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ABSTRACT 

This paper explores current metaphors for visualizing 
agent-based models. Metaphors include grid, network, n-
dimensional cubes and landscape visualization techniques. 
A final section offers some theory underlying visualization 
of complex systems models with emphasis on mappings to  
non-equilibrium systems; conserved quantities and their 
flows; identifying order parameters and control parameters; 
and the presentation of phase transitions. 

1 INTRODUCTION 

Agent-based modeling (ABM) methodologies have matured 
over the last ten years. The increasing variety of ABM soft-
ware toolsets (Gilbert & Bankes 2002) and the accelerating 
availability of serious desktop computing power make mod-
eling accessible to researchers with minimal investments in 
specialized programming skills and hardware expense. Most 
ABM implementations have at least a minimal delivery of 
visualization in addition to graphing and statistics collection. 
This paper will outline current visualization approaches and 
will give examples from the author’s projects. The final sec-
tion will explore potential theory that may inform future de-
velopments in visualization methodologies. 

The ABM community is a subset of the greater simula-
tion community. ABM models tend to use a relatively large 
number of thin agents which have simple internal rules and a 
high degree of interactions between agents (Parunak 1997). 
A second community within the simulation community is 
Multi-agent Systems (MAS). MAS, in contrast to ABM, 
tend to have fewer agents but use thicker agents which tend 
to have sophisticated internal machine learning rules. Over 
the last couple years, attendance at these two communities’ 
respective conferences have become more intermixed. 
While the distinction is fading, the visualization techniques 
and theory outlined below will be specifically tuned to pre-
sent ABM-type models where macro-level dynamics and 
structure are primarily caused by the interactions of a rela-
tively high number of thin agents. 
2 GENRES IN THE ART OF VISUALIZING 
AGENT-BASED MODELS 

2.1 Grid Visualization 

Perhaps the most familiar form of visualizing agent-based 
models is the grid method where agents occupy sites on a 
uniform 2D array of cells. The Sugarscape model (Epstein & 
Axtell 1996) is a good example of this approach where 
lightweight agents interact in an active environment. Agent 
properties can be mapped to size and color in the visualiza-
tion while properties specific to the environment or cell are 
represented with color. The grid approach can be extended 
to allow for 3D agents with additional model properties 
mapped to their motions. Figure 1 illustrates a grid visualiza-
tion example from DrugSim (Agar et al. 2004). Here, cell 
color maps to  the presence of drug supply and Agent color 
(blue) maps to a exceeding a risk threshold for using a drug. 
 

 
Figure 1: 3D Grid Visualization Example 

 
A recent extension of the grid visualization approach is 

to move agents from interacting on a grid of abstract cells 
and toward agents interacting with data from geographic in-
formation systems (GIS). This is particularly useful as gov-
ernment agencies increasingly rely on GIS data formats as a 
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lingua franca among agency computing systems. In the past, 
the scripting languages of the popular GIS environments 
were considered not expressive enough for anything but the 
simplest of ABM. As a result, model developers’ only alter-
native was to use conventional ABM toolsets with feature-
limited GIS plug-ins or libraries. However, recent releases of 
GIS toolsets now include extensions and internal program-
ming support (Python, .NET, etc) that allow ABM models to 
be programmed directly in these environments. The next few 
years should see a broadening of ABM activity in this space 
as GIS practitioners seek to extend their toolsets with active 
processes like ABM on their mapsets. Figure 2 illustrates the 
combination of GIS with ABM. This model by Densmore, 
Guerin, Jung and McKenna explores effects of intervention 
during teenage cruising (black arrows as cars) around the 
Santa Fe plaza to mitigate disturbances to hotel guests (yel-
low blocks). Police intervention includes temporarily mak-
ing streets one-way on cruising nights. 

 

 
Figure 2: Extension of Grid Visualization 
to GIS 

2.2 Graph/Network Visualization 

Graphs are comprised of nodes and the edges or arcs that 
connect them. A grid is a kind of regular graph where each 
cell is a node with four or eight edges connecting it to its 
neighbors. Beginning in the late nineties, research into 
Small World (Watts & Strogatz 1998) and Scale-free net-
works (Barabasi & Albert 1999, Newman 2001) chal-
lenged conventional wisdom on the topologies of agent in-
teractions being either regular or randomly distributed. An 
excellent review of research of Network Dynamics can be 
found in Newman (2003). The consequence of this re-
search is that ABM modelers now include more sophisti-
cated interaction graphs than grids and random graphs. 
With this new perspective, it is not uncommon for ABM 
models to have agents simultaneously interacting on multi-
ple networks of varying topologies.  

Graph layout, which is concerned with the many ways 
to arrange the nodes and edges for display, is an active area 
of research in graph theory (Junger, Mutzel, & Junger  
2003). A force-directed layout where nodes are connected 
by damped virtual springs, is one preferred method of lay-
out for many of the author’s visualizations. This method 
allows for the dynamic addition and removal of nodes. In 
addition, this layout method offers two additional animat-
able parameters to convey information: (1) k, the spring 
constant in Hooke’s law: 

 
 Fs=-k(x-x0) (1) 
 
and (2) x0, the resting length of the spring. Figure 3 illustrates 
a force directed layout in three dimensions. The model, Peer-
Photo, by Guerin and Kunkle, is a self-organizing peer-to-
peer data storage network where both storage nodes and data 
files are given agency. The nodes represent servers. Their 
size represents capacity and their color represents utilization. 
Edges between nodes represents the logical network by 
which data migrates. The latency between two nodes is 
mapped to the resting length of the spring that is used to lay-
out an edge. The model also includes users (not shown) in a 
social network requesting data from the network and recom-
mending data files to their neighbors. 

 

 
Figure 3 : 3D Graph Visualization 

 
ABM visualization has benefited significantly from the 

popularity of computer gaming. To maximize gaming ex-
perience, most modern computers are now shipping with 
hardware graphics cards that dramatically accelerate 3D dis-
play. Additionally, deployment of 3D visualizations are now 
more reliable as most machines come with the rendering li-
braries OpenGL and/or DirectX pre-installed. One capability 
of both of these libraries is particle streams. Particle streams 
are used in games and movies for effects like fire, smoke, 
explosions, sparks and splashes. ABM visualizations can 
map to various parameters that govern particle stream dy-
namics including particle size, emitter frequency, particle 
color, particle lifetime, environmental wind, and environ-
mental gravity. Figure 4 illustrates the use of agent particle 
streams in a visualization by Guerin and Kunkle. The model 
is of the Criminal Justice System of England and Wales 
which was modeled for the UK Parliament and Home Office 
for use in policy appraisal (Boyle et al. 2003). 
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Figure 4: Parameterized Particle Streams on 
Graph Arcs 

2.3 Landscape Visualization 

Sewell Wright (1889-1988) conceived of landscapes as an 
appropriate metaphor for displaying the fitness of organisms 
during biological evolution. Kauffman (1993) extended the 
use of fitness landscapes in his work with NK networks. 
Landscapes are useful in ABM visualizations for the display 
of the energy landscapes (see section 3.2) or for displaying 
the performance of a many parameter settings when per-
forming optimization. Landscapes are extensions to grid 
visualizations where cells are raised to an elevation accord-
ing to a performance metric. Additionally, landscapes, as il-
lustrated in Figure 5, can be used to map GIS information to 
the environment of a model. This wildfire simulation by 
Guerin and Wimberly uses web-based GIS to map elevation 
information to the landscape. Additional GIS layers map to 
the climate and fuel conditions of each cell in the landscape. 

 

 
Figure 5: Landscape Visualization 

2.4 N-Dimensional Cube Visualization 

Both the parameter space and the performance space of 
ABM models tend to be high-dimensional. N-Dimensional 
cubes are useful for interactive exploration of these spaces. 
The cubes allow for dynamic mapping of parameters to 
cube axes and agent (or datapoint) sizes and colors. The 
user is able to dynamically change axes mappings and 
datapoint properties in order to visually data-mine for hid-
den relationships in the data.  

 

 
Figure 6: N-Dimensional Data Cube Example 

 
All the metaphors and examples above illustrate some 

approaches to visualizing ABM. They are by no means ex-
haustive — Many techniques remain to be invented.  

3 SOME SCIENCE BEHIND THE 
VISUALIZATION OF AGENT-BASED  
MODELS AND COMPLEX ADAPTIVE 
SYSTEMS 

ABM is a toolset that has grown up around the research 
of complex adaptive systems (CAS) at the Santa Fe Insti-
tute and many other institutions around the world. Re-
searchers employing ABM are usually interested in re-
producing observed macroscopic dynamics by specifying 
microscopic rules and interactions (Epstein & Axtell 
1996, Bonabeau 2002). As of yet, there remains no single 
accepted definition or measure of Complexity. Many 
doubt there ever will be one.  

Nonetheless, there are some general CAS themes from 
non-equilibrium thermodynamics and statistical mechanics 
that are worth expounding for the purpose of developing 
future visualization techniques. Both disciplines deal with 
systems of extreme numbers of interacting components and 
seek to describe statistical relationships between the aggre-
gate macroscopic variables of these systems. Thermody-
namics finds these relationships through empirical manipu-
lation and observation while Statistical Mechanics derives 
the relationships from the interaction rules of the micro-
scopic components. The relevance to ABM should be ap-
parent as the field is also dealing with systems of many in-
teracting components.  

3.1 Order/Control Parameters and Phase Transitions 

It is common for even simple ABM models to have tens of 
input parameters. Complicated models can often have a 
few hundred or even thousands. Similarly, the output per-
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formance measures can also number in the tens or hun-
dreds for statistics that can be collected from a model run. 
A major question becomes “Which parameters should I let 
the user interactively adjust during a model run and which 
performance metrics should I visualize”? 

Modelers of complex systems are typically inter-
ested in exploring nonlinear effects of input parameters 
and the performance of the system near points of great 
change (phase transitions). Visualizations can borrow 
from statistical physics in their use of order parameters 
and control parameters.  

An order parameter summarizes the macroscopic state 
of the system. Order parameters are not typically directly 
manipulateable by the experimenter. Order parameters are 
ideal candidates for visualization as they effectively col-
lapse the dimensionality of the system to perceptionally 
manageable numbers. Nonlinear changes in order parame-
ters either during model runs or during parameter sweeps 
are indicative of phase transition. An example of an order 
parameter is the degree of magnetization in an Ising model. 

Control parameters, on the other hand, are usually 
those parameters that are manipulateable by the experi-
menter and can be shown to move the order parameter 
through phase transitions. These parameters are good 
candidates for sliders or other GUI elements for direct 
user manipulation. An example of a control parameter is 
temperature in the Ising model. Finding the appropriate 
control parameter can be difficult. One approach is to 
first find some candidate order parameters and then pa-
rameter sweep input parameters and graph changes to the 
order parameters. However, with even ten input parame-
ters, this poses a computational challenge. One approach 
to cut down on the search time is Design of Experiments 
(DOE) which is a technique that systematically varies the 
extreme ranges of parameters while monitoring changes 
to potential order parameters. Figure 7 is an example  
 

 
Figure 7: Use of Design of Experiments to 
Suggest Candidate Control Parameters 
from DrugSim (Agar et al. 2004). The matrix shows the 
effects of 10 parameters on the behavior of the order pa-
rameter (atRisk) in the model. Candidate control parame-
ters will have steep positive or negative slopes. In this 
example, candidate control parameters are nu-
mUsesToAddict, badStuff, and goodStuff. 

3.2 Non-Equilibrium Open Systems,  
Conserved Quantities and Flow 

An underlying theme in CAS research is that of structure 
creation. This section proposes that there may be universal 
principles for structure creation in ABM and what the conse-
quences might be for visualization. These principles would 
not be dependent on particular details of a given model but 
would generalize models into a relatively few number of uni-
versality classes that share common microscopic descriptions 
that yield equivalent macroscopic dynamics.  

Isolated physical systems tend toward equilibrium 
states in accordance with the second law of thermodynam-
ics. Equilibrium is characterized by homogeneous distribu-
tions of conserved quantities which lack gradients from 
which work can be extracted (Kugler & Turvey 1987). A 
consequence of the push toward equilibrium is that struc-
tures in the physical world, without maintenance, tend to 
decay over time.  

If structure tends to spontaneously decay, how does it 
form in the first place? The theme of structure creation in 
CAS research is the idea that structure self-organizes as a 
system is driven far-from-equilibrium.  In physics, a sys-
tem is out of equilibrium if a concentration gradient exists 
for a conserved quantity (energy, charge, mass, linear mo-
mentum, angular momentum, etc.). Concentration gradi-
ents are the source of spontaneous flow processes  in phys-
ics. These flows do physical work to move systems back to 
equilibrium. If a system is far enough from equilibrium, 
the system  can spontaneously break symmetry and organ-
ize to dissipate the existing gradients. Prigogine (1962) re-
ferred to these as dissipative structures. Schneider and Kay 
(1995) offer a  causal explanation that self-organizing 
structures come into existence because they are more effi-
cient at dissipating gradients than are unorganized flows. 

Previous work by the author has shown early evidence 
in an ant-foraging model that the second law and mecha-
nisms of structure creation may apply to ABM in much the 
same way that they do in familiar real-world physical sys-
tems (Gambhir et al. 2004).  As a simple example of a non-
equilibrium flow process in ABM, consider a population of 
randomly walking agents in a space. If one initializes the 
model out of equilibrium, with the agents concentrated in 
one location, the agents will spontaneously diffuse to equi-
librium concentrations where they become distributed 
throughout the space.  

Redistribution of agent concentrations is not the only 
spontaneous flow toward equilibrium that can occur in 
ABM. Most models have some property or quantity trans-
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acted (1)  among the agents; (2) among the agents and their 
environment; or (3) within the environment itself. For ex-
ample, in social models, a quantity transacted may be an 
attitude or belief that spreads among the agents. In eco-
nomic models the transacted quantity may be a currency or 
risk, or in ant foraging models it may be the pheromone in 
the environment. 

We can use the Ising model as an example for defining 
conserved quantities in ABM. The Ising model is a simpli-
fied model for describing ferromagnetism and liquid-gas 
transitions. It is defined as a grid of “agents” with spins 
(orientations) that can be either up or down. Each time 
step, agents orient their spin to be in alignment with the 
majority of their neighbors. The conserved quantity, en-
ergy, is defined for each neighbor interaction. If the spins 
of two neighbors are the same, the local energy on that 
edge is –1. If the spins of the agents are different, the en-
ergy is +1. The summation of local energies across all the 
edges defines a Hamiltonian and is what is minimized dur-
ing a model run. The state space of the model can be visu-
alized as an energy landscape. 

When visualizing a model, a first step might be to 
identify what the conserved quantities may be in the model 
and what might be the mechanism(s) for their transfer. The 
author has observed that in a general class of models that 
exhibit self-organization, there are at least two conserved 
quantities interacting during pattern formation. Additional 
work remains to make this claim more rigorous. But for 
now, a visualization artist might be interested to illustrate 
how these conserved quantities may couple or transact as 
the two are driven toward equilibrium. Some guidance can 
be taken from Onsager relations in thermodynamics that 
describe empirically derived coupling relations between 
the flow rates of two conserved quantities. These empirical 
relations are linear near equilibrium and go nonlinear as a 
system is driven further from equilibrium. 

A useful way to think about structure formation in 
ABM is to consider all the locations in the model descrip-
tion and initial conditions that are not symmetric. Initial 
placement of agents, the initial allocation of resources to 
agents or interaction rules may be locations for initial or 
maintained asymmetries. The claim here is that these 
asymmetries drive organization in models and ABM visu-
alizations can be used to illustrate the relationship of 
asymmetries to order creation. 

A third potential for visualization could be tracking the 
degrees of freedom in the behavioral repertoire of agents. As 
a system self-organizes, components of the system are ex-
pected to lose degrees of freedom through the emergence of 
context-sensitive constraints (Guerin & Kunkle, 2004; Juar-
rero, 1999; Kugler & Turvey, 1987). Visualizing the increas-
ing constraint on agents and their loss of degrees of freedom 
can be a methodology for visualization that illustrates 
mechanisms of self-organization at work. 
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