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ABSTRACT 

This paper reviews the performance of various methods 
used to detect the warm up length in steady state discrete 
event simulation.  An evaluation procedure is used to com-
pare the methods. The methods are applied to the output 
generated by a simple job shop model. The performance of 
the methods is tested at different levels of utilizations. 
Various measures of goodness are used to assess the  effec-
tiveness of the methods.  

1 INTRODUCTION 

The goal of steady state simulation studies is to estimate the 
long run characteristics of the system.  In order to estimate 
the long run performance measures, the simulation model is 
run for a certain period of time. Most of the simulation mod-
els are started empty and idle. Almost every time, these con-
ditions differ from the steady state condition. Due to this, the 
simulation model takes some time to reach steady state.  
During this time period the model is said to be in transient 
state. The observations collected during this time period may 
affect the accuracy of the estimates of the performance 
measure, if the transient state lasts for a relatively long time. 
This problem is called as the initialization bias or the start-
up problem in simulation literature. One of the ways to 
overcome this problem is to run the simulation model for a 
time period L called as the warm-up length. Reset all statis-
tics after time L and start recording observations for a period 
of m - L, where m is the run length. Another difficulty here is 
in predicting the warm-up length? 
 Over the years many authors have come up with vari-
ous methods that determine the warm up length. These 
methods can be broadly classified into four groups: 

 
I. Graphical  
II. Statistical 
III. Heuristic 
IV. Initialization Bias 

 

The statistical methods can be further classified into basic 
and advanced. Advanced methods involve time series 
analysis. Robinson (2002) categorizes time series methods 
and other complex methods in a separate group called ad-
vanced methods.  
 The goal of this research is to compare some of the 
methods from groups I, II and III based on their perform-
ance. Initialization Bias tests are not considered. The per-
formance will be judged using five measures of goodness. 
This research will provide answers to following: Which 
methods work under which conditions and which methods 
fail?  If some methods work well for a particular condition, 
which one of them is the most effective? Are there any 
modifications, which when applied to the methods will im-
prove their performance? 

Similar research was carried out by Wilson and Prit-
sker (1978), Gafarian, Ancker, and Morisaku (1978) and 
Cash et al., (1992).  

The remaining paper is organized in four sections. Sec-
tion 2 gives a brief explanation of the methods used, Section 
3 explains the experimental model, run conditions, measures 
of goodness used, procedure and run conditions. Results are 
presented in Section 4 and conclusion is Section 5.   

2 A BRIEF REVIEW OF THE METHODS 

This paper compares the performance of the six methods. 
Table 1 below shows the methods and the respective 
group. In the proceeding sections, we give a brief explana-
tion of the six methods. For a detailed explanation, refer to 
Mahajan (2004) or respective references. 

2.1  Welch’s Method 

This is the simplest and most general technique used for 
determining the warm-up length. It is a graphical tech-
nique that requires multiple replications. The Welch’s 
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Table 1: Warm-Up Length Methods 
Method Reference Group 
Welch’s Method           Welch (1983) Graphical 
SPC Method               Robinson (2002) Graphical 
Randomization Test   Yücesan (1993) Statistical 

Conway  Rule 
Gafarian, Ancker, 
and Morisaku 
(1978) 

Heuristic 

Crossing of the 
Means Rule 

Gafarian, Ancker, 
and Morisaku 
(1978) 

Heuristic 

Marginal Standard 
Error Rule -5   

White, Cobb, and-
Spratt (2000) 

Heuristic 

 
method is explained in the following steps as given in 
Law and Kelton (2000) : 

 
1. Make n replications of the simulation each with 

run length m. Let Yji be the ith observation from 
the jth replication. Thus i takes values from 1 to m 
and j from 1 to n. 

2. Calculate the ensemble averages over the replica-
tions. These will be sYi '  where  
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3. Define a moving average )(wYi to smooth out 

the high frequency oscillations in mYYY ...,,, 21 . 
w is the window and is a positive integer. w is 
less than or equal to m/4. )(wYi  is as follows: 
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4. Plot wmiwYi −= ...,,2,1for ,)(  and choose L 

to be that value of i beyond which )(wYi  appears 
to be converged. See Welch (1983) for an aid in 
determining convergence. 

2.2 SPC Method 

Robinson (2004) explains this method in four steps. This 
method requires multiple replications. Let Yij denote the 
observation from each replication, where i is the observa-
tion number and j is the replication number. Calculate the 
ensemble averages, that is similar to equation 1. 

Ensemble averages  },...,2,1:{ miYi = are batched in b 
batches of size k. The batch means are represented as 

bxYx ,...,2,1, = . The batch size is so selected that the re-
sulting batch means pass the Anderson Darling test for 
normality and Von Neumann test for correlation. Minimum 
20 batch means are recommended. For more information 
refer to Robinson (2002). 

The resulting time series after batching is represent- 
ed as:  
 
 )}(),...,({ 1)( kYkYY bk =  (4) 
 

A control chart is generated for the above time series. 
The estimates of population mean (µ) and standard devia-
tion (σ) are calculated from the last half of the series y(k). 
After calculating the mean and the standard deviation, the 
control limits are calculated using the formula: 
 
    3 and 2 1,  z ,2//ˆˆ =±= bzCL σµ  (5) 
 

A control chart is constructed showing the three con-
trol limits, the mean ( µ̂ ) and the time series Y(k). When the 
rules  below are true, it can be said that the time series is 
out-of-control. Steady state is reached when the process is 
in-control and remains in-control. Following are the rules 
to identify if the process is out-of-control: 
 

• A point plots outside a 3-sigma control limit. 
• Two out of three consecutive points plot outside a 

2-sigma control limit 
• Four out of five consecutive points plot outside a 

1-sigma control limit 
• Eight consecutive points plot on one side of the 

mean 
• Initial points all plot to one side of the mean (as 

per expected bias) 

2.3 Randomization Test 

Yücesan (1993) presented a method to detect the initializa-
tion bias. It is based on randomization tests. Yücesan for-
mulated the problem of initialization bias in a hypothesis 
testing framework concerning the mean of the process. 
Randomization tests are applied to test the null hypothesis 
that mean of the process is unchanged throughout the run. 
The advantage of using this method is that, no assump-
tions, like that of normality are required. The null hypothe-
sis for this method is that there is no initialization bias. 
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The steps needed to perform this test are summarized 
below: 

 
1. Run the simulation for a length of time m hours. 

Let Yi be the ith observation from the simulation 
output which is run for m hours. 

2. Obtain an output time series Y1, Y2, ..., Ym. 
3. Batch the data into b batches of length k. 
4. Obtain b batch means bYYYY ...,,,, 321 . 
5. Partition the batch means into two groups. For the 

first iteration the first group must include the first 
batch mean and the second group should contain 
remaining b-1 batch means. 

6. For each iteration, the grand means of the two 
groups are compared.  If the difference between 
the two grand means is significantly* different 
from zero, the null hypothesis is rejected. 
*To access the significance a distribution of dif-
ference is required. Since it is unknown, randomi-
zation is used. 
By using randomization, an empirical distribution 
is obtained and the original observed difference is 
seen far in the tail. 

7. If the hypothesis is rejected, the groups are rear-
ranged; second batch is added to the first group 
and the second group will contain (b-2) batch 
means and step 6 is repeated. 

8. If hypothesis is accepted then the group 2 data is 
the steady state simulation output. 

2.4 Conway Rule 

Conway (1963) suggested the following rule to truncate the 
initial data in order to reduce bias. “Truncate a series of 
measurements until the first of the series is neither the 
maximum nor the minimum of the remaining set.” 

 This is done for a few pilot runs to decide upon a sta-
bilization period. After this is done, the period is deleted 
from the result of each run. 

Following algorithm is constructed using the steps 
given in Gafarian, Ancker, and Morisaku (1978): 

 
1. Decide n and m the number of exploratory replica-

tions and the length of the exploratory replications. 
2. Compute y jr

+  and  y jr
−  using following formulae: 

 
   ,...1),...,:max( njmrlyy jljr ===+  (6) 
 
  ,...1),...,:min( njmrlyy jljr ===−  (7) 
 

3. For r = 1, 2, …, m determine tj such that 
}{min

+−
= << jrjrjrj YYYt occurs for the first time. 
r

4. Estimate of the truncation point t* is given by 
max{t1, t2, t3, …, tn} 

2.5 Crossing of the Means Rule 

This rule is stated in Fishman (1973). This rules states that: 
 

Compute the running cumulative mean as data 
are generated. Count the number of crossings of 
the mean, looking backwards to the beginning. If 
the number of crossings reaches a pre-specified 
value, which means you have reached the trunca-
tion point. 

The pre-specified value depends on the user. Following al-
gorithm is based on steps given in Gafarian, Ancker, and 
Morisaku (1978): 

 
1. Generate the simulation output {Y1, Y2, …, Ym} 

Define: 
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where j = 1, 2, …, m-1 
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2. The number of times the series crosses the mean 

is given by 
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3. Calculate lΩΩΩ ...,,, 21 such that at l the number 

of crossings is equal to the pre-specified number. 

2.6 Marginal Standard Error Rule -5 

For this method, the author defines m as  batch size, n as  
the run length and b as the number of batches. MSER 
Rule (White (1997) states that for a finite stochastic proc-
ess {Yi(j): i=1, 2, ..., n} the optimal truncation point is 
given by 
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where 2/αz  is the value of the unit normal distribution as-
sociated with a 100(1 - α ) percent confidence. For a fixed 
confidence level, 2/αz  is a constant. The expression then, 
can be written as: 
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For a given output sequence d(j)* is determined by 

solving the unconstrained minimization problem defined 
by the above equation. The MSER heuristic is applied to 
the raw data where as the MSER-m rule is applied to b 
batch means where b = run length/batch size (m). For 
MSER-5 rule (Spratt 1998), the batch size is 5. 

Codes for Welch’s Method, Conway Rule, Crossing of 
the Means Rule and Randomization Test can be found in 
Mahajan (2004). 

3 EXPERIMENTAL DETAILS 

In this section we describe the experimental model, per-
formance measures used to evaluate the method, model pa-
rameters and run conditions and the procedure. 

3.1 Experimental Model 

The methods are tested on simple job shop models. There 
are five cells, C1, C2, C3, C4 and C5. Each cell has different 
number of machines (resources). There are three customer 
classes (three different types of parts). The overall arrival 
rate is Poisson ( λ ) hours and the service times for servers 
are exponential with means ji,µ hours (i (customer class) = 
1, 2, 3 and j (cells) = 1, 2, 3, 4, 5). The model is built and run 
in Arena 5 simulation software. The arriving parts are split 
into three types (customer classes), namely, type A, type B 
and type C with probabilities 0.5, 0.3 and 0.2 respectively. 
The parts get processed in the cells in different service times. 
After being processed the parts exit the system. 
 The methods are applied to the model with different 
levels of utilization.  
 Type I Model has a high level of utilization. The aver-
age utilization of all resources is close to 90%. The indi-
vidual utilizations may vary from 80% - 95%. 
 Type II Model has a moderate level of utilization . The 
average utilization of all resources is close to 70%. The in-
dividual utilizations may vary from 65% to 80%. 
 Type III Model has a low level of utilization. The av-
erage utilization of all resources is close to 50%. The indi-
vidual  utilizations may vary from 45% - 65%. 

3.2 Performance Measures to Evaluate the Methods 

1. Mean square error (MSE) 
 

 ) ̂(Var  +})ˆ({E  = MSE 2 θθθ −  (13) 
where  θ = Actual mean of simulation output data. 
 
Last paragraph in Section 3.2 shows the procedure 
used to estimate the value of θ .  
θ̂ = Mean of the remaining data left after deletion. 
If L is the warm up length and m is the run length, 
then : 
 

ˆ θ  =  

Yi

i= L +1

m

 
m − L

 (14) 

m is the run length, L is the warm up length and 
Yi, for i= 1 to m is the value of the performance 
measure at i time units. A good method will yield 
a low value of MSE. 
 

2. Variance 
 

By deleting data, the variance of the point estima-
tor is likely to increase. Thus it is necessary to as-
sess the quality of deleted data based on the vari-
ance of  θ

)
.   

 
3. Percentage change in mean square error 
 

This calculates the percentage change in the initial 
mean square error (with no data deleted) after data 
deletion has been applied. The simulation output 
will have a MSE before data deletion has been 
applied. Let this be denoted by MSEini. After ap-
plying the warm up length and deleting L data 
points, MSE is calculated again. Let this be de-
noted by MSE 

 

  ) / ) - ( * 100
  MSEin   change %

iniinifin (MSEMSEMSE
=

 (15) 

A good method will always give a negative value 
of percentage change in MSE. 
 

4. Percentage change in variance 
 

It is the percentage change in the initial variance 
after data deletion has been applied. Initial vari-
ance is the variance of the simulation output data 
with no warm-up. Let this be denoted by Vini. Fi-
nal variance is the variance of the data  
left after applying the warm-up length.  
 

) / ) - ( * 100
 ein varianc  change %

iniinifin (VVV
=

 (16) 
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5. Cost   
 

Cost is calculated in terms of average computer 
time. This is the sum of computer time required to 
collect data and computer time required to per-
form the method. This is measured in seconds. 

 
Estimating the actual value of θ :  
The models are run for a very long time in the range of 
106 - 109  hours. Values of the performance measure, say 

iθ  for these long runs are observed. The values of iθ  for 
each long run are within 1% of each other. The average of 

si 'θ  for all long runs is assumed to be a true estimate of 
 θ for the given model.  

 For verification, the value of θ is also calculated 
theoretically using a queuing software “RAQS”. For model 
type II and type III, the results obtained from RAQS and 
from the averages of long runs are within 1%. For type I 
model, the results are within 3.5%. This verifies the results 
for all the models. 

3.3 Model Parameters 

Run Conditions: System is started empty and idle. Initial 
run length is 1000 hours.  

Performance measure: Number in system (Inventory) 
measured at the end of each hour. This performance meas-
ure is chosen arbitrarily. Results may vary for different 
performance measures. 

3.4 Procedure 

In this section we explain in detail the procedure used to 
obtain values for the measures of goodness. The methods 
are applied to type I, type II and type III models. Applying 
a method to a model constitutes one experiment. 

Initially all the models are run for 1000 hours. Vari-
ance and MSE for this data are calculated against the actual 
value of Number in System. 

For methods that require multiple replications, the 
model is run for 5 replications. The measures of goodness, 
time, MSE and variance are then calculated after applying 
the warm-up length.  

Methods that do not need multiple replications, are 
applied to each of the 5 replications independently to get 5 
different warm-up lengths. This will give 5 values of time, 
MSE and variance. The final values of time, MSE and 
variance are calculated as averages of the 5 values obtained 
from the five replications independently.  

Based on the values of MSE and variance after apply-
ing the warm-up length prescribed by the respective 
method, the % change in MSE and % change in variance 
are calculated against the initial MSE and variance without 
data deletion.  
Some of the methods demand for more data if a test 
for autocorrelation and/or normality fails. For such meth-
ods, more data is generated. The maximum run length re-
quired for any method when implemented on any model is 
noted. All models are run again with a run length equal to 
the maximum. By doing this all the methods  are evaluated 
against a constant run length. Thus a total of 180 experi-
ments are performed. 

4 RESULTS 

For each method, we have chosen certain specifications 
which are kept constant for all the experiments. These are 
mentioned in Section 4.1. Results are presented in Sec-
tion 4.2 and 4.3. A method is said to perform well if it re-
duces both the MSE and variance and is also computa-
tionally efficient. 

4.1 Implementation Specifications 

4.1.1 Welch’s Method 

Welch’s Method requires three parameters to be specified. 
The run length m, the number of replications n and the win-
dow size w. Law and Kelton (2000) suggest taking the 
minimum value of w that so that graph appears smooth. For 
all the models value of w = 10 was enough to obtain a 
smooth graph. Welch’s procedure is a graphical procedure. 
The user decides the warm-up length by observing a graph 
of averaged values against time. Thus there is subjectivity 
involved in this procedure. To minimize this subjectivity, 
twenty five users were asked to observe the graphical output 
and give their values for the warm-up length.  Finally, the 
warm-up length was calculated as the average of 25 values.  

4.1.2 Conway Rule 

This rule also requires multiple replications. The number 
of replications is set to 5. 

4.1.3 Statistical Process Control Method 

This method requires the data to be batched with a batch 
size such that the data is approximately normally distrib-
uted and has negligible serial autocorrelation. Initial batch 
size is kept 1. The batch size is doubled if either the test for 
autocorrelation or normality fails. The number of batches 
is at least 20. If the number of batches falls below 20, then 
the test demands more data. For this research, if the test 
demands more data, the run length is incremented by 200 
and the test is re-started.  

4.1.4 Crossing the Means Rule 

This rule requires the user to decide the value of number of 
crossings. Gafarian, Ancker, and Morisaku (1978) used a 
value of three. The same value is used here.  
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4.1.5 MSER-5 Rule 

This rule uses a batch size of 5. It needs only one replica-
tion.  Refer to Spratt (1998) for more details. 
 
Tables 2 and 3 show the results of experimental runs. 

4.2 Results for Run Length = 1000 Hours 

The results for 1000 hours run length  are shown in Table 
2. For Type I model, it can be seen that none of the meth-
ods work. Randomization Test and the SPC method need 
more data. But given more data they reduce both the MSE 
and variance. MSER-5 rule works well for type II model. 
 

For Type III model, MSER-5 Rule and SPC method work 
well. Randomization test reduces both the MSE and vari-
ance, however it takes more time to perform (750 seconds). 
For Type I model, the SPC method requires 5200 hours run 
length to be able to perform. All the experiments are run 
again for 5200 hours.  

4.3 Results for Run Length = 5200 Hours 

Table 3 shows the results when the models are run for 
5200 hours. For Type I model, the SPC method, Welch’s 
Method and the Randomization Test perform well. For 
model Type II the MSER-5 Rule and Crossing the Means 
Rule performs well. However the Randomization Test 
Table 2: Results for Run Length = 1000 Hours 

Method 

Average 
Run 

length 
(hours) 

Final 
MSE 

Final 
Variance 

Average 
Computing 

Time 
(seconds) 

% 
Change 
in MSE 

%Change 
in 

variance 

Model Type I 
Welch (1) 1000 213.3846 1.8777 8 -33.42 13.33 
SPC (1) (3) 5200 72.3188 0.2984 27 -77.44 -81.99 
Conway (1) 1000 332.6243 1.6383 11 3.78 -1.12 
MSER-5 (2) 1000 395.7777 1.9550 5 23.49 17.99 
Randomization (2) (4) 1480 259.8652 1.1773 21 -18.92 -28.95 
Crossing the means (2) 1000 266.0326 1.7685 22 -16.99 6.74 
Initial (before truncation) 1000 320.4976 1.6569 5 0.00 0.00 

Model Type II 
Welch (1) 1000 1.27 0.067 8.5 -34.67 5.51 
SPC (1) 1000 2.01 0.065 13.2 3.33 2.00 
Conway (1) 1000 2.02 0.063 12.1 3.70 -0.75 
MSER-5 (2) 1000 1.41 0.062 5 -27.80 -2.99 
Randomization (2) 1000 2.01 0.064 10.6 3.15 0.41 
Crossing the means (2) 1000 1.48 0.065 7 -23.78 1.93 
Initial (before truncation) 1000 1.95 0.064 5 0.00 0.00 

Model Type III 
Welch (1) 1000 0.070 0.021 11 -7.59 8.52 
SPC (1) 1000 0.062 0.026 31 -36.25 -4.88 
Conway (1) 1000 0.060 0.019 15 0.64 -7.78 
MSER-5 (2) 1000 0.061 0.019 9 -0.02 -5.64 
Randomization (2) 1000 0.060 0.019 750 -0.24 -7.21 
Crossing the means (2) 1000 0.069 0.020 25 2.18 6.04 
Initial (before truncation) 1000 0.065 0.019 8 0.00 0.00 

(1) These methods need 5 replications, hence the warm-up lengths are same for all 5 runs 
(2)  These methods need single replication. They are applied 5 times to 5 runs. 
(3) The Modified SPC Method does not work for run length of 1000. It demands an increase in run length. 
(4) The Randomization Test does work for run length of 1000. It demands an increase in run length. 
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Table 3: Results for Run Length = 5200 Hours 

Method 

Average 
Run length 
(hours) 

Final 
MSE 

Final  
Variance 

Average 
 Computing  

Time (seconds) 
% Change 
 in MSE 

%Change 
in  
variance 

Model Type I 
Welch (1) 5200 70.6416 0.2982 33 -2.32 -0.05 
SPC (1) 5200 53.7927 0.3349 33 -83.22 -79.79 
Conway (1) 5200 72.3384 0.2977 54 0.03 -0.24 
MSER-5 (2) 5200 51.6606 0.2907 16 -28.57 -2.59 
Randomization (2) 5200 44.0937 0.2997 31 -39.03 0.44 
Crossing the means (2) 5200 67.1267 0.2993 39 -7.18 0.31 
Initial (before trunca-
tion) 5200 72.3188 0.2984 15 0.00 0.00 

Model Type II 
Welch (1) 5200 0.0954 0.0112 18 4.83 0.26 
SPC (1) 5200 0.1115 0.0116 39 22.52 3.72 
Conway (1) 5200 0.0942 0.0111 21 3.48 -0.17 
MSER-5 (2) 5200 0.0798 0.0111 15 -12.35 -0.74 
Randomization (2) 5200 0.0957 0.0111 145 5.19 0.01 
Crossing the means (2) 5200 0.0906 0.0111 29 -0.43 -0.07 
Initial (before trunca-
tion) 5200 0.0910 0.0111 15 0.00 0.00 

Model Type III 
Welch (1) 5200 0.0175 0.00394 19 6.01 1.25 
SPC (1) 5200 0.0250 0.00979 32 51.45 151.47 
Conway (1) 5200 0.0165 0.00389 16 -0.31 -0.13 
MSER-5 (2) 5200 0.0167 0.00390 15 0.78 0.01 
Randomization (2) 5200 0.0165 0.00389 1795 -0.05 -0.09 
Crossing the means (2) 5200 0.0166 0.00391 27 0.60 0.48 
Initial (before trunca-
tion) 5200 0.0165 0.00389 14 0.00 0.00 

(1) These methods need 5 replications, hence the warm-up lengths are same for all 5 runs 
(2)  These methods need single replication. They are applied 5 times to 5 runs. 
takes longest time to perform. For Type III model, the ini-
tial MSE and variance are very low. There is less scope 
for reduction in MSE and variance. A method is said to 
perform well if it does not increase the MSE and variance 
by more than 1% or  it reduces both the MSE and vari-
ance. We see that except for the Welch’s Method and the 
SPC Method, all other methods perform well for this  type 
of model. However, the Randomization Test needs ex-
tremely long time to perform. This is due to a large num-
ber of iterations.  

5 CONCLUSION 

The evaluation procedure presented in this paper is easy 
to implement on various methods and can be used to test 
the performance of the same. The measures of goodness 
used clearly indicate the quality of the methods. 

From the results we conclude that there is no method 
which works well for all types of models. Some methods 
work well for low utilized systems, where as some work 
for longer run lengths as opposed to smaller run lengths.  
The Randomization Test works well for highly utilized 
system if additional data that it requires can be made 
available. Same applies to SPC Method. For Type III 
models, the Randomization Test takes a lot of time due to 
a large number of iterations. In such situations partial 
Randomization Tests are recommended. Results with par-
tial randomization test show that the performance with not 
only the time but also with MSE and variance is im-
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proved. Following modifications can improve the per-
formance of Randomization Test:  

 
• Minimum number of batches should be 20. 
• Approximate randomization tests are recom-

mended for low utilization models where the ex-
pected run time is very high. 

 
The SPC Method works well for Type I systems. But 

for medium and low utilized systems, it tends to give a 
very long warm-up length and removes vital observations.  
The performance is worse for low utilized systems with 
longer run lengths. The Welch’s Method didn’t work well 
for most of the experiments. It is highly subjective. Dif-
ferent results may be observed for different set of users. 
The Crossing the Means Rule seems to work well for very 
long run lengths on Type II and Type III models. The 
Conway Rule is very aggressive. It works well only for 
low utilized systems. The MSER-5 Rule works well for 
longer run lengths. For shorter run lengths it works well 
for low and moderately utilized models. This rule is 
highly efficient. Table 4 presents the recommended meth-
ods depending on the system used.  
 

Table 4: Recommended Methods for Different 
Types of  Systems 

Highly utilized system 
Name of the method Recommendation 
SPC Method Use long run length 
Randomization Test Only if more data 

can be generated 
MSER-5 Rule Use long run length 

Moderately utilized system 
MSER-5 Rule Use long run length 

Low utilized system 
Randomization Test None 
Conway Rule None 
MSER-5 Rule Use long run length 

6 FUTURE RESEARCH 

For this research a particular system performance measure 
was chosen (number in system measured at the end of 
every hour). The results may vary for different measures 
of performance. Also, the complexity of the system was 
kept constant. The methods need to be tested by varying 
the system performance measures and the complexity of 
the system. Test for Initialization Bias were not included 
in this research. Future research may deal with developing 
deletion strategies for the Initialization Bias Tests and as-
sessing their performance. 
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