy of a low-order polynomial as an 
approximation to the computational model. The number of 
different simulation configurations required by Morris’ 
method is linear in the number of factors and the results are 
easily interpreted in a lucid, graphical way. However, the 
design does not provide estimations for factor-interactions, 
which is its main limitation.  

In this article, we investigate the usability of Morris’ 
OAT design as a potential factor-screening method to be 
used in developing metamodels from a complex, combat 
simulation. It is shown that the method is quite effective and 
is easy to apply. In Section 2, we describe Morris’ random-
ized OAT design as a potential factor screening method for 
the underlying simulation (largely drawn from Campolongo, 
Kleijnen and Andres, 2000). Section 3 demonstrates a case 
study from the underlying simulation, SIMBAT. How Mor-
ris’ design is applied to the case study and the subsequent 
results are presented in Section 4. Section 5 concerns the de-
velopment of metamodels using the important factors de-
rived in Section 4. Finally, Section 6 summarizes the find-
ings and draws conclusions from the article. 

2 MORRIS’ RANDOMIZED OAT DESIGN 

In its original form, Morris’ method considers a computa-
tionally expensive model, involving a large number of fac-
tors, and where the number of simulation runs required is 
proportional to the number of factors, k. Morris intends to 
isolate the factors that have either negligible effects or lin-
ear and additive effects, or non-linear or interaction effects 
on the simulation response. Based on individual random-
ised OAT designs, the method estimates the effect of 
changes in the level of each factor, and evaluates it in turn. 

The basic idea of the method is related to a sample of 
independently observed elementary effects. These are then 
exploited through a statistical analysis to measure the rela-
tive importance of an input (or the sensitivity of the 
simulation output for a particular input). Suppose, for a 
simulation model, the k-dimensional factor vector x has 
components xi, each of which can take p discrete values in 
the set {0, 1/(p-1), 2/(p-1), …., 1}. For simplicity, it is as-
sumed that each xi is scaled to have a region of interest 
equal to [0, 1]. The experimental domain, Θ, is then a k-
dimensional p-level grid. Let ∆ be a predetermined multi-
ple of 1/(p-1). Morris defines the elementary effect of the 
ith factor at a given point x in the design space as 

 
 mi(x) = [y(x1, …..,xi-1, xi + ∆, xi + 1, ……, xk) 

– y(x)] / ∆,                                            
 

where x is any value in Θ considered such that x + ∆ is still 
in Θ. The ultimate aim of the method is to estimate the 
mean and standard deviation of the finite distribution of  
pk-1 [p - ∆(p-1)] elementary effects associated with each in-
put. Suppose, for the ith input factor this distribution Fi can 
be obtained by sampling x from Θ. The distribution Fi pro-
vides useful information about the impact of the ith input 
factor on the output through its mean µ and standard devia-
tion σ. A large (absolute) measure of central tendency for 
Fi implies that an input has an important “overall” effect 
on the output. A high standard deviation indicates that the 
factor’s effect is not constant, which may be explained by a 
factor interacting with other factors or a factor whose ef-
fect is non-linear. Morris’ method considers the estimates 
of the means and standard deviations of these distributions 
as indicators to guide the selection of important input fac-
tors from the simulation. 

In its simplest form, randomly selecting a value from 
Fi requires random selection of a value of each xj (j = 1, 2, 
3, ….., k) and evaluation of y twice, once at the selected 
values and again after increasing xi by the quantity ∆; these 
two configurations would then yield one elementary effect. 
This could be repeated r times to produce a random sample 
of r elementary effects from Fi. However, if the procedure 
is performed for each input, it would be a random sample 
of r values from each Fi at a total cost of n = 2rk runs (con-
figurations). Morris defines the economy of a design as the 
number of elementary effects estimated by the design di-
vided by the total number of required runs. So the econ-
omy of the sampling plan is 1/2, since a total of rk elemen-
tary effects are observed from the experiment. While the 
simplest form of Morris’ design has an economy of  1/2, he 
suggests that a more economical design can be developed 
by using some runs in computing more than one elemen-
tary effect. This will be clear from the description of the 
method given in the following paragraphs. 

To develop Morris’ design, it is convenient to assume 
that p is even and ∆ = p/[2(p –1)]. Overall, the design is 
based on the development of a matrix B* whose rows rep-
resent the input vectors x, and the corresponding experi-
ment produces k elementary effects (one for each input fac-
tor) from k +1 runs. This increases the economy of the 
design to k/(k + 1). Morris (1991) showed that, with the as-
sumption mentioned above, each of the pk-1 [p - ∆(p-1)] = 
pk/2 elementary effects for the ith input factor has an equal 
probability of being selected. The basic principle of Mor-
ris’ design can be given as follows: 

 
1. A “base” value x* is randomly chosen for the vec-

tor x, i.e. each component xi of x* is sampled from 
the set {0, 1/(p –1), 2/(p-1), …., 1 - ∆}. Note, 
however, that the model is not evaluated at x*. 

2. At least one of the k components of x* are in-
creased by ∆, leading to a vector  x(1)  that is still 
in Θ. This may constrain the choice of compo-
nents to be increased.  
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3. The estimated elementary effect of the ith compo-
nent of x(1)  is  

 
mi(x(1)) = [y(x1

(1), …..,x(1) i-1, x(1)
i + ∆, x(1)

i + 1,  
……, x(1)

k) – y(x(1))] / ∆                     
if x(1) has been increased by ∆,   or 

 
mi(x(1)) = [y(x(1)) - y(x1

(1), …..,x(1) i-1, x(1)
i - ∆, 

x(1)
i + 1, ……, x(1)

k)] / ∆  
if x(1) has been decreased by ∆. 

 
4. Let x(2) be the  new sampling point (x1

(1), …..,x(1) i-
1, x(1)

i  ±  ∆, x(1)
i + 1, ……, x(1)

k) which differs from 
x(1) in its ith component. Select a third sampling 
point x(3) such that x(3) differs from x(2) for only 
one component j (for any j ≠ i). Either xj

(3) = xj
(2) 

+ ∆ or xj
(3) = xj

(2) - ∆. Then the estimated elemen-
tary effect for the factor j is 

 
mj (x(2)) =  [y(x(3)) – y(x(2))] / ∆               

if  ∆ > 0, or 
 

mj (x(2)) =  [y(x(2)) – y(x(3))] / ∆                   
otherwise. 

 
The above step (4) is repeated until a succession of k 

+1 sampling points x(1), x(2),…, x(k + 1) is produced such that 
two consecutive points differ in just one component. That 
means, to estimate one elementary effect for each factor, any 
component i of the “base vector x*” has to be increased by 
∆ at least once. The successive vectors x(1), x(2),  ….., x(k + 1) 
define a trajectory in the parameter space, and a matrix  B*. 
 The matrix B* is usually referred to as the orientation 
matrix. Its rows are the above mentioned vectors x(1), x(2),  
….., x(k + 1). In fact, the matrix corresponds to a trajectory 
of k steps in the parameter space with starting point x(1), 
and gives one elementary effect per factor. The construc-
tion of the matrix, B* involves the following steps: first, a 
(k+1) x k matrix, B, has been selected with elements 0s and 
1s such that for every column there are two rows of B that 
differ in only one element. B may be chosen conveniently 
to be a strictly lower triangular matrix of 1s. Consider the 
transposed matrix given by 

 
B′ = Mk+1,1 x* + ∆B, 

 
where Mk+1,1 is a (k+1) x k matrix of 1s, and x* represents a 
randomly chosen “base value” of x. Since the matrix B′ can 
provide k elementary effects (one per input factor) at the 
cost of (k+1) runs, it could be used as a design matrix. But, 
the limitation with B′ lies in the fact that these k elementary 
effects are not randomly selected. A randomised version of 
Morris’ design is given by: 

 
B* = (Mk+1,1 x* + (∆/2) [(2B - Mk+1,k)D* + Mk+1,k])P*, 
where D* is a k-dimensional diagonal matrix with elements 
either +1 or –1 with equal probability, and P* is a k x k 
random permutation matrix, i.e. each row and each column 
contain exactly one element equal to 1, while all other 
elements equal 0. A numerical example showing the deri-
vation of an orientation matrix using Morris’ OAT design 
is given in the Appendix. In order to estimate the mean 
and variance of the distribution Fi (i = 1, 2, …., k), Morris 
considered a random sample of r elements, i.e., r mutually 
independent orientation matrices (corresponding to r differ-
ent trajectories, each with different base vector). A single 
orientation matrix gives one elementary effect per factor, so 
the r matrices together give rk elementary effects. As a re-
sult, the design matrix for the entire experiment becomes 
 

X = 























*
...

*
2

*
1

rB

B

B

. 

 
The design provides k correlated estimators per trajec-

tory, whereas the r independent trajectories provide r inde-
pendent estimators. So, for each of the k factors, the mean 
and standard deviation can be estimated using the classical 
estimators of an independent random sample, whose values 
are from r mutually independent orientation matrices.  

The main advantage of Morris’ design is its relatively 
low computational cost. For the entire design X, r elemen-
tary effects are produced for each input factor at a total 
cost of r(k+1) runs, which is a linear function of the num-
ber of factors involved. So, the economy of the sampling 
plan increases to rk / r(k+1) = k/(k+1). Although the design 
does not produce estimates for individual interactions among 
different factors, it can provide information on whether any 
significant interaction exists, rather than giving specific in-
formation about the identity of the interaction. 

3 CASE STUDY: A SCENARIO FROM A 
STOCHASTIC COMBAT SIMULATION 
MODEL, SIMBAT 

SIMBAT is an Operational Analysis (OA) tool used by the 
UK’s Defence Science and Technology Laboratory (Dstl) 
(formerly the Centre for Defence Analysis, CDA) to allow 
simulation of Battlegroup (BG) and Brigade level engage-
ments, in order to provide quick assessment of equipment 
performance and tactics. SIMBAT represents a closed, 
force-on-force, stochastic combat simulation that can re-
flect a conventional war-fighting environment involving 
two-sided encounters. This is achieved by simple represen-
tations of: The forces, The ground, Command and control 
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(C2), Movement, Obstacles, Logistics support, Surveillance 
and target acquisition, Rules of engagement and direct fire, 
Indirect fire and Human factors. 

More specifically, SIMBAT itself includes a number 
of models, such as models of movement, breakdowns, fa-
tigue, fuel usage, direct fire and ammunition usage, indi-
rect fire, and simple command decision-making. A particu-
lar scenario can be defined and configured by the users 
from a Graphical User Interface (GUI). This contains the 
characteristics of the respective scenario elements (e.g. 
weapon performance, movement characteristics etc.); pa-
rameters of the various models within SIMBAT (e.g. sight-
ing data, update cycle periods, etc.); characteristics of the 
ground over which the scenario is run; force and command 
structures; and routes and objectives of the individual sce-
nario elements. A single entity, called a ‘unit’, represents a 
group of armoured-vehicles or personnel and is the princi-
pal building block of a scenario. Every part of a unit is as-
sumed to maintain proper communication with each other 
in order to achieve the same objectives together. 

The scenario used for our experiment is a meeting en-
gagement between two forces, denoted by Red and Blue, 
each of approximately battalion size. The development of 
the scenario was carried out using the guidelines men-
tioned in “User Guide” of the SIMBAT model v2.5. 

The Blue side consisted of two tank squadrons, each 
equipped with 14 tanks, and two Armoured Infantry (AI) 
companies, one equipped with 14 IFVs (Infantry Fighting 
Vehicles) and the other with 10 IFVs. The Blue force also 
had a Close Reconnaissance Troop of 8 recce vehicles, a 
squadron of Armoured Engineers, a Close Air Defence 
(CAD) Troop equipped with High Velocity Missiles 
(HVM), and an anti-tank section. 

The Red force consisted of two tank companies, each 
equipped with 10 tanks, one armoured infantry (AI) com-
pany, equipped with 10 IFVs, and a reconnaissance com-
pany consisting of various recce vehicles, each of which 
carried an anti-tank missile post. The characteristics of the 
tanks, IFVs and recce vehicles, etc. were different for the 
two forces.  
The order of battle (ORBAT) for the scenario was 
based on these figures, although only those platforms that 
had a direct fire capability were actually included. This 
means that any values produced during the analysis would 
be based upon combat power only. For each of the ar-
moured infantry companies, dismounted infantry were in-
cluded and added to the scenario as an ‘Embussed’ unit. 
The model was run in Batch Mode by associating an action 
on files with the *.smb file type in Windows Explorer. The 
Batch Mode then runs all the replications of the scenario 
specified in the associated Replication Definition File. In 
our experiment, we consider 40 replications using 40 dif-
ferent random number streams. A screen shot of the sce-
nario is shown at Figure 1. 

Within SIMBAT, a unit is the main element of a par-
ticular scenario, since units move, observe, fire and make 
decisions. A unit is composed of a number of components, 
which are the lowest levels represented in SIMBAT, and 
the direct fire weapons platforms. A component usually 
represents a vehicle or a grouping of infantry. When a unit 
has no components left, it is considered ‘dead’ and there-
fore disappears from the scenario. 

4 FINDING IMPORTANT FACTORS FROM 
SIMBAT USING MORRIS’ OAT DESIGN 

The scenario involves a large number of both di-
rect/indirect fire parameters and human factors. From 
these, we have considered 13 for the analysis, including 2 
human factors— “Probability of Shock” and “Probability of 
Surprise”. These factors are as follows: 

 
1. Number of components in Blue force HQ 
2. Number of tanks in each Blue tank squadron 
3. Number of IFVs in Blue C Company 
4. Number of IFVs in Blue D Company 
5. Number of components in Blue reconnaissance 

troop 
6. Number of components in Blue anti-tank section 
7. Number of components in Red force HQ  
 
 

 
Figure 1: A Movement Network in the Scenario 
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8. Number of tanks in each Red tank company 
9. Number of IFVs in Red Infantry company 
10. Number of components in Red reconnaissance 
11. Probability of Shock 
12. Probability of Surprise, and 
13. Unit Participation (in %). 
 
Obviously the selection of factors depends on the 

problem we are looking at, and is also motivated by the use 
to which the metamodel will eventually be put. Whatever 
that use, it is likely that many factors can be kept at levels 
which will remain fixed, e.g. weapon characteristics. The 
simulation response considered here is Loss Exchange Ra-
tio (LER), defined as: 

 
LER=No. of Red components lost/ No. of Blue 

   components lost, or 
=“Red” casualties / “Blue” casualties. 

 
“Probability of Shock” represents the probability that 

in any close combat engagement or mini battle, units of a  
force will be shocked, thus reducing their SSKP. This pa-
ralysis within a force is introduced by the fear of an attack 
that can not be countered. For example, against infantry 
this could include an attack from air power or tanks. It 
takes a value between 0 and 1, and would apply to the 
force as a whole. Similarly, the “Probability of Surprise” is 
the probability that a force was surprised at the start of a 
particular scenario, thus reducing the SSKP in all mini bat-
tles and close combat engagements according to local force 
ratios. It is worth mentioning that the factor “Unit Partici-
pation” is a group factor, which has six sub-groups- small 

 

arm, canon, tank, machine gun, anti-tank and helicopter. 
“Unit Participation” represents the percentage of compo-
nents in a unit, which are able to participate in direct fire 
using these six types of weapons. Measured in percentage 
(%), the factor can take values between 0 and 100 for each 
of its six sub-factors.   

We have considered 6 different levels (p = 6) for each 
factor. So, the p values in the set {0, 1/(p-1), 2/(p-1), …., 
1} would be equivalent to {0, 1/5, 2/5, 3/5, 4/5, 1} in our 
experiment. 13 factors and their corresponding levels are 
given in the following Table 1.  

Then, we have applied Morris’ factor-screening design, 
discussed in the preceding section, in order to see which fac-
tors have a significant influence on the simulation response. 
The parameters of the experiment are set to p = 6, ∆ = 
p/[2(p-1)] = 3/5 and r = 6. Six orientation matrices are 
generated according to the above design, and the respective 
elementary effects for 13 different factors per orientation 
matrix are estimated from the simulation response. Follow-
ing Morris’ (OAT) design, 14 simulation configurations are 
generated for each of the six orientation matrices. In each 
orientation matrix, the first row represents the “base” case 
(configuration) and the remaining 13 are used to determine 
the elementary effects for all 13 factors involved. Table 2 
shows the elementary effects of 13 factors for 6 different tra-
jectories, and the corresponding mean and variance of the 
distribution of Fi  (i = 1, 2, …., k). 

The following figure shows that factors 2, 8, 10 and 13 
are well separated from the other factors because of their 
higher values for mean and variance. Factors 5, 6, 11 
and12 also show higher values for mean and variance in 
comparison with factors 1, 3, 4, 7 and 9. So, we can con- 
Table 1: Levels of 13 Different Factors Used to Develop Morris’ OAT Design 
Factors Levels 

0         1/5         2/5       3/5       4/5      1 
1.   Number of components in Blue force HQ 1          2           3           4         5         6 
2.   Number of tanks in each Blue tank squadron 6          8           10        12        14       16 
3.   Number of IFVs in Blue C company 6          9           11        13        16       18 
4.   Number of IFVs in Blue D company 4          6            8         10        12       14 
5.   Number of components in Blue reconnaissance troop 4          8            12        16        20      24 
6.   Number of components in Blue anti-tank section 1          2            3          4          5        6 
7.   Number of components in Red force HQ 1          2             3          4         5        6 
8.   Number of tanks in each Red tank company 6          9             11        3       15       18 
9.    Number of IFVs in Red Infantry company 5          7             9         11      13       15 
10.  Number of components in Red reconnaissance company 6         10           14        18      22       26 
11.  Probability of Shock 0         0.2         0.4        0.6      0.8      1 
12.  Probability of Surprise 0         0.2         0.4        0.6      0.8      1 
13.  Unit Participation (in %) 

Small Arm 
Cannon 

Tank 
Machine Gun 

Anti-tank 
Helicopter 

 
2 6           8           10       12      14 
8          11         14          17       20      23 
8          11         14          17       20      23 
8          11         14          17       20      23 
12        19         26          33       40      47 
12        19         26          33       40      47 
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Table 2: Elementary Effects of Various Factors for Six Different Trajectories 
Factors r =1 r =2 r = 3 r = 4 r = 5 r = 6 Mean Variance 

1 0.07 0.03 0.07 0.1 0.15 0.07 0.08 0.002 
2 0.58 0.5 0.62 0.22 0.33 0.45 0.45 0.023 
3 0.07 0.08 0.1 0.02 0.05 0.13 0.08 0.001 
4 0.05 0.08 0 0.05 0.12 0.03 0.06 0.002 
5 0.05 0.2 0.05 0.1 0.08 0.180 0.11 0.004 
6 0.17 0.28 0.05 0.12 0.17 0.080 0.15 0.007 
7 0.03 0.02 0.03 0.08 0.02 0.020 0.03 0.001 
8 0.28 0.23 0.1 0.3 0.47 0.050 0.24 0.023 
9 0.07 0.12 0.08 0.08 0.02 0.020 0.07 0.002 

10 0.45 0.18 0.53 0.42 0.43 0.370 0.40 0.014 
11 0.15 0.12 0.12 0.05 0.33 0.180 0.16 0.009 
12 0.1 0.17 0.17 0.03 0.2 0.050 0.12 0.005 
13 0.03 0.32 0.05 0.37 0.2 0.170 0.19 0.019 
 

clude that factors 1, 3, 4, 7 and 9 are relatively unimportant 
in this scenario. The remaining 8 factors are important and 
of these factors, 2, 8, 10 and 13 have the most significant 
effects on the simulation response. 
 

 
Figure 2: Estimated Mean and Variance of the Dis-
tribution of Elementary Effects for 13 Factors 

5 DEVELOPING SIMULATION  
METAMODELS 

The most important factors to emerge from the screening 
phase are then used for metamodel development. These fac-
tors are as follows:  Number of tanks in each Blue tank 
squadron, Number of components in Blue reconnaissance 
troop, Number of components in Blue anti-tank section, 
Number of tanks in each Red tank company, Number of 
components in Red reconnaissance company, Probability of 
shock, Probability of surprise and Unit participation. Since 
the response surface of the underlying simulation is complex 
and not well behaved, a non-linear function approximation 
artificial neural network (ANN) is considered as an appropri-
ate metamodeling method. A modified-Latin Hypercube De-
sign (LHD) is employed to generate the required simulation 
configurations to develop candidate metamodels. The authors 
have found this design to perform better than other standard 
factorial or random sampling designs while developing 
metamodels from two other underlying simulations, as de-
scribed in a previous article (Alam, McNaught and Ringrose, 
2004a). Using this design, a total of 200 configurations were 
generated from within the design space defined by the 8 im-
portant factors. These configurations provide a training data 
set for developing the neural networks. Two further random 
data sets, each of size 100, were generated from within the 
design space, and employed as validation and test sets. For all 
training, validation and test data sets, each configuration was 
replicated 40 times with 40 different random number streams 
to output the simulation response. The average of the 40 LER 
values is considered as the final simulation output for that 
configuration. A neural network is then constructed which is 
trained on the simulation response, LER. Three approaches 
for neural network metamodels are considered: 
 

1. The training set is made up of 200 simulation con-
figurations, based on a modified-LHD, and the net-
work is trained on the simulation response, LER.  

2. The training set is made up of 200 simulation con-
figurations, based on a modified-LHD. A separate 
network has been employed, and trained on each of 
the two force casualties, instead of the LER values. 
The predictions from the two force casualties are 
then combined to calculate the predicted LER. 

3. The training set is made up of 200 simulation con-
figurations, based on a modified-LHD. Instead of 
two separate networks, a single network is em-
ployed, and trained on each of the two force casu-
alties. The simultaneous predictions of the net-
work for the two force casualties are combined to 
give the LER. 
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Each approach uses the same validation and test sets, 
each consisting of 100 uniformly randomly sampled simu-
lation configurations generated within the design space. 

5.1 Separate Neural Network Metamodels for 
Individual Force Casualties 

Neural network metamodels are also developed to predict 
individual force casualties. A separate network has been 
constructed for each of the two force casualties, Blue and 
Red. The neural network predictions for these individual 
force casualties are then combined to predict the LER. We 
have already observed that this indirect way of estimating 
LER might be of interest, and helpful in understanding 
complex combat simulation models (Alam, 2003). Finally, 
the predictions of force casualties from the two networks 
are combined to predict the LER.   

5.2 A Single Neural Network for Simultaneous 
Prediction of the Two Force Casualties 

A further experiment is carried out by constructing a single 
network, rather than two separate networks, to predict both 
force casualties mentioned in the preceding paragraph. Net-
work predictions are then combined to estimate the LER. 
Neural networks with simultaneous predictions of targets, in 
this case Red and Blue force casualties, are computationally 
less expensive, but have the disadvantage that multiple out-
put variables can interfere with each other’s learning. The 
basic difference between a single network for simultaneous 
prediction of two targets and a separate network with only 
one of these two targets is that the first one involves more 
unknown parameters (bias and weights) than the second one. 
The reason for employing such a single network is to save 
time developing multiple networks.  
 A three-layer, feed-forward architecture (or multilayer 
perceptron) is adopted to construct the required networks 
for the above three approaches. For each approach, the 
networks have the same number (eight) of input nodes, 
representing the eight input factors, but they have a differ-
ent number of output nodes, depending on the number of 
estimates being made by the networks. Since in approach 
1, the network has one target factor, LER, it contains one 
output node. In approaches 2 and 3, however, the network 
has two target factors, the Blue and Red force casualties, so 
two output nodes are required. We have trained the net-
works using different numbers of hidden nodes, which is 
generally based on trial-and-error. However, the best per-
forming network observed across the various approaches 
employed in this study has ten hidden nodes. Using a back-
propagation training algorithm, all of the networks are 
trained to a normalized error tolerance of 1% and to a 
maximum of 200 epochs (passes through the  training set). 
For each of the networks, several trials are conducted to 
find the architecture that minimizes the MSE between the 
target values and the network-predicted values. The per-
formance of a particular network is evaluated with the as-
sociated test configurations and observed through three 
predictive measures, MSEP (Mean Squared Error of Pre-
diction), PDRPE (Percentage Distribution of Relative Pre-
diction Error) and MAPD (Mean Absolute Percentage De-
viation). Relative Prediction Error (RPE) is defined as:  
 

RPE = 
r

r
Y
Ŷ

, 

 
where Yr  is the known target value (simulation response) 
from the independent test data set, and rŶ is the corre-
sponding metamodel output or prediction. Generally, of 
course, we reject metamodels for which the RPEs are too 
far from 1, but this is a subjective decision and context de-
pendent. Relative prediction errors (RPE) for each meta-
model were derived in conjunction with the test data set. In 
Table 3, Percentage Distribution of Relative Prediction Er-
ror (PDRPE) shows the percentage of test data points for 
which the RPE falls between 0.8 and 1.2 (predicted value 
within 20% of the true value) and between 0.9 and 1.1 
(predicted value within 10% of the true value). Another 
measure of performance is the Mean Squared Error of Pre-
diction (MSEP), defined as: 

 

MSEP =
N
1 ∑

=

N

r 1
( rY  - rŶ )2, (where N =100). 

 
This is evaluated from the independent test cases for each 
of the developed metamodels. The prime advantage of the 
MSEP lies in its ability to incorporate a measure of both 
the variance and square of the bias of the prediction errors. 
The Mean Absolute Percentage Deviation (MAPD), which 
is defined as: 

 

MAPD = 
N
1

 ∑
=

N

r 1
| [ rŶ - rY ] / rY |, 

 
is also considered as it provides an easy-to-understand per-
formance measure which can also be used for comparative 
reference between different studies. Depending on the de-
gree of precision desired for a particular problem, a rea-
sonable value for each of these measures may vary. 

More detailed descriptions of the development of ANN 
metamodels are provided in two previous articles (Alam, 
McNaught and Ringrose 2004a; 2004b), so are not repeated 
here. All neural networks mentioned in this article are con-
structed using the MATLAB neural networks toolbox. 

Table 3 presents the performance of ANN metamodels 
that are developed from the eight important factors, identi-  
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Table 3: Evaluation of Neural Network Metamodels Developed to Predict LER from Three Different 
Approaches 

NN Metamodels MSEP PDRPE 
(within 20 %) 

PDRPE 
(within 10 %) 

MAPD 

Approach  1 0.0052 95 75 7.98 
Approach  2 0.0072 93 69 8.85 
Approach  3 0.0090 92 63 10.17 
fied by screening, in the previous section. To predict the 
simulation response, LER, neural network metamodels are 
developed using three different approaches, employing 
both direct and indirect ways of deriving the LER values. 

For the particular scenario considered in this study, the 
networks developed from all three approaches show quite 
encouraging results. However, the best performance is ob-
served for the one which is trained on the LER values di-
rectly (approach 1). Both the MSEP and the MAPD values, 
0.0052 and 7.98 %, respectively, are lowest for this net-
work, while the PDRPE values are highest. Approach 3, 
where a single neural network is developed to predict the 
two force casualty values simultaneously, before combin-
ing these to calculate the LER, displays the poorest per-
formance of the three. 

6 CONCLUSIONS 

In this paper, we have demonstrated the use of Morris’ 
randomized OAT design as a potential factor screening 
method to be used in developing simulation metamodels. 
In the literature, there are several methods for screening in 
simulation. However, each method is subject to some con-
straint in one aspect or another. The use of any particular 
method depends on the validity of its assumptions and on 
the behaviour of the system under study. Tradeoffs may be 
required by the experimenter when choosing a screening 
method. From the example problem considered, this study 
demonstrates that Morris, OAT design can be applied to a 
stochastic combat simulation. For this application, the as-
sumptions required by more conventional factor screening 
methods, such as SB, are not satisfied. The important fac-
tors derived from the screening are then used to develop 
ANN metamodels for approximating the complex input-
output relationship of the simulation. When evaluated with 
an independent fresh data set from the design space, the 
derived metamodels were able to produce good predictive 
capabilities for estimating the simulation response. 

APPENDIX   

To develop an orientation matrix using Morris’ design, 
suppose p = 4, k = 3 and ∆ = 2/3. That is we want to inves-
tigate three factors that may contain values in the set {0, 
1/3, 2/3 and 1}. Suppose, a “base” value  

 
x* = (1/3, 0, 1/3) 
is randomly chosen such that each component xi is being 
sampled from the set {0, 1/(p-1), ……, 1- ∆}. Now, at the 
next step we increase one or more components of x* by ∆ 
such that the new vector x(1) is still in Θ. If we increase just 
the first component of x* (i.e. first factor) by ∆, then x(1) 
will become as 
 

x(1) = (1, 0, 1/3), 
 
and suppose this factor combination provides the simula-
tion response y(1). Now, in the following step, suppose we 
want to have an elementary effect for the third factor. So, 
we will increase the third component of x(1) by ∆ while the 
other two components are kept fixed. Thus the vector for 
this new factor combination is 
 

x(2) = (1, 0, 1), 
 
which gives the simulation response y(2). Then the elemen-
tary effect of the third factor is calculated as 
 

E3 = [y(2) - y(1)]/ ∆. 
 
Similarly, in the next step if we want to determine the ele-
mentary effect of the first factor, we need to have the fac-
tor-combination as 
 

x(3) = (1/3, 0, 1), 
 
to provide the simulation response y(3). So, the elementary 
effect of the first factor will be 
 

E1 = [y(2) - y(3)]/ ∆. 
 
Finally, for the second factor the vector of factor-
combination will be 
 

x(4) = (1/3, 2/3, 1), 
 
which will produce the simulation response y(4), and the 
elementary effect of this factor is derived as 
 

E2 = [y(3) - y(4)]/ ∆. 
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Ultimately, we have a randomized version of orientation 
matrix B*, given as follows 

 

B* = 
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