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ABSTRACT 

With the properties of autonomy, social ability, reactivity 
and pro-activeness, agents can be used to represent entities 
in distributed simulations, where fast and accurate decision 
making is a determining factor of the whole environment. 
Resolving concurrent interactions is a key problem of this 
kind of system, as the shared environment needs to allow 
agents to interact with the environment in a causally con-
sistent way. There will usually be either mutually exclusive 
or collaborative interactions. This paper presents our re-
search in designing a middleware component called Inter-
action Resolver (IR) to resolve the effect of concurrent in-
teractions and still guarantee the consistency and causality 
of the system. The ownership management services pro-
vided by the High Level Architecture (HLA) are compared 
with IRs in resolving mutually exclusive interactions in our 
prototype, a minesweeping game. Conclusions are drawn 
based on the experimental results. 

1 INTRODUCTION 

Recently, there is a trend of using agents in distributed 
simulations (Uhrmacher, Fishwick, and Zeigler 2001). An 
agent can be regarded as an encapsulated computer system 
that is situated in some environment and is capable of 
flexible, autonomous action in that environment in order to 
meet its design objectives (Jennings 2000). Agents can 
communicate with each other via some form of communi-
cation language and they have the ability to engage in co-
operative problem solving. The autonomy, social ability, 
reactivity and pro-activeness of agents offer great flexibil-
ity in various situations, thus agents and multi-agent sys-
tems are being used increasingly in a wide range of appli-
cation areas, including information retrieval, 
telecommunications, business process modeling, educa-
tion, military simulations, social simulations, games etc. 
The novelty of our project is to use agents to represent 
some of the entities in distributed simulations. 

 

A distributed simulation is executed on a computing 

system with multiple possibly geographically distributed 
processors interconnected via a communication network 
(Fujimoto 2000). Using agents in distributed simulations 
means some entities in the simulation can automatically 
update and act according to the latest information about the 
environment in which they participate, thus no decisions 
from the outside world need to be made for these entities. 

The High Level Architecture (HLA) (DMSO 1998) is 
a current U.S. Department of Defense (DoD) and IEEE 
standard   for modeling and simulation. Some of the advan-
tages of using the HLA as a multi-agent environment have 
been studied in (Andersson and Löf 1999). HLA provides a 
standard that can reduce the cost and development time of 
simulation systems and increase their capabilities by facili-
tating the reusability and interoperability of component 
simulators. In the HLA, a distributed simulation is called a 
federation, and each individual simulator is referred to as a 
federate, with one point of attachment to the Run-Time In-
frastructure (RTI). A federate can be a computer simula-
tion, an instrumented physical device or a passive data 
viewer. The Interface Specification of the HLA describes 
six service classes to support federations: federation man-
agement, declaration management, object management, 
ownership management, time management and data distri-
bution management.  

The benefits of the HLA and the JADE (Java Agent 
DEvelopment Framework) agent platform were utilized in 
this project. JADE (Bellifemine, Poggi, and Rimassa 1999) 
is a software framework fully implemented in the Java lan-
guage. It simplifies the implementation of multi-agent sys-
tems with both a middleware that complies with the Foun-
dation for Intelligent Physical Agents (FIPA) specifications 
(FIPA 2002) and a set of tools that support debugging and 
deployment. There are different approaches to constructing 
the overall architecture for integrating agents into an HLA 
simulation. In our model (Wang, Turner, and Wang 2003), 
a middleware is composed of JADE and a gateway feder-
ate. The gateway federate is developed to take charge of 
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agents. JADE agent containers where agents reside are 
constructed upon it and the gateway federate can still ac-
cess the RTI directly. There can be more than one agent 
residing in the same JADE container. Every agent has a 
limited knowledge of the environment; they get the infor-
mation via their own sensors, do deliberations and then act 
upon the environment using their effectors. Using the ob-
ject-to-agent (O2A) communication channel provided by 
the JADE toolkit, a gateway federate can communicate 
with its agents using the sensor and effector objects. 

This paper focuses on how to resolve concurrent inter-
actions, especially mutually exclusive interactions, in agent 
based distributed simulations. When more than one agent 
joins the simulation, management of the shared environ-
ment is a key problem: the shared environment needs to be 
structured to allow agents to interact with the environment 
in a causally consistent way. There will usually be either 
mutually exclusive or collaborative interactions in agent 
based distributed simulations. To resolve the effect of these 
interactions and still guarantee the consistency and causal-
ity of the system, we developed a middleware component 
called Interaction Resolver (IR).  

In the rest of this paper, section 2 gives a brief intro-
duction to concurrent interactions. Two solutions to the 
problems of mutually exclusive interactions in our proto-
type system are illustrated in section 3. The two solutions 
are ownership management (OM) services provided by the 
RTI and our Interaction Resolver (IR). OM and IR are 
compared in depth in section 4 based on tests of two dif-
ferent mutually exclusive scenarios in our prototype. 
Benchmarking results and a summary are also presented in 
this section. Finally, section 5 concludes the paper together 
with future work. 

2 CONCURRENT INTERACTIONS 

An interaction can be regarded as the way entities in a sys-
tem communicate with or influence one another. The re-
sults of these interactions normally change behaviors of 
these entities. In distributed simulations, concurrent inter-
actions can be defined as interactions that happen at the 
same simulation time or during the same time step. As 
agents have the properties of autonomy, social ability, 
reactivity and pro-activeness, which offer great 
convenience in various situations, it is necessary to support 
concurrent interactions in agent systems where agents can 
collaborate to achieve their goals. 

Concurrent interactions can be either mutually exclu-
sive or collaborative. It depends largely on the intentions of 
these interactions. Mutually exclusive interactions are in-
teractions that try to access a shared object concurrently, 
while the object only allows a single operation on it at one 
time. On the other hand, there are situations where a shared 
object permits concurrent accesses to be combined in order 
to change properties of the object. These interactions are 
collaborative interactions. A famous example is that if two 
different persons lift a table one after another, they are not 
able to lift it up individually. The table can only be lifted 
when both of them collaborate at the same time as shown 
in Figure 1. 

 

  
Figure 1: Collaborative Concurrent Interactions 

 
According to (Broll 1995), distributed virtual envi-

ronments providing concurrent interactions have to deal 
with two different kinds of problems: the detection of those 
concurrent interaction requests and a  “good” mechanism 
to resolve these requests. Unresolved concurrent interac-
tions may lead to unexpected errors of the whole system. 
Beside other specialized methods, Broll mentions four pos-
sible alternatives: priority based interaction request resolv-
ing, request time dependent interaction sequencing, con-
straint based interaction request resolving and combining 
interaction request. 

3 RESOLVING MUTUALLY EXCLUSIVE 
INTERACTIONS 

A prototype system named a minesweeping game was de-
veloped for our project to investigate mutually exclusive 
interactions. The game is implemented using the JADE 
agent toolkit version 2.5 and DMSO RTI1.3NG-V6. Figure 
2 gives a snapshot of this game. 

 

 
Figure 2: Snapshot of the Minesweeping 
Game  

 
In this game, soldiers are roaming in a minefield to 

find and clear mines to make the environment safe. The 
environment has an n*n grid. It consists of static obstacles 
for soldiers to avoid and dynamic mines for soldiers to pick 
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up. Mines are dynamic as they can explode within a certain 
time if they are not picked up and cleared from the envi-
ronment by soldiers. Each soldier is represented by an 
autonomous agent. It can only have one mine in hand, so if 
a soldier already has a mine in its hand (a busy soldier), it 
has to walk purposely toward the border of the minefield to 
release it. After that, it will roam in the environment again 
as a free soldier to find a mine.  

The sensor region of each agent is just the eight grid 
cells around its current position. We use Data Distribution 
Management (DDM) services provided by the RTI to con-
struct the agent sensors (Wang et al. 2003). Each agent 
federate’s subscription region (in DDM, each federate ex-
presses its interest in receiving data via subscription re-
gions) is mainly based on the sensor regions of agents in it.   

3.1 Problems of Mutually Exclusive Interactions  

As far as our prototype is concerned, there are both mutu-
ally exclusive interactions and collaborative interactions. 
With more than one agent participant in the game, collision 
problems will occur. This is mainly because of the limited 
sensor region of each agent. Figure 3 illustrates this prob-
lem in our prototype.  

subscription
region

sensor
region

SB

SA

 
Figure 3: An Example of Collision  

In this figure, shadowed areas are the sensor regions for 
agents. It is clear that agent SA and agent SB may step to the 
same empty grid cell without awareness of the existence of 
each other. Another example of mutually exclusive interac-
tions in our present system is the problem of picking up the 
same mine. It is almost the same as the example above. 

It may be thought that enlarged subscription regions 
(we use this method for DDM services as they are not time 
stamped) may be one solution, as it allows each agent to 
get sufficient information of agents around it as shown in 
Figure 3. However, the intentions of other agents, their fu-
ture actions (stepping to the empty cell or not, picking up 
the mine or not) are unknown at that time step. When the 
next time step begins, the collision may have already hap-
pened. Advanced methods have to be adopted to solve 
these problems. The ownership management services pro-
vided by the RTI can be one solution, but this approach has 
its limitations. A new method using Interaction Resolvers 
has been developed for agent based distributed simulations. 
Interaction Resolvers can also be used to solve collabora-
tive interactions, which is part of our future work. 
3.2 Solution 1: Ownership Management (OM) 

Ownership management is used by federates and the RTI 
to transfer ownership of instance attributes among feder-
ates (DMSO 1998). It is possible for an object instance to 
be wholly owned by a single federate. But only one feder-
ate can have update responsibility for an individual attrib-
ute of an object instance at any given time. This mutually 
exclusive property of ownership transfer can be used to 
solve the problems of mutually exclusive interactions.  

For example, we can declare mines as HLA objects. 
Suppose there are two agents that want to pick up the same 
mine, they must first request the ownership of the mine from 
the original owner federate of the mine. If one of them must 
obtain the ownership of that mine instance before taking any 
action, the collision of concurrent picking up will not occur: 
when one agent gets the ownership of the mine instance, the 
other one will be notified of its failure in competition for the 
ownership. So when the next time step begins, only the win-
ner picks up the mine. The loser will adopt other actions: the 
surrounding information for it has already changed as the 
mine is cleared from its original position, so the loser will 
not try to pick up the mine. 

As the HLA interface specification does not relate 
time stamps to ownership transfer, it is possible to have 
unexpected situations happen. For example, two agent fed-
erates may both request the ownership of one object attrib-
ute within the same time step, but due to the time delay and 
other factors, it is possible for the later one to get owner-
ship because the RTI receives it earlier. This receive-order 
(RO) based priority in getting the ownership can be incon-
venient in agent based simulations, where users may prefer 
to specify that certain agents with defined priority or at-
tributes should win in a competition. Also, if two federates 
try to acquire and then release ownership of the same ob-
ject instance within the same time step, it is highly possible 
that one of them may get the ownership just after the other 
has released it. Thus the ownership can be acquired twice 
in one time step, which is illogical.   

In the RTI, it makes no sense for each federate to acquire 
ownership of specific set of instance-attributes more than 
once. So when there are more than one agent in one agent 
federate, these agents will have to compete with each other 
mainly based on the time they submit their request. Who will 
obtain the ownership for this federate is unpredictable, as 
only one agent will “represent” this federate. This is unfair if 
we want to realize more functions in the competition.  

Based on all these considerations, a mechanism using 
a middleware interaction manager for each federate called 
Interaction Resolver is investigated in our project. 

3.3 Solution 2: Interaction Resolvers (IR) 

Interaction Resolvers are deliberately designed to resolve 
concurrent interactions in our prototype and similar dis-
tributed simulations. Each federate will have a local IR, 
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which is used to work out partial collisions that happen 
within this federate’s subscription region. All the IRs will 
follow the same working mechanism, thus the result 
reached in each federate is the same for every shared ob-
ject. In our game, for each time step, as each agent that re-
sides in the federate only needs to know the objects within 
its sensor region to make a decision, as long as this infor-
mation is consistent, accurate and up-to-date, there will be 
no errors for the decisions of agents in the whole simula-
tion. IRs are distributed across the whole simulation, this 
greatly reduces the network load compared to the central-
ized ownership management method. Figure 4 shows the 
overall architecture of the agent based simulation with IRs.  
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Figure 4: The Middleware with Interaction Resolvers 

 
In each time step, all interactions (interaction has the 

general meaning instead of the interaction used in the 
HLA) within a federate’s subscription region will be re-
ceived and stored in a list in its local IR. Then the IR will 
group them according to the objects and objects’ properties 
of these interactions. For example, in our system, within 
the interactions received within one time step, some of 
them may be concerned with stepping to cells, while others 
may be concerned with picking up mines. The objects of 
these interactions here are the empty grid cells and the 
mines. How to determine if these interactions have colli-
sions depends on the definition of the system, or the prop-
erties of these objects. In our game, if agents step to grid 
cells with the same position (x,y), these interactions are 
considered as having a collision. Likewise, interactions of 
picking up mines with the same position (x,y) are also 
treated as having a collision. 

Concurrent interactions will be put in different collision 
lists and then sorted. The sorting of these interactions is 
mainly based on how the collision is defined. For mutually 
exclusive interactions, each local IR will compare interac-
tions in each collision list according to the agents’ priorities 
to decide who can be the winner in the collision. If two in-
teractions have the same priority, further properties of each 
interaction will be used for the decision. These properties 
must have unique values throughout the whole distributed 
simulation, thus it can quickly bring an end to the winner 
deciding procedure. We use object instance IDs in our proto-
type, as these IDs are assigned to each object instance by the 
RTI, and are unique throughout the federation. So even if 
two agents have the same priority, they definitely have dif-
ferent instance IDs, and we can then select the winner.   

Only the winner can have exclusive privilege to access 
the shared object, while all losers in this list will require 
correction. In our game, we roll back losing stepping 
agents to their previous positions. These corrections are 
adopted because all agents assume that they have already 
accessed the shared object and then their owner federate 
updates this information to other federates. That is why 
collisions are detected in each relevant IR in the beginning 
of the next time step. Because IRs are used before con-
structing sensors that are sent to corresponding agents, as 
long as all IRs use the same method of correction, and the 
results of the correction are consistent, the whole system is 
free of mistakes as each agent will get corrected status of 
itself and updated nearby information for its next action.  
IRs will not function if there are no collisions in one time 
step. Figure 5 illustrates the working of IRs in our system. 
 

for each collisionList L[]
MaxPriority = 0;
i = 0;
while i <= L[].length do

if L[MaxPriority]. priority < L[i]. priority then
rollback (L[MaxPriority])
MaxPriority =  i

else if L[MaxPriority]. priority > L[i]. priority then
rollback (L[i])

else if L[MaxPriority]. priority = = L[i]. priority then
if L[MaxPriority].mInstanceID > L[i]. mInstanceID then

rollback (L[i])
else

rollback (L [MaxPriority]);
MaxPriority = i

end if
end if
 i++

end while
winner = L[MaxPriority];
accept (winner)

end for  
Figure 5: Algorithm of IRs in the Prototype System 
 
Admittedly, using IRs does bring temporary inconsis-

tency across a time step in the whole federation, but as far 
as all the “pure” agents are concerned, in each time step, all 
IRs immediately correct this inconsistency, and agents will 
get corrected information and make right decisions. There 
is no inconsistency in the information received by agents. 
So in this sense, the whole system is still consistent. Figure 
6 shows the keeping of consistency in our game. Here 
TAR means Time Advance Request. In this example, we 
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can clearly see that for federate 1 and federate 2, there is 
inconsistency of data among different federates at the same 
simulation time: each federate may not have the right agent 
positions for agents of other federates within its subscrip-
tion region. But as far as all the pure agents are concerned, 
before they make deliberations in every time step, the use 
of IRs ensures that all relevant data is consistent. 
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Figure 6: How Consistency is Ensured Using IRs 

4 COMPARISON OF SOLUTIONS 

In order to compare the efficiency of IR with OM, two dif-
ferent test environments are set up. In the first group, all 
agents are trying to step into the same grid cell in a 5*5 
minesweeper environment, while in the second group, all 
agents are picking up the same mine. Figure 7 shows the 
test environments.  
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Figure 7: Test Environments  
4.1 Stepping to the Same Grid Cell 

In this test, all agents in the environment need to step to an 
empty cell. We add some obstacles in order to increase the 
number of agents trying to step to the same grid cell. Once 
the winner gets the right to step to the empty cell in the 
middle, it will step out the next time step, and all losers 
will stand still at that time. This is to make the whole test 
cycle repeat and give the maximum number of agents in 
competitions for cells. 

In order to resolve the conflict, both OM and IR can be 
used. A synchronization point is used to start the simula-
tion at exactly the same time, otherwise agents in early 
joined federates will move around before all agents have 
joined, which will influence the test results.   

4.1.1 Using OM 

The specific grid cell in the middle of the minefield is de-
clared as an HLA object in the federation; once the envi-
ronment federate is initialized, it automatically has the 
ownership of that grid cell. All agents interested in step-
ping to this grid cell should first request its ownership, and 
only when the federate in which the agent resides gets the 
ownership, can the agent step to the cell. The winner agent 
will then step out of the cell, and release the ownership of 
the grid cell for the next possible ownership competition. 
Agents failing to step to the grid cell will be notified by the 
RTI and will stand still until there is another new empty 
grid cell within their sensor region. Figure 8 illustrates the 
test cycle of this process.  

There are two time steps in one test cycle. We have two 
main types of agent federates: the winner federate (the agent 
federate who gets ownership of the cell) and the loser feder-
ates (other agent federates who are denied ownership). The 
test cycles for both types are almost the same. They mainly 
differ in the agent actions: the winner agent will step to and 
step out of the grid cell, while all loser agents will stand still 
at their original positions. It is important to note that loser 
agents can reside in a winner federate.  

A test cycle of a winner federate is described as fol-
lows. When a test cycles starts, the federate will receive 
soldier updates within its subscription region (S step 1). It 
will use this information to construct the sensors for each 
agent in it (S step 2). The federate will then send both sen-
sors and effectors to respective agents using the O2A com-
munication channel (S step 3). When the pure agent gets 
its new sensor, it will deliberate its action and decide to 
step to an empty cell within its sensor region (S step 4). 
The federate will get the decision from the effectors (S step 
5), and request ownership of the empty grid cell (S step 6). 
In order to ensure subsequent ownership transfer, the agent 
federate will tick and wait for ownership callbacks from 
the RTI (S step 7). This ensures every federate in the com-
petition know the result of their ownership requests. The
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Figure 8: The Test Cycle of Using OM in Stepping to the Same Grid Cell 
winner agent will step to the cell (S step 8). After this, the 
agent federate will update agent positions within it (S step 
9). In the next time step, the winner federate will first re-
lease the ownership of the grid cell instance (S step 10).  S 
step 11 ~ S step 15 are the same as S step 1 ~ S step 5. Af-
ter the federate has read the effectors, for the winner agent, 
it will step out of the grid cell (S step 16). Then the feder-
ate will update agent positions again (S step 17).  

4.1.2 Using IR 

Using IRs, each federate can locally decide who can step to 
the cell due to the rules of the game. In this test, the one 
with the highest priority has the privilege. If two agents 
have the same priority, their unique instance ID in this fed-
eration will help in further decision. All losers will be 
rolled back by the local IR. The same information in each 
IR ensures the consistency of the view of each agent.  

All agents will step to the empty grid cell if there is 
one within their sensor regions, and only the winner will 
stay in that cell, while all losers will be rolled back. This is 
one of the main differences from the method of using OM.  

Also, as grid cells need not be HLA objects when us-
ing IR, there is no ownership associated with each grid 
cell. Thus there is no need for agent federates to request its 
ownership before they step to the cell, and release owner-
ship when they step out.  

As with the OM services method, this method also has 
two time steps in one test cycle. The test cycle of this 
method is illustrated in Figure 9. The first time steps are the 
same for both types of agent federates. They all try to step to 
the empty grid cell. The federate will first get all the soldier 
information within its subscription region (S step 1). Then it 
will construct sensors (S step 2) according to the information 
and send both sensors and effectors to respective agents us-
ing the O2A communication channel (S step 3). When the 
pure agents get the new sensors, they will deliberate their 
actions and write effectors (S step 4). The federate gets each 
agent’s action information from its effector (S step 5), and 
they know that agents are stepping to the empty grid cell (S 
step 6). This information is updated by these federates (S 
step 7).  When the next time step begins, each federate will 
get relevant updated soldier information (S step 8). All the 
agents with the same position will be grouped and the local 
IR will decide who can be the winner (S step 9). Only the 
winner agent can stay in the position (S step 10), while all 
losers will be rolled back to their old positions. Because the 
positions of soldier agents change after IR is used, sensors 
and effectors for every agent need to be refreshed to notify 
the pure agents of their current positions (S step 11).  S step 
12 ~ S step 15 are the same as S step 2 ~ S step 5. For the 
winner agent, it will then step back to its original place for 
the next test cycle (S step 16). Other loser agents will stand 
still as they have already been rolled back by IRs. At this 
stage, the environment will become exactly the same as in 
the initialization, that is, all agents stand centered around an 
empty grid cell. The federate will update agents’ information 
before it advances the simulation time (S step 17). Then the 
next cycle begins. 

4.1.3 Experimental Results 

Timings for different numbers of agents/federates are car-
ried out. The platform for our experiments is six DELL 
2.2GHz Pentium 4 computers connected via 100MB 
Ethernet running Windows XP. JADE agent toolkit version
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Figure 9: The Test Cycle of Using IR in Stepping to the Same Grid Cell 
 
2.5, DMSO RTI1.3NG-V6 and JAVA jdk1.4.0 are used. In 
our simulation test, each machine runs a federate. To en-
sure better results, one computer is used to run the rtiexec 
and fedexec separately from the federates and all unneces-
sary outputs were deleted from the source code. The execu-
tion times for the agent federates to run 2000 test cycles 
(4000 time steps in this test) using both OM and IR are re-
corded. For each method, the test is divided into ten differ-
ent groups, varying in agent and federate numbers. The 
distribution of agents in varying numbers of federates (see 
Table 1) is carefully designed to get even load balancing 
and thus achieve the best result.  
 

Table 1:  Distribution of Agents in Federates 
Number of
Federates

Total Number
of Agents Distribution

2 1+1
4 2+2
6 3+32

8 4+4
4 1+1+2
6 2+2+23
8 3+3+2
4 1+1+1+1
6 1+1+2+24
8 2+2+2+2  

 
Figure 10 shows the complete results according to the 

number of federates in the federation. It is clear that using 
IR is more efficient than using OM for this test. 
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Figure 10: Execution Time of OM and IR in Test One 

4.2 Picking up the Same Mine 

In this test, soldiers are deliberately set as static agents, that 
is, they stand still in their initial positions and their only 
action is to pick up a mine within their sensor regions. 
Once there is a mine in the minefield, all agents will try to 
pick it up. The federate that gets the ownership will then 
delete the mine from the federation instead of releasing the 
ownership as in the previous test. The environment feder-
ate will keep on generating mines in the middle once the 
old mine is picked up and deleted from the federation.   

4.2.1 Using OM 

The mine is declared as an HLA object in the federation. 
Once a mine object is initialized, the environment federate 
automatically has the ownership of it. All agents interested 
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in picking up this mine should first request ownership of 
the mine, and only when the federate the agent resides in 
gets the ownership can the agent pick that mine up, and de-
lete it from the federation. Agents failing to pick up the 
mine will be notified by the RTI and will wait until there is 
another new mine within their sensor regions. 

This method uses three time steps in one test cycle. This 
is mainly because the Environment federate needs to update 
the mine object to other federates, and the discovery of the 
mine object needs one time step. The test cycle is almost the 
same as the previous one except for above differences. 

4.2.2 Using IR 

IRs in each federate will resolve the collision of picking up 
the same mine. Only the winner of the collision will have 
the chance to acquire the ownership of the mine, and it will 
get the ownership without ownership competition in the 
RTI. This is different  from using IR in stepping to a grid 
cell where no ownership transfer is involved.  

For each federate, its local IR will group agents with 
the same purpose-pick up the mine, then the IR will deter-
mine which agent wins in the competition due to its prior-
ity. All losers in the IR will be notified of their failure in 
picking up the mine. So in this test, ownership transfer is 
still used, but in a less competitive way than in using OM 
to resolve mine picking conflicts. Some extra time spent in 
ownership transfer is inevitable here. There are also three 
time steps in each test cycle. The cycle is similar to the one 
used in competition for empty cells. 

4.2.3 Experimental Results 

The platform for this test is exactly the same as the previ-
ous one. The execution times for the agent federates to run 
2000 test cycles (6000 time steps in this test) using both 
OM and IR are recorded. This test uses the same distribu-
tion of agents in federates as in Table 1. Figure 11 shows 
the complete results according to the number of federates 
in the federation. These results demonstrate that in this test, 
although extra time is spent in ownership transfer when IR 
is used, IR is still more efficient than OM.   
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Figure 11: Execution Time of OM and IR of Test Two 
4.3 Summary 

From the two tests, we can see clearly that the IR method 
is more efficient than the OM method.  

Due to the limitation of the environment in our game, 
there are at most eight agents in a collision. In a more gen-
eral distributed simulation, where there are many more 
agents in a collision, the original OM method may not 
scale well. With the increase of the requests from federates 
for the same set of instance-attributes, the network load 
will be greatly increased due to the centralized server. The 
IR method solves the conflict locally instead. Moreover, 
there is no bottleneck in the system as all IRs are distrib-
uted across the simulation. All these factors reduce the 
bandwidth requirement in the simulation. This method also 
avoids using tick() to wait for ownership callbacks from 
the RTI. Suppose there are many federates in the federa-
tion, all ticking for the callbacks, it brings a large synchro-
nization burden for the whole federation. 

Moreover, there is a disadvantage of the OM method 
that all losers in the competition will not know who wins. 
The way to select the winner is decided by the RTI due to 
the request time and is unpredictable. This is very incon-
venient for agent based simulations where we may want a 
specific agent with certain advantages to win over others. 
The IR method enables users to design different winning 
mechanisms for various implementations. In addition, all 
the losers in the competition will know the winner, and this 
is an advantage for practical implementations where fur-
ther decisions may be based on this knowledge.   

We have mentioned that the OM method allows only 
one agent in each agent federate to request ownership. The 
IR method definitely does not have this trouble as all 
agents within each IR are the same regardless of whether 
or not they belong to the same federate. It ensures free-
competition throughout the federation. Also the rules for 
the competition can be freely modified by the users. 

When we change to an event-based distributed simula-
tion, resolving concurrent interactions is quite different, as 
there will not be any time-step in the simulation. For the 
OM method, it is almost impossible as the services are not 
time stamped. Additional work is needed if OM is to be 
used in event-based distributed simulations. However, for 
IR we may just need to set a period of time acting as some 
kind of time threshold.  

Based on all these comparisons, we can safely draw 
the conclusion that the IR method is better than the OM 
method for solving mutually exclusive interactions in agent 
based distributed simulations. 

5 CONCLUSIONS AND FUTURE WORK 

This paper shows how to resolve concurrent, mutually ex-
clusive interactions in agent based distributed simulations. 
Using our prototype system, a minesweeping game, own-
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ership management services are compared with interaction 
resolvers. Two different situations of mutually exclusive 
interactions: stepping to the same grid cell and picking up 
the same mine are investigated using these two solutions. 
Besides the flexibility and convenience IR provides, ex-
perimental results also show that the distributed IR saves 
more execution time than the centralized OM. 

Current IRs in our system can only deal with mutually 
exclusive interactions. In the near future, a more complete 
IR component needs to be devised to satisfy the require-
ments of collaborative agents. We need to set up certain 
rules for local IRs to divide different interactions according 
to certain properties, and act upon each of them to achieve 
a combined interaction. This is not difficult based on what 
we have achieved so far. Moreover, the current IR algo-
rithm needs to be generalized, that is, IRs can analyze the 
common features of interactions and divide them into dif-
ferent categories (Natrajan and Reynolds 1999).  
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