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ABSTRACT

Homeland defense applications will use large-scale ad-hoc
networks of small devices. Routing is a crucial problem, for
naive means do not scale well. Geographic Routing (GR)
(Karp 2000; Giordano, Stojmenovic, and Blazevic 2003)
offers hope for scalability, under the assumption that every
device knows its geographic coordinates, e.g., through GPS.
This solution is unsuitable though when there is no easy
means of establishing a device’s physical location. indoors.
To address this limitation we propose Virtual Geographic
Routing where we construct a virtual coordinate space and
use GR within it. This paper describes VGR, compares the
characteristics of paths VGR identifies with those that GR
identifies, then presents theoretical and empirical evidence
for its scalability.

1 INTRODUCTION

A wireless communication network can be established with-
out external supporting infrastructure, when devices serve
as routers as well. The ability to quickly assemble such
networks, in a loosely organized fashion, gives rise to the
designation “ad-hoc" networks. We are particularly inter-
ested in applications of ad-hoc networks where the devices
are small, limited in capability, are immobile, require little
power, but the number of devices is large. Any given device
is able to communicate directly with only a small subset of
the entire network. Examples of such architectures include
sensor networks, e.g., those that might be deployed in an
airport or train station to detect the presence of chemical or
biological agents. A message sent from device d1, destined
for device d2, will typically pass through a sequence of de-
vices. d1 chooses a device from among those devices it can
directly reach, and sends the message to it. The recipient
recognizes that it is not the message’s target, and likewise
forwards the message to another device. The process con-
tinues until the message is delivered. We are interested in
the problem of determining how routes through the network
are determined.
One routing solution is to execute a distributed all-pairs
shortest path algorithm on the network (Lynch 1996). As
a result of this computation, each device d1 in the network
would have a table that specifies, for every other device d2
in the network, the neighbor to which a message addressed
to d2 should be forwarded. There are a number of problems
with this approach. The storage required for a forwarding
table is proportional to the number of devices; not only
will this demand too much memory for large networks, it
reserves valuable space in anticipation of many routes that
may never be used. Some routing protocols (e.g., AODV
(Perkins 2003) and DSR (Johnson, Maltz, and Hu 2003))
take a demand-driven approach, and compute the route to
a specific target only when a message is created for that
target. These protocols are designed with the vagaries of
mobility in mind, where one must assume that the network
is in constant flux. To find a route extant now, the source
sends out “flooding" queries to all its immediate neighbors.
Any recipient that is not the target repeats the query to its
own immediate neighbors, provided that the query’s time-
to-live hop count remains positive after being decremented.
When the target device is found, it reports success back
to the neighbor that queried it, which reports success back
to the neighbor that queried it, and so on, tracing back
a route to the target, which the message then follows.
If a flooding search with a time-to-live hop-count of n

fails to turn up a route, one may initiate another flooding
round with a larger count (e.g., 2n) to look deeper into
the topology; this is called an expanding ring search. The
bulk of communication involved here is not necessary if
the network topology is static; topological stability allows
for pre-computation whose results can be used to optimize
routing for all subsequent messages.

Geographic Routing (GR) (Karp 2000; Giordano, Stoj-
menovic, and Blazevic 2003) takes advantage of the stability
of a given device’s geographic location in the network. As-
suming that geographic coordinates are bound to a device
name and that the binding can be recovered through inter-
action with a location service (e.g., Li et al. 2000; Li et
al. 2001), GR routing has a device route a message to a
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Figure 1: Void in Geographic Routing : A Message Source
is Geographically Closer to the Destination than any of its
Communication Neighbors

neighbor which is closer to the destination than itself, and
which, among all such neighbors, is closest to the desti-
nation. Depending on the topology it may not be possible
to route a message using this rule. Figure 1 illustrates a
void, where the message source is geographically closer to
the destination than any of its communication neighbors,
because of a radio obstacle. Different techniques may be
used in such cases, depending on the topology. A flooding
search will always find a path, if there is one, and a found
route can be cached for reuse.

The main limitation of GR we address is establishment
of the geographic coordinates. Either the network devices
discover their own locations using GPS, or they are loaded
with their locations by some other means, sure to be time
consuming if not automated. We set out asking if one
could use device connectivity to create a virtual coordinate
system to replace geographic coordinates. The main hoped-
for advantage would be to achieve the performance of GR
(in terms of lengths of routes discovered), scalability (in
terms of slowly growing memory demands as network size
increases), but without the complication of determining
actual geographic locations for every device. This paper
demonstrates a solution to these problems.

2 VIRTUAL GEOGRAPHIC ROUTING

Virtual geographic routing replaces the physical location
of a device with a virtual location developed solely using
information about the connectivity of the devices. We
explore a metric based on a device’s distance—in numbers
of hops—from a set of distinguished devices called anchors.
The intuition behind VGR is illustrated in Figure 2. Three
distinguished points exist in the domain. A fourth point
is characterized by having Euclidean distance a from one
distinguished point, b from another, and c from the third—in
the coordinate space induced by anchors it has coordinates
(a, b, c). Circles around the anchors illustrate the set of
points at a given distance from the anchor; (a, b, c) is the
unique point that is distance a from the first anchor, distance
b from the second anchor, and distance c from the third. A
device that is close to this point in the plane necessarily is
close to it in the anchor coordinate space.

For ad-hoc routing we can approximate distance us-
ing connectivity information to compute minimum distance
�

�

�

Figure 2: Labeling a Point in Terms of Distances from Three
Anchor Points

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

6432

����

����

����

����

�

�

�

�

����

����

Figure 3: Virtual Geographic Routing : Devices Labeled
with Distances to Anchors ABCD, Dotted Line Reveals GR
Path from x to y, Solid Line Reveals VGR path, Label 7543
is Aliased

(measured in hops) from devices to anchors. Figure 3 illus-
trates the concept. It shows a graph whose edges illustrate
the direct point-to-point communication sustainable by the
radio environment. There are four anchors, illustrated with
a circle around the graph node, and labeled A,B,C, and D.
Each device is labeled with a four digit code whose first
digit is the shortest number of hops to A, the second digit is
the shortest number of hops to B, then to C and D respec-
tively. The regularity of this graph induces two devices to
receive the same label (7543); we call this aliasing. Like
voids, aliases are a special case we must accommodate. The
graph also highlights both the GR path from 1325 to 6432
(heavy dotted line) and the VGR path (heavy line), when the
Euclidean distance metric is used on the virtual coordinate
space, i.e. the distance between two points �P and �Q in
virtual coordinate space is || �P − �Q||1/2. It interesting to
observe that while the paths are different, they both enjoy
the same number of hops, and each step in the VGR path
reduces the geographic distance to the destination.
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A device’s virtual coordinates give its location in a K-
dimensional virtual space, where K is the number of anchors.
The number of hops to each anchor can be developed by
a simple distributed algorithm, similar to the distributed
Bellman-Ford algorithm (Lynch 1996) but using messages
that include only the hops counts to the anchor rather than
to all devices.

Virtual geographic routing is stalled by local minima
of the distance metric, just as real geographic routing is.
As we’ve seen in the example, aliasing is also a problem.
Since aliased devices can be several hops apart, aliasing
causes a problem for the routing algorithm.

Location Service. We expect that VGR coordinates
will be hidden from applications. For some applications,
such as geographically based data storage and retrieval
(Ratnasamy et al. 2002; Shenker et al. 2003), it is not
necessary to associate locations with particular devices.
Often, however, the devices are distinguished by unique
device identifiers, and a message must be routed to the
device with a particular identifier. In that case, for either
real or virtual geographic routing, it is necessary to have a
means of discovering a device’s location given its identifier.

A service that supplies the location of a device given
its device identifier is called a location service. A location
service that is particularly suited to systems using geographic
routing was presented in Li et al. (2000). The service is
completely distributed, letting every device play the role of
location server for a number of other devices. The service is
itself based on geographic principles and works without any
device knowing the identity of any of its location servers.
It is presented in connection with real geographic routing
and based on a recursive subdivision of the unit square, but
the analysis and the algorithms carry over to K-dimensional
virtual coordinate space. It requires an average amount of
storage at each device that is proportional to the total number
of devices with a very small constant of proportionality. The
service has a communication pattern such that the expected
path length approaches a constant as the number of devices
increases (Li 2001), so it meets our scalability criterion.

Voids. A void occurs when a message cannot be
routed to a neighbor that is closer to the destination. After
considerable experimentation, we settled on an expanding
ring search for any device closer to the destination. Here
escape from a void is be found by flooding a search to
find a device that is closer to the destination in the virtual
geographic metric. An expanding ring search broadcasts a
search request with a maximum search radius attached. The
request is broadcast by all devices (to their limited set of
communication partners) that receive it if they cannot satisfy
the request and the search radius is not exhausted. (Such a
radius is often called "time to live" or TTL.) Positive results
are sent back to the device that originated the request and
can be consolidated along the way to avoid congestion of
the links near the requesting device. If no positive results
are found at the current radius, the search is repeated with
an increased radius. In a static, connected network, such a
search will always eventually be successful.

The path traveled by the request is accumulated along
the way and included in the request. The response is returned
along the reverse path, and at each of the devices on the
path, the next hop from the originating device toward the
satisfying device is cached in a table of “escape hops". Such
escape hops are associated with the satisfying device in the
table.

When a void is encountered in the course of routing a
message, the escape table is searched to see if it contains any
entry associated with a device that is closer to the destination.
If it does, the next hop in that entry is used, and the
closer device becomes an intermediate routing destination.
Before it is forwarded to the next hop, the message is
marked to show that it is no longer in geographic mode,
and the identity of the intermediate destination and the
virtual geographic coordinates of the device at which the
message left geographic mode are included in it.

A device receiving such a message first checks to see if
it is itself closer to the destination than the device at which
the message left geographic mode. If it is, it restores the
message to geographic mode and continues the routing. If
it is not, it looks in its escape table to see if it has an entry
associated with the intermediate destination given in the
message. If it does, it forwards the message to the next hop
in that entry. Note that in a static network, it will always
find such an entry. If it does not, it acts as if were the
device that first encountered the void.

Aliases. An alias is recognized when the message
reaches a device that has the same virtual geographic coor-
dinates as the destination but is not the destination (i.e., it
has a different unique identifier). An expanding ring search
is used here, too. The search succeeds when the search
request message reaches the device with the destination’s
device identifier. In this case, the response to the search
returns the entire path from the originating device to the
destination, and the originating device caches the path upon
receiving the response, associating it with the destination’s
identifier. As an optimization, the destination caches the
reverse path, associating it with the originating device.

When a device recognizes an alias in the course of
routing a message, the alias cache is consulted. If the path
to the destination is already present in the cache, no search
need be done. Before the message is forwarded to the first
hop in the path, the message is marked to show that it is in
alias mode and the remainder of the path is placed in the
message. At each step on the path, the next hop is removed
from the message and the message is forwarded to it. That
is, source routing is used between the two aliased devices.

Anchors. Placement of anchor nodes may be a priori,
random or algorithmic. Placement is important because an
uneven distribution of anchors among the other devices
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Figure 4: Sample Topology with Radio Obstacles, 1024
Devices, Average Degree 10, 12 Anchors

tends to produce a greater number of local minima and
aliases. In the examples in this paper, the anchors were
placed a priori (except for those in Figure 4, which were
placed algorithmically.) For more on anchor placement, see
Goldsby et al. (2003).

3 EXPERIMENTS

Next we use simulation to consider how VGR behaves rel-
ative to GR. We are interested in the length of routings
these protocols find, the amount of memory they require,
and any evidence we may find that VGR is scalable. We
provide many graphs and tables in a tech report (Goldsby
et al. 2003). We select some illustrative examples taken
from topologies with approximately 1000 devices, where
devices are placed randomly, subject to domain obstacles;
for example, see Figure 4. We then look at resource re-
quirements of networks of size up to 10000 devices, and
consider how those requirements scale as the network size
grows.

Figure 5 illustrates device-to-device path lengths, taken
from 10 instances of networks, approximately 1000 devices
each, as a function of the average number of neighbors. The
upper graph plots this data for networks without barriers,
the lower graph summarizes graphs with barriers. We plot
maxima and averages for the cases of actual shortest path
(SP), VGR, and GR.

In the case of no barriers, there are significant differences
among SP, VGR, and GR with respect to the maximum path
length. SP is far and away the shortest, with VGR yielding a
25% increase over GR. However, the differences on average
path lengths are minute—almost indistinguishable. In the
case of barriers, the relative difference between maximum
VGR and GR path lengths is not so large, due to the increase
in path length both methods endure owing to the barriers.
The maximum length shortest path is again significantly
smaller than either GR or VGR. However, once again we
see that differences in average path length are comparatively
much smaller.

It is also informative to consider how GR and VGR
behave with respect to handling anomalies, voids (for both)
and aliases (only for VGR). Table 1 summarizes some of
these differences, for 10 randomly sampled networks of 1000
devices, with 10 neighbors on average, with and without
barriers. As we consider how messages traverse the network,
we can classify hops taken as being “geographic"—meaning
in accordance to geographic routing rules—or “special",
meaning that a special condition (like a void, or alias) is
being handled. The first row of the table below gives the
fraction of geographic hops for GR and VGR, where we see
that in the case of no barriers, for both GR and VGR the
majority of hops are geographic. The second row measures
the fraction of times a message crosses a hop as part of a
ring search (to fix an anomaly), and we see that in the case
of no barriers, the fraction is minuscule for both GR and
VGR. The third row describes the maximum and average
depth into the network that an expanding ring search had to
penetrate to resolve an anomaly, with GR and VGR behaving
similarly. The last row measures the maximum and average
number of hops between aliased devices in VGR.

Some differences between VGR and GR emerge when
we consider networks with barriers. GR is much more
susceptible to voids than VGR, as evidenced by the fact
that only 66% of hops taken are geographic under GR, as
opposed to 90% for VGR. Fully 77% of the hops traversed
in exploring all paths worked out to be search hops, as
compared with less than 5% for VGR. Likewise, both the
maximum and average depth into the network GR has to
penetrate to deal with voids are significantly larger than
that for VGR. For VGR it is interesting to note that the
maximum and average distances between aliased devices
is substantially larger than when barriers are not present.
These two tables show that for random networks, in the
absence of barriers the overheads of anomalies are small,
and equivalent for GR and VGR. However, when barriers are
introduced, the overheads become more significant, in fact,
for GR they become overwhelming. In such cases VGR is
better able to deal with the voids that barriers induce.

We come to similar conclusions when we examine how
many node coordinates (either GR or VGR) are stored in the
escape tables used to resolve voids. Figure 6 gives data on
networks of size 512, 1024, and 2048 devices; all networks
are constructed to have an average neighbor count of 9. The
upper graph plots average and maximum counts for GR and
VGR on networks without barriers, the lower graph plots
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Figure 5: Path Length for Shortest Path (SP), VGR, and GR on Random 1000 Device Betworks, Without and With Barriers
Table 1: Path Anomaly Overheads for Networks With, and Without Barriers

No Barriers With Barriers
GR VGR GR/VGR GR VGR GR/VGR

fraction
geo. hops 0.95 0.93 1.02 0.66 0.90 0.73
ratio
search hops /
total hops 0.0034 0.0030 1.13 0.778 0.046 17
max/average
flood radius 8.4/2.66 8.5/2.28 0.99/1.16 40.5/4.7 14.3/2.76 2.83/1.70
max/average
hops to alias — 2.3/0.99 — — 16.6/3.56 —
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Figure 6: Escape Table Size (in Geographic Identities) for GR and VGR, on Randomly Sampled Networks With and Without
barriers
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the same for networks with barriers. The averages shown
are taken from randomly sampled graphs (10 for network
sizes 512 and 1024, 6 for network size 2048). The most
significant difference between routing methods occurs for
the maximum escape table size on networks with barriers.
Here GR method shows again how it has more voids to
deal with, and emphasizes the memory cost of doing so (at
least if solutions to voids are cached as they are discovered,
and not just recomputed when needed).

It should be noted that GR and VGR have potentially
significant per-address memory demands. An escape table
entry for GR holds the target node’s unique identifier (1
word), and some geographic location information, say x and
y (2 words). A VGR entry has that same unique identifier,
and another word holding the hop count for every anchor.
The simulations we report here all use 12 anchors; the
memory cost of holding anchor hop counts depends on how
we pack hops into words. A straightforward implementation
of 1 word per hop count gives rise to 13 words per VGR
identity. However, the most important point to be taken from
the data shown is that the overhead from escape tables is not
large, and therefore suitable for small, cheap, low-capacity
sensors.

3.1 Simulation and Scalability

As we have seen, the memory requirements of VGR relate
to storing coordinates of neighbors, storing escape tables
for voids, and storing escape tables for aliases. Voids and
aliases are handled on demand, which implies that the
memory resource demands of VGR depend very much on
the traffic patterns. If we are to take the approach we used
in analyzing 1000 device devices—gather statistics from all
paths—we will quickly run into computational issues, for
the number of paths grows in the square of the number of
devices.

In order to gather some confidence that VGR is scal-
able (in the sense that its resource demands do not grow
quickly with the network size) we will have to consider
something other than growth rates on models small enough
to exhaustively study. Likewise, if one is faced with the
prospect of deploying a network with 10’s or 100’s of thou-
sands of devices, we need a means of estimating device
memory sizes sufficient to hold escape and alias tables,
once computed. (Of course, memory requirements can be
traded off for computation/communication requirements by
the simple expedient of having a device overwrite cached
escape tables, and recompute them if and when needed.)

We report now on analysis that strongly suggests that
VGR will scale as needed, and gives a practical means of
creating upper bounds on memory demands on networks
that are too large to explore all paths.

The basis for our analysis is a stochastic ordering re-
lation, called stochastic variability, defined in Ross (1996)
as follows. Let X be a non-negative random variable
with cumulative distribution function FX (and F̄X(s) =
1.0 − FX(s)), likewise let Y be a non-negative random
variable with distribution function FY . We say that Y is
stochastically more variable than X, written X ≤v Y , if for
all t ≥ 0,

∫ ∞

t

F̄X(s) ds ≤
∫ ∞

t

F̄Y (s) ds.

Whenever X ≤v Y , for any increasing convex function f ,
we have E[f (X)] ≤ E[f (Y )]. Likewise, if we have a set
of 2n random variables satisfying Xi ≤v Yi , i = 1, . . . , n,
with all the {Xi} being independent and all the {Yi} being
independent, and function f : Rn → R being increasing
and convex, then E[f (X1, . . . , Xn)] ≤ E[f (Y1, . . . , Yn)].
The function max(X1, . . . , Xn) is increasing and convex.

Our overall approach is to look at the distributions of
memory requirements, and maximum path length from a
randomly sampled device. If we find evidence that these
distributions are stochastically less than other distributions,
then we can use the expected maximum of n of these
bounding random variables as a bound on the expected
maximum of n memory storage, or path length, random
variables.

Pursuing this approach we examined a large number
of histograms of memory requirements (from many ran-
domly sampled networks), and noticed that some of these
had heavier tails than one typically sees in, say, a normal
distribution. We wrote code that, for a given network, con-
structed the empirical cumulative distribution function of
the per-device requirements. This is the distribution asso-
ciated with uniform random samples of devices. We then
tested whether the exponential distribution with the same
mean as the empirical distribution was stochastically more
variable than the empirical distribution. In every network
we tested, across a large range of sizes and samples, we
found the exponential to be stochastically more variable
than the empirical distribution.

We did a similar experiment on a path length statistic.
Selecting a device at random, we compute the maximum
length of a path from that device to any other device.
On suitably sized networks we can compute the empirical
distribution of this random variable by finding the longest
such path, for every device. Histograms of this distribution
suggested we consider normal distributions.

The theory of extrema is well developed (e.g., see Lead-
better, Lindgren, and Rootzen 1983; Galambos 1987), and
results for exponential and normal distributions are known.
In the case of exponentials, the expected maximum of n

independent exponentials with mean µ grows in proportion
to µ log n; in the case of the normal distribution the expected
maximum grows as µ(2 log n)1/2. These results give us the
confidence we seek in VGR’s inherent scalability. Logarith-
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mic growth in per-device maximum memory requirements
is scalable, growth in maximum path length bounded by
the square root of the logarithm of network size is like-
wise scalable. Furthermore, the bounds provided by the
exponential and normal distributions have, experimentally,
proven not to be particularly tight.

We illustrate use and utility of these bounds in the
graphs shown in Figure 7. For each network size we plot
three data points : (i) the sample average of the graph’s
statistic (space requirements, or longest path from a device)
based on random sampling, with the sample set being 5%
of the network size, (ii) the maximum value of that statistic,
observed by looking at every device, and (iii) a bound on
the expected maximum, based on the assumption that the
statistic’s sample mean is the mean of the statistic’s actual
distribution. The idea is that for large networks we can use
random sampling of devices to construct a sample mean,
then use the analytic bound as a guide towards resource
requirements. We include observed maxima in these graphs
to illustrate the scale of the bounds as compared with the
real maxima.

The upper graph in Figure 7 looks at space requirements,
and shows that the average storage needed per-device is
insensitive to the network size. This is not surprising, as
we have seen already that networks without barriers do not
need escape tables very much, so that the average device
memory need is dominated by the cost of storing neighbor’s
VGR coordinates. On the other hand, increasing the network
size definitely increases the global observed maximum. The
“dip" in the observed max at 6000 devices is an artifact of
random sampling, as only one network is analyzed for each
device size, and there is variation in these statistics as one
randomly samples networks. It is evident that the bound
built using an exponential assumption is conservative, but
it is also true that the gap between observed maximum and
bound decreases over the interval of observation, raising the
question of whether there may be a cross-over at a much
larger network size.

The right-hand graph in Figure 7 provides similar data
for the “maximum-path-length-from-a-device" metric. In
this case we see slight growth in the average, which is to
be expected because as the network grows given a fixed
average connectivity, the network diameter grows as well.
We also see that the observed maximum longest-path is
quite close in value to the average, reflecting low variation
in that measure. The bound on the maximum is obtained by
assuming that the sample mean is the distribution’s mean,
and applying the formula for mean maximum of independent
normals. We again see that this bound is very loose.

4 CONCLUSIONS

A number of emerging applications—including those in
Homeland Defense—will rely upon networks of small com-
municating devices which self-organize into a network. The
issue of routing messages within such a network is of ac-
tive interest. We are particularly interested in techniques
which will work on very large networks. One technique
which scales, Geographic Routing (GR), routes with a sense
of geographic direction, always pushing a message closer
to its ultimate goal. Geographic coordinates give one a
global frame of reference against which routing decisions
can be made with relatively little memory or computational
overhead. However, geographic routing requires support
through GPS or some other method, costly in equipment,
power, and (if device locations are loaded into them) time.
This paper considers virtual geographic routing (VGR),
where the network constructs a virtual coordinate system
as a function of connectivity, then routes “geographically"
with respect to that coordinate system. We describe the key
ideas, use simulation to examine the nature of routes dis-
covered by VGR as compared with GR on networks of size
1000 devices, and then consider the scalability of VGR’s
behavior and resource demands as network size grows. We
find that VGR handles networks with severe communication
obstacles better than GR, and otherwise has routes that are
not significantly different in nature than GR’s. We use the
notation of stochastic variability to describe a means of
assessing VGR resource demands for large networks, and
to argue for its scalability as network sizes grow. VGR thus
gives the advantages of GR, without each device needing
to know its physical geographic location.
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Scalability of Space Requirements

0

200

400

600

800

1000

1200

1400

0 2000 4000 6000 8000 10000 12000

M
em

or
y 

ce
lls

Number of devices

 avg
 obs. max
 exp. bound

Scalability of Longest Path Length

0

50

100

150

200

250

300

350

400

450

500

0 2000 4000 6000 8000 10000 12000

P
at

h 
Le

ng
th

Number of devices

 avg
 obs. max
 normal bound

Figure 7: Memory Use and Path Lengths on Randomly Generated Networks with an Average of 9 Neighbors, and No Barriers
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