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ABSTRACT

We summarize the results of an experimental performance
evaluation of WASSP, an automated wavelet-based spectral
method for constructing an approximate confidence interval
on the steady-state mean of a simulation output process so
that the delivered confidence interval satisfies user-specified
requirements on absolute or relative precision as well as
coverage probability. We applied WASSP to test problems
designed specifically to explore its efficiency and robustness
in comparison with ASAP3 and the Heidelberger-Welch al-
gorithm, two sequential procedures based respectively on the
methods of nonoverlapping batch means and spectral anal-
ysis. Concerning efficiency, WASSP compared favorably
with its competitors, often requiring smaller sample sizes to
deliver confidence intervals with the same nominal levels of
precision and coverage probability. Concerning robustness
against the statistical anomalies commonly encountered in
simulation studies, WASSP outperformed its competitors,
delivering confidence intervals whose actual half-lengths
and coverage probabilities were frequently closer to the
corresponding user-specified nominal levels.

1 INTRODUCTION

A nonterminating simulation is one in which we are inter-
ested in long-run (steady-state) average performance mea-
sures. Usually in a nonterminating probabilistic simulation,
we seek to compute point and confidence-interval estima-
tors for some parameter, or characteristic, of the steady-
state cumulative distribution function (c.d.f.) of a particular
simulation-generated response. In Lada and Wilson (2004),
we develop an automated wavelet-based spectral method
for constructing an approximate confidence interval on the
steady-state mean of a simulation output process. This pro-
cedure, called WASSP, determines first a batch size and a
warm-up period beyond which the computed batch means
form an approximately stationary Gaussian process. For
this purpose we use the randomness test of von Neumann
(1941) to determine an interbatch spacer preceding each
batch that is sufficiently large to ensure the resulting spaced
batch means are approximately independent and identically
distributed (i.i.d.). We then take the spacer preceding the
first batch to be the warm-up period, and we use the univari-
ate normality test of Shapiro and Wilk (1965) to determine
a batch size that is sufficiently large to ensure the spaced
batch means are approximately normal.

Next WASSP computes the discrete wavelet transform of
the bias-corrected log-smoothed-periodogram of the batch
means; and the resulting wavelet coefficients are denoised by
applying a soft-thresholding scheme. Then by computing the
inverse discrete wavelet transform of the thresholded wavelet
coefficients, WASSP delivers an estimator of the batch means
log-spectrum and ultimately the steady-state variance con-
stant (SSVC) of the original (unbatched) process—that is,
the sum of the covariances at all lags for the original pro-
cess. Finally WASSP combines the estimator of the SSVC
with the grand average of the batch means in a sequential
procedure for constructing a confidence-interval estimator
of the steady-state mean that satisfies user-specified require-
ments on absolute or relative precision as well as coverage
probability.

Given the output process {Xu : u = 1, 2, . . . , n},
WASSP is designed to deliver a 100(1 − β)% confidence
interval for the steady-state mean µX having the form

X ± t1−β/2,ν

√
γ̂

X

n′ , (1)
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where: (i) n′ is the length of the truncated output process
after deleting (if necessary) a warm-up period containing

initialization bias; (ii) the grand mean X and the SSVC es-
timator γ̂

X
are computed from the truncated output process;

(iii) ν denotes the “effective” degrees of freedom associated
with γ̂

X
; and (iv) t1−β/2,ν denotes the 1 − β/2 quantile of

Student’s t-distribution with ν degrees of freedom, provided
0 < β < 1.

In this paper, we summarize some experimental results
that are representative of the performance we observed in
applying WASSP and other selected procedures for steady-
state simulation output analysis to a suite of five particularly
difficult test problems. The experimental performance eval-
uation reported in this paper is focused on the following
test problems:

a) an M/M/1 queue waiting time process for which
the underlying system has long-run server utiliza-
tion equal to 0.90 and an empty-and-idle initial
condition;

b) the first-order autoregressive (AR(1)) process that
has lag-one correlation equal to 0.995, white noise
variance equal to one, steady-state mean equal to
100, and initial condition equal to zero; and

c) the “AR(1)-to-Pareto” (ARTOP) process that has
marginals given by a Pareto distribution with lower
limit and shape parameter equal to 1 and 2.1, re-
spectively (implying the marginal mean and vari-
ance are both finite while the marginal skewness
and kurtosis are both infinite), and that is obtained
by applying to process b) above the composite of
the inverse of the specified Pareto c.d.f. and the
standard normal c.d.f.

For each of the five test problems (including the test
problems a)–c) discussed in this paper), we used the follow-
ing measures to evaluate the performance of WASSP and its
competitors: (i) the empirical coverage probability of the
delivered confidence intervals; (ii) the mean and variance
of the half-lengths of the delivered confidence intervals;
and (iii) the mean and maximum of the total required sam-
ple sizes. We performed independent replications of each
simulation analysis procedure to construct nominal 90%
and 95% confidence intervals that satisfy a given precision
requirement, specified as either a maximum percentage of
the magnitude of the batch means grand average (for a
relative precision requirement), or as a maximum absolute
half-length (for an absolute precision requirement). We
used the following three precision requirements:

• no precision—that is, we set the maximum confi-
dence interval half-length equal to infinity so the
final confidence interval delivered by WASSP was
based on the batch count and batch size required
to pass the randomness and normality tests;

• ± 15% precision—that is, the half-length of the
final confidence interval delivered by WASSP was
less than or equal to 15% of the magnitude of the
midpoint of the confidence interval; and

• ± 7.5% precision—that is, the half-length of the
final confidence interval delivered by WASSP was
less than or equal to 7.5% of the magnitude of the
midpoint of the confidence interval.

For the sake of comparison, we also applied ASAP3, the
batch means algorithm of Steiger et al. (2004), and the
spectral method of Heidelberger and Welch (1983) to the
five selected test problems. Lada et al. (2004) provide a
full discussion of the experimental results summarized in
this paper.

The rest of this paper is organized as follows. In
§§2–4 we present the results of applying WASSP to the
M/M/1 queue waiting time process, the AR(1) process,
and the ARTOP process. The results for ASAP3 and the
method of Heidelberger and Welch (H&W) for all three test
problems are also presented in these sections. Conclusions
and directions for future research are given in §5.

2 THE M/M/1 QUEUE WAITING TIME PROCESS

For the first test problem, we let Xu denote the waiting
time for the uth customer, u = 1, 2, . . . , in a single-server
queueing system with i.i.d. exponential interarrival times
having mean 10/9, i.i.d. exponential service times having
mean 1, a steady-state server utilization of 90%, and an
empty-and-idle initial condition (so that X1 = 0). The
theoretical mean for this waiting time process is µX = 9.0.

In WASSP the batch means periodogram is smoothed by
computing a moving average of A = 2a + 1 points, where
2 ≤ a ≤ 5. As explained in Lada and Wilson (2004), at
zero frequency the resulting smoothed periodogram is ap-
proximately a chi-squared random variable with 2a degrees
of freedom that has been scaled by the multiplier γ

X
/(2a).

As a consequence, the final 100(1−β)% confidence interval
delivered by WASSP is based on the 1 − β/2 percentile of
Student’s t-distribution with 2a degrees of freedom. The
user selects the value of the smoothing parameter A from
the set of values {5, 7, 9, 11}, with the default being A = 7.
Table 1 shows the performance of WASSP for the M/M/1
queue waiting time process using the smoothing parame-
ter values A = 5, 7, 9, and 11. The results are based on
1,000 independent replications of nominal 90% confidence
intervals (CIs). Table 2 shows the corresponding results for
nominal 95% CIs. The standard error is less than 1% for
each coverage estimator in Tables 1 and 2.

From these tables, it is evident that the coverage prob-
ability decreases in general as the smoothing parameter
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Table 1: Performance ofWASSP Using DifferentValues of
A for the M/M/1 Queue Waiting Time Process with 90%
Server Utilization and Empty-and-Idle Initial Condition;
Results Are Based on 1,000 Independent Replications of
Nominal 90% CIs

Prec. Performance Smoothing Parameter
Req. Measure A = 5 A = 7 A = 9 A = 11

CI coverage 88.8% 87.7% 86.1% 84.2%
None Avg. sample size 18,369 18,090 17,696 18,369

Avg. CI half-length 3.3957 3.0715 2.9116 2.6684
Var. CI half-length 2.6495 2.0026 1.6165 1.2476
CI coverage 89.6% 87.2% 83.5% 82.8%

±15% Avg. sample size 114,710 92,049 79,824 68,533
Avg. CI half-length 1.1000 1.1103 1.1223 1.1451
Var. CI half-length 0.0414 0.0387 0.0381 0.0340
CI coverage 93.6% 90.4% 88.5% 91.5%

±7.5% Avg. sample size 467,370 388,000 341,380 322,990
Avg. CI half-length 0.5846 0.5866 0.5855 0.5911
Var. CI half-length 0.0072 0.0072 0.0067 0.0060

Table 2: Performance ofWASSP Using DifferentValues of
A for the M/M/1 Queue Waiting Time Process with 90%
Server Utilization and Empty-and-Idle Initial Condition;
Results Are Based on 1,000 Independent Replications of
Nominal 95% CIs

Prec. Performance Smoothing Parameter
Req. Measure A = 5 A = 7 A = 9 A = 11

CI coverage 94.4% 93.4% 92% 89.2%
None Avg. sample size 18,816 17,971 19,296 18,116

Avg. CI half-length 4.6864 3.9987 3.6049 3.4274
Var. CI half-length 5.1663 3.6999 2.3715 2.1640
CI coverage 96% 93% 91.5% 89%

±15% Avg. sample size 196,060 143,920 123,220 113,160
Avg. CI half-length 1.1364 1.1342 1.1351 1.1440
Var. CI half-length 0.0341 0.0314 0.0305 0.0301
CI coverage 98% 97% 96.3% 95.5%

±7.5% Avg. sample size 809,840 598,020 532,600 480,820
Avg. CI half-length 0.5897 0.5950 0.5960 0.5962
Var. CI half-length 0.0064 0.0056 0.0061 0.0057

increases. This is due to the target process having a power
spectrum with a sharp peak in the neighborhood of zero
frequency. As the smoothing parameter A is increased,
WASSP’s estimate of the power spectrum near zero fre-
quency becomes flatter, resulting in an estimate of the
SSVC that is biased low. For the no precision case, clearly
A = 5 yields the best results in terms of coverage probabil-
ity. If one were only interested in generating an initial, or
pilot, CI for the steady-state mean of this process without
imposing a precision requirement, then it might be desirable
to change the default smoothing parameter from A = 7 to
A = 5. Similarly, for the ±15% precision case, the results
for A = 5 appear to be better than those for A = 7. How-
ever, for the ±7.5% case, there is significant overcoverage
for A = 5; and it appears that asymptotically, the default
smoothing parameter A = 7 produces better results than
A = 5. For A = 9 and A = 11, the coverage probabilities
for the ±7.5% precision case are also excellent. However,
the small sample results for A = 9 and A = 11 are not as
good as those for A = 5 and A = 7.

In summary, it is evident from Tables 1 and 2 that
while there may be slight differences in the results for the
allowable values of A, setting A = 5, 7, 9, or 11 yields
acceptable results for this system and WASSP appears to be
robust in terms of the smoothing parameter A.

2.1 Summary of Experimental Results for the M/M/1
Queue Waiting Time Process

Table 3 shows a comparison of the performance of WASSP
(using A = 7) and ASAP3 for the M/M/1 queue waiting
time process. The coverage probabilities for ASAP3 have a
standard error of approximately 1.5% for nominal 90% CIs
and a standard error of approximately 1% for nominal 95%
CIs since only 400 replications of ASAP3 were performed.
The coverage probabilities for WASSP have a standard error
of 0.95% for nominal 90% CIs and a standard error of
0.69% for nominal 95% CIs since we performed 1,000
replications of WASSP. From this table, it appears that in
the no precision case, WASSP and ASAP3 yield similar
results in terms of CI coverage. However, WASSP requires
nearly half as many observations as ASAP3.

Table 3: Performance of WASSP (Using A = 7) and
ASAP3 for the M/M/1 Queue Waiting Time Pro-
cess with 90% Server Utilization and Empty-and-Idle
Initial Condition; Results Are Based on Independent
Replications of Nominal 90% and 95% CIs

Prec. Performance 90% CIs 95% CIs
Req. Measure WASSP ASAP3 WASSP ASAP3

# replications 1,000 400 1,000 400
CI coverage 87.7% 87.5% 93.4% 91.5%

None Avg. sample size 18,090 31,181 17,971 31,181
Max. sample size 241,152 185,344 171,456 185,344
Avg. CI half-length 3.0715 2.0719 3.9987 2.5209
Var. CI half-length 2.0026 0.3478 3.6999 0.5350
# replications 1,000 400 1,000 400
CI coverage 87.2% 91% 93% 95.5%

±15% Avg. sample size 92,049 103,742 143,920 140,052
Max. sample size 688,256 424,536 953,424 418,263
Avg. CI half-length 1.1103 1.1820 1.1342 1.2059
Var. CI half-length 0.0387 0.0259 0.0314 0.0205
# replications 1,000 400 1,000 400
CI coverage 90.4% 89.5% 97% 94%

±7.5% Avg. sample size 388,000 287,568 598,020 382,958
Max. sample size 2,614,458 700,700 3,408,016 956,610
Avg. CI half-length 0.5866 0.6273 0.5950 0.6324
Var. CI half-length 0.0072 0.0023 0.0056 0.0020

For the case of ±7.5% precision, Table 3 indicates that
WASSP andASAP3 perform essentially the same, suggesting
that as the relative precision requirement goes to zero,
WASSP and ASAP3 will produce comparable results for
this test process in terms of coverage probability, average
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CI half-length, and variance of the CI half-length. The
average sample size is higher for WASSP than for ASAP3,
however.

Table 4 shows the results for WASSP and the H&W
spectral method for nominal 90% and 95% CIs. Since it
is possible that the H&W algorithm could run out of data
before the precision requirement is satisfied, we included
in Table 4 the overall coverage (for all 1,000 replications,
whether or not the precision requirement was met) as well
as the coverage for those CIs that satisfied the precision
requirement (Satisfied coverage). Furthermore, Table 4
reports the estimated mean squared error of the grand mean,

M̂SE
[
X(m, k)

] = 1

1000

1000∑
u=1

[
Xu(mu, ku) − µX

]2
, (2)

where on replication u of WASSP or the H&W procedure,

Xu(mu, ku) denotes the delivered grand mean based on ku

batches of size mu for u = 1, . . . , 1,000; and the corre-
sponding estimated standard error of (2),

ŜE
{

M̂SE
[
X(m, k)

]} = 1

(1000 × 999)1/2 (3)

×
( 1000∑

u=1

{[
Xu(mu, ku) − µX

]2 − M̂SE
[
X(m, k)

]}2
)1/2

.

The statistics (2) and (3) provide an indication of the
amount of bias associated with the final point estimator

X(m, k) delivered by WASSP or the H&W procedure. This
bias is the result of a combination of two different effects.
First, the grand average of the truncated batch means X(m, k)

is influenced in general by residual initialization bias—after
all, there is no unique, well-defined end of the warm-up
period for the M/M/1 waiting times or more generally for
the output responses generated by many types of discrete-
event stochastic systems. Second, the truncated simulation
run length n′ = mk is random. Moreover, the truncation
point S determined by WASSP or the H&W procedure (that
is, the end of the warm-up period) is also a random variable.

It follows that X(m, k) = X(n′) = ∑S+n′
u=S+1 Xu

/
n′ is a ratio

of two random variables; and for such a ratio estimator, in
general we have

E

[ S+n′∑
u=S+1

Xu

/
n′

]
�= E

[ S+n′∑
u=S+1

Xu

]/
E[n′]; (4)

see §6.3 and §6.8 of Cochran (1977). It is clear that when
WASSP or the H&W procedure is applied to the process
{Xu : u = 1, 2, . . .}, the truncation point S and the total
sample size n = S + n′ are both stopping times for the
process (Ross 1983); and thus, for example, if the {Xu}
Table 4: Performance of WASSP (Using A = 7) and the
H&W Spectral Method for the M/M/1 Queue Waiting
Time Process with 90% Server Utilization and Empty-
and-Idle Initial Condition; Results Are Based on 1,000
Independent Replications of Nominal 90% and 95% CIs

Prec. Performance 90% CIs 95% CIs
Req. Measure WASSP H&W WASSP H&W

# reps. 1,000 1,000 1,000 1,000
Overall coverage 87.7% 67.8% 93.4% 76.2%
Avg. sample size 18,090 2,714 17,971 2,696
Max. sample size 241,152 36,173 171,456 25,719

None Avg. CI half-length 3.0715 4.0535 3.9987 5.1817
Var. CI half-length 2.0026 4.4582 3.6999 7.9996

M̂SE[X(m, k)] 2.8688 11.3983 3.4439 12.0800

ŜE{M̂SE[X(m, k)]} 0.1767 0.5860 0.2423 0.6447
# reps. satisfying 1,000 1,000 1,000 1,000
Satisfied coverage 87.7% 67.8% 93.4% 76.2%
# reps. 1,000 1,000 1,000 1,000
Overall coverage 87.2% 81.3% 93% 88.6%
Avg. sample size 92,049 62,112 143,920 98,838
Max. sample size 688,256 348,434 953,424 482,673

±15% Avg. CI half-length 1.1103 1.1486 1.1342 1.1550
Var. CI half-length 0.0387 0.0406 0.0314 0.0347

M̂SE[X(m, k)] 0.5588 0.7596 0.3545 0.4972

ŜE{M̂SE[X(m, k)]} 0.0362 0.0409 0.0211 0.0273
# reps. satisfying 1,000 939 1,000 944
Satisfied coverage 87.2% 80.9% 93% 88.4%
# reps. 1,000 1,000 1,000 1,000
Overall coverage 90.4% 85% 97% 91.8%
Avg. sample size 388,000 275,610 598,020 431,590
Max. sample size 2,614,458 1,323,572 3,408,016 1,517,616

±7.5% Avg. CI half-length 0.5866 0.5899 0.5950 0.5903
Var. CI half-length 0.0072 0.0072 0.0056 0.0078

M̂SE[X(m, k)] 0.1151 0.1692 0.0680 0.1016

ŜE{M̂SE[X(m, k)]} 0.0053 0.0087 0.0034 0.0053
# reps. satisfying 1,000 918 1,000 917
Satisfied coverage 90.4% 83.9% 97% 91.1%

were i.i.d., then we would have

E

[ S+n′∑
u=S+1

Xu

]
= E

[ S+n′∑
u=1

Xu

]
− E

[ S∑
u=1

Xu

]

= E[S + n′]µX − E[S]µX (5)

= E[n′]µX, (6)

where (5) follows from two applications of Wald’s equation
(Ross 1983). Combining (4) and (6), we see that in general

the grand average of the truncated batch means X(m, k)

delivered by WASSP or the H&W procedure is a biased
estimator of the steady-state mean,

E
[
X(m, k)

] �= µX, (7)

not only because of initialization effects but also because
of ratio-estimator bias due to randomness of the truncation
point and the final total sample size.



Lada, Wilson, Steiger, and Joines
When WASSP is applied to a given steady-state simu-
lation model, asymptotically as the relative precision spec-
ification tends to zero, we see that the final batch size
m → ∞ while the final batch count k remains in the range
256 ≤ k ≤ 4,096 so that the truncation point S → ∞ and the
final truncated sample size n′ → ∞. A similar conclusion
applies to the operation of WASSP in the case that the abso-
lute precision specification tends to zero. These properties

ensure that WASSP’s point estimator X(m, k) = X(n′) con-
verges to µX with probability one as the relevant precision
specification tends to zero. Although a similar statement
can be made about the asymptotic unbiasedness of the point
estimator delivered by the H&W procedure as the relative
precision specification tends to zero and the user-specified
maximum sample size tmax → ∞, it should be noted that
the H&W procedure provides no mechanism for estimating
the value of tmax necessary to deliver a CI with the required
relative precision.

In the no precision case for the M/M/1 waiting times,
we see from Table 4 that the mean squared error for the

final point estimator X(m, k) delivered by the H&W method
is nearly four times that for WASSP. Beyond the usual
ratio-estimator bias due to the randomness of its truncation
point and its final sample size, the H&W procedure exhibits
significant bias due to initialization effects because its built-
in Cramér–von Mises test for such bias is not effective in
detecting and eliminating those effects. Table 5 summarizes
the results obtained from versions of the H&W algorithm
that were implemented with and without the Cramér–von
Mises test. Notice that in Table 5, we let HW−CV denote
the original Heidelberger-Welch (1981) procedure without
the Cramér–von Mises test.

From Table 5, it is clear that using the Cramér–von
Mises statistic to detect and eliminate initialization bias
has a negligible effect on overall CI coverage, CI half-
length, final sample size, and the estimate of the mean
squared error of the truncated grand mean. There does
appear to be some improvement in the precision of the
CIs delivered by the H&W algorithm that incorporates the
Cramér–von Mises test, as evidenced by the variance of
the CI half-length and the number of replications satisfying
the precision requirement. We found that the results in
Table 5 are indicative of the results obtained for the AR(1)
and ARTOP processes as well. That is, we did not see a
significant improvement in general in the performance of
the H&W algorithm by incorporating the Cramér–von Mises
test into the procedure. For a complete summary of the
results obtained by applying the HW−CV method, see Lada
(2003). Note that throughout this paper, all references to
the H&W procedure mean the Heidelberger-Welch spectral
procedure that incorporates the Cramér–von Mises test for
initialization bias as detailed in Heidelberger and Welch
(1983).
Table 5: Performance of the H&W Procedure versus That
of HW−CV, the Version of H&W without the Cramér–
von Mises Test for Initialization Bias; Results for the
M/M/1 Queue Waiting Time Process with 90% Server
Utilization and Empty-and-Idle Initial Condition, Based
on 1,000 Independent Replications of Nominal 90% and
95% CIs

Prec. Performance 90% CIs 95% CIs
Req. Measure HW−CV H&W HW−CV H&W

# reps. 1,000 1,000 1,000 1,000
Overall coverage 79.6% 81.3% 87% 88.6%
Avg. sample size 65,282 62,112 104,290 98,838
Max. sample size 314,464 348,434 482,306 482,673

±15% Avg. CI half-length 1.3154 1.1486 1.3521 1.1550
Var. CI half-length 0.3765 0.0406 0.3791 0.0347

M̂SE[X(m, k)] 0.894 0.7596 0.6325 0.4972

ŜE{M̂SE[X(m, k)]} 0.0442 0.0409 0.0313 0.0273
# reps. satisfying 767 939 717 944
Satisfied coverage 75% 80.9% 83.7% 88.4%
# reps. 1,000 1,000 1,000 1,000
Overall coverage 84.10% 85% 92.6% 91.8%
Avg. sample size 298,860 275,610 458,310 431,590
Max. sample size 1,216,420 1,323,572 1,841,421 1,517,616

±7.5% Avg. CI half-length 0.6852 0.5899 0.6910 0.5903
Var. CI half-length 0.0599 0.0072 0.0523 0.0078

M̂SE[X(m, k)] 0.2186 0.1692 0.1378 0.1016

ŜE{M̂SE[X(m, k)]} 0.0117 0.0087 0.0077 0.0053
# reps. satisfying 673 918 673 917
Satisfied coverage 79.35% 83.9% 89.6% 91.1%

Returning to the overall results obtained by applying
WASSP and the H&W procedure to the M/M/1 queue
waiting times as summarized in Table 4, we see that once a
precision requirement is imposed on either procedure and
the sample size begins to increase, the mean squared error

M̂SE
[
X(m, k)

]
begins to decrease with the diminishing

effects of initialization bias and ratio-estimator bias on the
final point estimator X(m, k). Moreover, Table 4 clearly
reveals that the final point estimator delivered by WASSP
is less influenced by initialization bias or ratio-estimator
bias than is the final point estimator delivered by the H&W
procedure.

From Table 4, we also see that the H&W method
consistently requires smaller average sample sizes than those
required by WASSP. It is also evident that the coverages of
the CIs delivered by the H&W method are consistently much
less than the coverages of the CIs generated by WASSP. The
unacceptably low coverage probabilities for CIs produced
by the H&W method in the no precision case provide
further evidence of the ineffectiveness of the Cramér–von
Mises test in detecting and eliminating initialization bias.
Essentially, the Cramér–von Mises test is being passed at
very small sample sizes ti ; and as a result, the sample
{Xu : u = 1, . . . , ti} used to construct the H&W confidence
interval of the form (1) is simply not large enough to estimate
accurately the steady-state mean of the process.
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3 THE FIRST-ORDER AUTOREGRESSIVE
(AR(1)) PROCESS

The next test process used in the performance evaluation
of WASSP is the first-order autoregressive process. Let
{δu : u = 1, 2, . . .} be a white noise process that is randomly
sampled from N(0, σ 2

δ ). We define an autoregressive process
of order one (that is, an AR(1) process) as follows,

Xu = µX + ρ(Xu−1 − µX) + δu for u = 1, 2, . . . , (8)

where µX is the steady-state mean of the process and ρ is the
lag-one correlation of the process in steady-state operation.
To generate the AR(1) process {Xu : u = 1, . . . , n} from
(8), we first set X0 = 0, corresponding to an empty-and-idle
initial condition. We then set the autoregressive parameter
ρ = 0.995, the mean µX = 100, and the variance of the
white noise process σ 2

δ = 1. One of the most difficult
aspects of this test process is its exceptionally long initial
transient period.

Table 6 shows a comparison of the performance of
WASSP (using A = 7) and ASAP3 for the AR(1) process
(8) . Notice that for many of the cases contained in Table 6,
the actual precision of the confidence intervals delivered by
ASAP3 is significantly lower (i.e., better) than the requested
precision level. For example, the average confidence inter-
val half-length for the no precision case for nominal 90%
confidence intervals is 2.325. This indicates that at the no
precision level, ASAP3 is delivering CIs whose half-lengths
are within about ±2% of the mean. Furthermore, WASSP
is delivering CIs at the no precision level that are within
about ±6% of the mean. Consequently, in Table 6 we have
included the results for the ±3.75%, the ±1.875%, and
the ±0.9375% precision cases to provide an indication of
the asymptotic behavior of the two methods. For all five
precision levels, ASAP3-generated confidence intervals are
exhibiting significant overcoverage and the sample sizes
for ASAP3 in the no precision and the ±7.5% precision
cases are about four times higher than for WASSP. From
the ±0.9375% results, however, it appears that WASSP and
ASAP3 are yielding comparable results asymptotically.

Table 7 shows the results of applying WASSP and the
H&W spectral method to the AR(1) process. From Table 7,

examination of the statistic M̂SE
[
X(m, k)

]
reveals signifi-

cant bias in the estimate of the mean for the H&W method.
As mentioned in §2.1, the Cramér–von Mises test is not
sensitive enough to detect and eliminate initialization bias.
For the no precision and the ±15% precision cases, H&W-
based nominal 90% confidence intervals exhibit significant
undercoverage; however, for the ±7.5% precision case the
confidence intervals exhibit slight overcoverage. Overall,
the H&W spectral method completely breaks down in the
small-sample cases; and clearly WASSP outperforms the
H&W method for the AR(1) process.
Table 6: Performance of WASSP (Using A = 7) and
ASAP3 for the AR(1) Process (8) with µX = 100,
X0 = 0, ρ = 0.995, and σ 2

δ = 1 Based on Independent
Replications of Nominal 90% and 95% CIs

Prec. Performance 90% CIs 95% CIs
Req. Measure WASSP ASAP3 WASSP ASAP3

# replications 1,000 400 1,000 400
CI coverage 90.9% 95.5% 94.5% 98.8%

None Avg. sample size 9,866 41,076 9,824 41,076
Max. sample size 30,208 68,864 22,592 68,864
Avg. CI half-length 5.3048 2.325 6.7331 2.825
Var. CI half-length 1.8280 0.170 2.8826 0.270
# replications 1,000 400 1,000 400
CI coverage 91% 95.5% 95% 98.8%

±7.5% Avg. sample size 9,975 41,076 9,820 41,076
Max. sample size 24,612 68,864 21,504 68,864
Avg. CI half-length 5.2512 2.325 6.0977 2.825
Var. CI half-length 1.3046 0.170 1.0834 0.270
# replications 1,000 400 1,000 400
CI coverage 87% 95.5% 95% 98.8%

±3.75% Avg. sample size 13,535 41,076 21,099 41,208
Max. sample size 48,288 68,864 59,360 68,864
Avg. CI half-length 3.2133 2.325 3.2800 2.817
Var. CI half-length 0.1420 0.170 0.1529 0.257
# replications 1,000 400 1,000 400
CI coverage 93.5% 93.5% 97.7% 99.25%

±1.875% Avg. sample size 57,449 68,474 90,371 101,526
Max. sample size 166,308 147,877 328,160 223,173
Avg. CI half-length 1.6481 1.7603 1.6584 1.7703
Var. CI half-length 0.0423 0.0134 0.0429 0.0120
# replications 1,000 400 1,000 400
CI coverage 94% 94.25% 98% 97.25%

±0.9375% Avg. sample size 229,730 213,826 333,050 254,920
Max. sample size 717,388 381,184 967,136 384,512
Avg. CI half-length 0.8297 0.8941 0.8667 0.8959
Var. CI half-length 0.0105 0.0026 0.0115 0.0021

4 THE AR(1)-TO-PARETO (ARTOP) PROCESS

The next system used to test the performance of WASSP
is the “AR(1)-to-Pareto,” or ARTOP process. Let {Zu :
u = 1, 2, . . .} be a stationary AR(1) process with N(0, 1)

marginals and lag-one correlation ρ. The process {Zu : u =
1, 2, . . .} can be generated as follows:

Zu = ρZu−1 + δu for u = 1, 2, . . . , (9)

where Z0 ∼ N(0, 1) and {δu : u = 1, 2, . . .} i.i.d.∼ N(0, σ 2
δ )

is a white noise process with variance σ 2
δ = σ 2

Z(1 − ρ2) =
1 − ρ2. If {Xu : u = 1, 2, . . .} is an ARTOP process with
marginal c.d.f.

FX(x) ≡ Pr{X ≤ x} =
{

1 − (ξ/x)ϑ , x ≥ ξ,

0, x < ξ,
(10)

where ξ > 0 is a location parameter and ϑ > 0 is a shape
parameter, then {Xu} is generated from the “base process” (9)
as follows. First, the base process {Zu : u = 1, 2, . . .} is fed
into the standard normal c.d.f. to get a sequence of correlated,
uniform(0,1) random numbers {Ru : u = 1, 2, . . .}; that is,
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Table 7: Performance of WASSP (Using A = 7) and
the H&W Spectral Method for the AR(1) Process
(8) with µX = 100, X0 = 0, ρ = 0.995, and
σ 2

δ = 1; Results Are Based on 1,000 Independent
Replications of Nominal 90% and 95% CIs

Prec. Performance 90% CIs 95% CIs
Req. Measure WASSP H&W WASSP H&W

# reps. 1,000 1,000 1,000 1,000
Overall coverage 90.9% 46.9% 94.5% 65.9%
Avg. sample size 9,866 1,480 9,824 1,474
Max. sample size 30,208 4,532 22,592 3,389

None Avg. CI half-length 5.3048 13.4345 6.7331 16.7078
Var. CI half-length 1.8280 3.0321 2.8826 4.5517

M̂SE[X(m, k)] 8.6470 218.5032 9.4243 226.7135

ŜE{M̂SE[X(m, k)]} 0.4211 4.4678 0.5423 4.5781
# reps. satisfying 1,000 1,000 1,000 1,000
Satisfied coverage 90.9% 46.9% 94.5% 65.9%
# reps. 1,000 1,000 1,000 1,000
Overall coverage 89% 64.3% 95% 92.9%
Avg. sample size 10,007 2,187 9,882 3,711
Max. sample size 21,504 6,033 21,504 8,364

±15% Avg. CI half-length 5.3104 11.9604 6.7608 12.4407
Var. CI half-length 1.7314 1.3785 2.7774 1.5171

M̂SE[X(m, k)] 8.9913 121.5678 9.2352 50.1782

ŜE{M̂SE[X(m, k)]} 0.3878 3.2300 0.4417 1.9333
# reps. satisfying 1,000 1,000 1,000 1,000
Satisfied coverage 89% 64.3% 95% 92.9%
# reps. 1,000 1,000 1,000 1,000
Overall coverage 91% 93.4% 95% 98.1%
Avg. sample size 9,975 8,047 9,820 9,311
Max. sample size 24,612 16,334 21,504 21,504

±7.5% Avg. CI half-length 5.2512 6.7223 6.0997 7.8967
Var. CI half-length 1.3046 1.0769 1.0834 2.2671

M̂SE[X(m, k)] 8.1948 12.4996 8.1725 10.1088

ŜE{M̂SE[X(m, k)]} 0.3857 0.5063 0.3846 0.4368
# reps. satisfying 1,000 807 1,000 415
Satisfied coverage 91% 92.7% 95% 96.6%

Ru = 	(Zu) for u = 1, 2, . . . , where ϕ(z) ≡ e−z2/2
/√

2π

and 	(z) ≡ ∫ z

−∞ ϕ(w) dw respectively denote the N(0, 1)

p.d.f. and c.d.f. Finally, the process {Ru : u = 1, 2, . . .} is
fed into the inverse of the Pareto c.d.f. (10) to generate the
process {Xu} as follows,

Xu = F−1
X (Ru) = ξ

/[1 − 	(Zu)]1/ϑ (11)

for u = 1, 2, . . . . The mean and the variance of the ARTOP
process (11) are given by µX = E[Xu] = ϑξ(ϑ − 1)−1,
for ϑ > 1 and σ 2

X = ξ2ϑ(ϑ − 1)−2(ϑ − 2)−1, for ϑ > 2,
respectively (Johnson, Kotz, and Balakrishnan 1994).

We decided to set the parameters of the Pareto distri-
bution (10) according to ϑ = 2.1 and ξ = 1; and we set the
lag-one correlation in the base process (9) to ρ = 0.995.
This yields an ARTOP process {Xu : u = 1, 2, . . .} whose
marginal distribution has mean, variance, skewness, and kur-
tosis respectively given by µX = 1.9091, σ 2

X = 17.3554,
E
{
[(Xu − µX)/σX]3} = ∞ and E

{
[(Xu − µX)/σX]4} =

∞ The most difficult aspect of this system is that the
marginals are highly nonnormal, and their distribution has
a very heavy tail. We sampled Z0 from the N(0, 1) distri-
bution when generating the process {Xu} so that the process
was started in steady-state operation. Therefore, there is no
warm-up problem for this process.

Table 8 shows the performance of WASSP for the AR-
TOP process (11) described above using the smoothing
parameter values A = 5, 7, and 9. The results are based on
400 independent replications of nominal 90% CIs. From
this table, we see that the coverage decreases in general as
the smoothing parameter increases. For nominal 90% CIs
with A = 7 and A = 9, the resulting coverage probabilities
are unacceptable at all three precision levels. In this ap-
plication of WASSP, the smoothing parameter value A = 5
appears to yield the best results for both nominal 90% and
95% confidence intervals, especially in the ±7.5% precision
case. While it is true that for A = 5 there is significant
undercoverage in the small-sample cases, clearly as the
sample size increases the coverage probabilities approach
the nominal level. It is unclear at this point why A = 5
produces the best results for this process. Nonetheless, it
is recommended that the default smoothing parameter be
changed from A = 7 to A = 5 for this ARTOP process.

Table 8: Performance of WASSP Using Different
Values of A for the ARTOP Process (11) with
ξ = 1.0, ϑ = 2.1, ρ = 0.995 and Z0 ∼ N(0, 1);
Results Are Based on 400 Independent Replica-
tions of Nominal 90% CIs

Prec. Performance Smoothing Parameter
Req. Measure A = 5 A = 7 A = 9

CI coverage 84.2% 79% 78%
None Avg. sample size 19,880 22,512 22,512

Avg. CI half-length 0.5183 0.4475 0.4155
Var. CI half-length 0.0774 0.0544 0.0441
CI coverage 77.3% 71.5% 72.25%

±15% Avg. sample size 79,095 66,158 54,551
Avg. CI half-length 0.2198 0.2231 0.2296
Var. CI half-length 0.0022 0.0018 0.0018
CI coverage 89% 85.3% 82.5%

±7.5% Avg. sample size 430,430 345,870 272,670
Avg. CI half-length 0.1152 0.1159 0.1177
Var. CI half-length 0.0005 0.0005 0.0005

4.1 Summary of Experimental Results for the ARTOP
Process

Table 9 shows a comparison of the performance of WASSP
(using A = 5) and ASAP3 for the ARTOP process (11).
For the no precision case, WASSP and ASAP3 yield similar
results in terms of confidence interval coverage. However,
ASAP3 is requiring significantly larger sample sizes than
WASSP is for the no precision case. For nominal 90% CIs
in the ±15% precision case, ASAP3 clearly outperforms
WASSP; and the two methods produce comparable results
for nominal 95% CIs with ±15% precision. Asymptoti-
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cally, WASSP appears to outperform ASAP3 in the ARTOP
process, however. For nominal 90% and 95% confidence
intervals with ±7.5% precision, the coverage probability
for WASSP is right at the nominal level, while the coverage
probability for ASAP3 is significantly below the nominal
level. In fact, the coverage probabilities for ASAP3 are
about the same for both nominal 90% and nominal 95%
confidence intervals at all three levels of precision.

Table 9: Performance of WASSP (Using A = 5) and
ASAP3 for the ARTOP Process (11) with ξ = 1.0,
ϑ = 2.1, ρ = 0.995, and Z0 ∼ N(0, 1); Results Are
Based on 400 Independent Replications of Nominal 90%
and 95% CIs

Prec. Performance 90% CIs 95% CIs
Req. Measure WASSP ASAP3 WASSP ASAP3

# reps. 400 400 400 400
CI coverage 84.2% 85.5% 89% 90.75%

None Avg. sample size 19,880 114,053 17,028 114,053
Max. sample size 955,008 524,288 454,410 524,288
Avg. CI half-length 0.5183 0.0909 0.7042 0.1089
Var. CI half-length 0.0774 0.0019 0.1802 0.0029
# reps. 400 400 400 400
CI coverage 77.3% 85.5% 87% 90.75%

±15% Avg. sample size 79,095 117,092 151,190 120,660
Max. sample size 1,674,368 722,944 3,059,792 1,028,096
Avg. CI half-length 0.2198 0.0867 0.2232 0.1008
Var. CI half-length 0.0020 0.0006 0.0021 0.0006
# reps. 400 400 400 400
CI coverage 89% 84% 95% 90.25%

±7.5% Avg. sample size 430,430 186,517 747,640 255,512
Max. sample size 8,466,630 2,873,344 6,975,686 2,097,152
Avg. CI half-length 0.1152 0.0676 0.1190 0.0696
Var. CI half-length 0.0005 0.00005 0.0005 0.00003

Table 10 shows the results of comparing the perfor-
mance of WASSP (using A = 5) with the H&W sequential
spectral method. We first notice from this table that the val-

ues of M̂SE
[
X(m, k)

]
for WASSP and the H&W method are

comparable. Since this ARTOP process is started in steady-

state operation, M̂SE
[
X(m, k)

]
for the H&W method will

not be inflated by system warm-up bias, as we have seen in
some of the other test processes. We also notice from this
table that WASSP-generated CIs satisfying the precision re-
quirement have much better coverage probabilities than the
H&W-generated CIs. Even though WASSP produces sig-
nificant undercoverage in the small-sample case (especially
for nominal 90% CIs), asymptotically it produces coverages
that are at the nominal level. Even at the ±7.5% precision
level, the coverage for the H&W method is significantly
below the nominal level. Overall we concluded that WASSP
outperformed the H&W method in the ARTOP process.

5 CONCLUSIONS AND RECOMMENDATIONS

We presented three test processes that were specifically
designed to explore the robustness of WASSP and its com-
Table 10: Performance of WASSP (using A = 5) and
the H&W Spectral Method for the ARTOP Process (11)
with ξ = 1.0, ϑ = 2.1, ρ = 0.995, and Z0 ∼ N(0, 1);
Results Are Based on 400 Independent Replications of
Nominal 90% and 95% CIs

Prec. Performance 90% CIs 95% CIs
Req. Measure WASSP H&W WASSP H&W

# reps. 400 400 400 400
Overall coverage 84.2% 67% 89% 75.5%
Avg. sample size 19,880 2,982 17,028 2,555
Max. sample size 955,008 143,252 454,410 10,741

None Avg. CI half-length 0.5183 0.7124 0.7042 0.9391
Var. CI half-length 0.0774 0.6841 0.1802 1.8882

M̂SE[X(m, k)] 0.0752 0.3239 0.0919 0.5049

ŜE{M̂SE[X(m, k)]} 0.0039 0.0266 0.0097 0.1118
# reps. satisfying 400 400 400 400
Satisfied coverage 84.2% 67% 89% 75.5%
# reps. 400 400 400 400
Overall coverage 77.3% 72.8% 87% 84%
Avg. sample size 79.095 39,781 151,190 72,093
Max. sample size 1,674,368 673,442 3,059,792 688,454

±15% Avg. CI half-length 0.2198 0.2341 0.2232 0.2406
Var. CI half-length 0.0022 0.0024 0.0021 0.0187

M̂SE[X(m, k)] 0.0365 0.0495 0.0259 0.0350

ŜE{M̂SE[X(m, k)]} 0.0019 0.0026 0.0030 0.0036
# reps. satisfying 400 386 400 394
Satisfied coverage 77.3% 71.9% 87% 84%
# reps. 400 400 400 400
Overall coverage 89% 81.8% 95% 90%
Avg. sample size 430,430 208,570 747,640 348,470
Max. sample size 8,466,630 1,311,863 6,975,686 2,354,295

±7.5% Avg. CI half-length 0.1152 0.1194 0.1190 0.1200
Var. CI half-length 0.0005 0.0003 0.0005 0.0003

M̂SE[X(m, k)] 0.0070 0.0099 0.0028 0.0054

ŜE{M̂SE[X(m, k)]} 0.0015 0.0013 0.0008 0.0006
# reps. satisfying 400 395 400 334
Satisfied coverage 89% 82% 95% 88.1%

petitors against the statistical anomalies commonly encoun-
tered in the analysis of outputs generated from large-scale,
steady-state simulation experiments. From the experimen-
tal results presented, it is evident that WASSP outperforms
the H&W method; and we believe WASSP represents an
advance in spectral methods for simulation output analy-
sis. Furthermore, we can conclude that while WASSP and
ASAP3 produce comparable results in some cases, WASSP
is in general a more robust procedure than ASAP3.

It would be desirable in the future to continue the
experimental work that has been designed to explore the ro-
bustness of WASSP. This extended performance evaluation
should include applying WASSP to processes with long-
range dependence (Suárez-González et al. 2002). It would
also be informative to apply WASSP and its competitors
to more realistic applications, such as the M/M/1 queue
waiting time process with 70% traffic intensity, or the white
noise process (that is, a random N(0, 1) process).

An essential complement to our experimental perfor-
mance evaluation of WASSP must be a theoretical charac-
terization of key asymptotic properties of the procedure as
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the relative or absolute precision requirement tends to zero.
This is the subject of ongoing work.
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