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ABSTRACT 

We present a new method of selecting the best of several 
competing system designs on the basis of expected steady-
state performance. The method uses a new form of time-
series bootstrap in a sequential hypothesis testing frame-
work. We illustrate the efficiency of the new method by 
comparing its results against the current state of the art in a 
series of simulation experiments. The new method achieves 
equal or greater probability of correct selection of the best 
system with substantial savings in the number of simulation 
observations required for the decision. 

1 INTRODUCTION 

Our focus is the selection portion of the well-known simu-
lation ranking and selection problem (Law and Kelton 
2000, Kim and Nelson 2003). One potentially valuable ap-
plication of discrete event simulation is rapid identification 
of the best among a set of competing system designs. 
Rapid identification is important when choosing among al-
ternative ways to respond to disruptions in the operation of 
mission-critical systems. It is also important when sorting 
through the large number of alternatives generated by 
combinatorial design methods.  

In our opinion, the state of the art is represented by the 
KN++ sequential selection method described in Goldsman 
et al. (2002); hereafter it is referred to as GKMN. KN++ is 
well developed, well justified, and efficient compared to its 
predecessors. It seemed to us that the best chance for fur-
ther progress on this problem lay in investigating radically 
different approaches. The beginning of this new approach 
followed from the realization that methods that discard or 
overwhelm the initial transient (warmup period) waste use-
ful data due to a mistaken assumption that only steady state 
data have relevance in ranking and selection problems. The 
seminal work of Sheth-Voss and colleagues (Sheth-Voss, 
Haddock, and Willemain 1996; Sheth-Voss Willemain, and 
Haddock  forthcoming) inspired the new approach. 

We describe a new approach that bends a few rules but 
produces excellent results. The method uses a few short 
simulation runs that begin with the alternative systems 
empty and idle and does not delete the transient data. The 
method then augments these data with artificial data cre-
ated by a new variant of time series bootstrapping, boot-
strapping with mirroring (BWM). This new bootstrap is an 
offshoot of the threshold bootstrap (Park and Willemain 
1999, Park et al. 2001) with three interesting twists: it ig-
nores the fact that the data are nonstationary, it creates 
“mirrored” data that is reflected around the zero axis, and it 
pools the results of multiple time series and their mirrored 
counterparts. 

We compared the performance of this new transient-
based method to the KN++ results by duplicating the ex-
periments in GKMN. The performance comparisons were 
based on the same criteria: expected number of simulation 
observations required to arrive at a decision, and probability 
of correct selection (PCS) of the best of several alternative 
system designs. The new method achieved equal or better 
PCS with substantially fewer simulation observations. 

2 STATE OF THE ART 

The KN++ method (Goldsman et al. 2002) is a screening 
and selection procedure. With high probability, the screen-
ing procedure will choose a subset which contains the best 
alternatives, and the selection procedure will pick the best. 
The underlying approach is that of batch means (with or 
without overlapping): Produce one long simulation run, 
break it into batches to achieve approximately iid normal 
data, then perform inference using an indifference zone ap-
proach (Kim and Nelson 2001). An indifference zone δ, 
which describes the smallest absolute difference in ex-
pected performance that is considered important to detect, 
is set by the experimenter. KN++ guarantees, with confi-
dence level greater than or equal to 1 – α, that the system 
ultimately selected has the best true mean performance 
when the mean performance of the best is at least δ better 
than the second best. When there are inferior systems 
whose means are within δ of the true best, then the proce-
dure guarantees to find one of these “good” systems with 
the same probability.  
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KN++ uses a long initial series of observations to get a 
preliminary estimate of the means and variances of the ex-
pected performance measure, such as delay in queue. It 
then decides whether there is a clear winner among the 
competing designs. If so, the method stops with a recom-
mendation. If not, KN++ obtains more simulation observa-
tions, updates the estimates of means and variances, and 
reconsiders the question. Such a sequential pair-wise com-
parison based method has the potential to eliminate alterna-
tives at each stage so that the total simulation cost is re-
duced. By allowing the batch size to update each iteration 
and introducing better variance estimators, KN++ outper-
formed the previous methods tested in GKMB.  

3 NEW METHODOLOGY 

To explain the new method, consider the simple case of 
comparing two systems. To fix ideas, assume that the two 
systems are queues, and the performance measure of interest 
is the steady state mean delay in queue. We begin by simu-
lating each system through n0 customers, starting both sys-
tems empty and idle. From these observations, we compute 
the differences in delay for corresponding pairs of custom-
ers. Finally, we form the cumulative mean of the differences, 
which represents our first datum. We repeat this procedure 
M times to generate M values of the cumulative mean delay 
(M typically takes values in the range of 1 to 5). 

If we had deleted the transient phase of each simula-
tion replication, we would now have a pure case of inde-
pendent replications, and we could perform a one-sample t-
test on the null hypothesis that the mean difference is zero. 
By using the cumulative mean of the difference series, we 
allow the central limit effect to shape the distribution of the 
data toward the normality required for the t-test. However, 
in our method we forego the deletion of the transient 
phase, recognizing that the sign of the difference is what 
we need to know, not the magnitude, and that the sign is 
robust against the transient. 

To get high power from such a t-test, we would need 
many independent replications. However, we wish to mini-
mize the computational cost of running the simulation soft-
ware, since our interest is in comparing large, complex sys-
tems. Accordingly, we use the M sequences of delay 
differences as the basis for creating B bootstrap samples. 
These B values provide a better estimate of the standard de-
viation of the cumulative mean difference for use in the t-test. 

The bootstrap used at this stage is a new variant of the 
threshold bootstrap (TB). The TB works by dividing a sta-
tionary time series into “chunks” and then concatenating 
chunks chosen by sampling with replacement from the set 
of chunks (Park and Willemain 1999, Park et al. 2001).  
Chunks are composed of “cycles”; cycles are composed of 
consecutive high and low “runs”; runs are sequences of 
data values on the same side of a “threshold”. In our pre-
liminary work, we have used a threshold of zero and a 
chunk size of one cycle. (We think that time series length 
 

is more usefully measured in units of cycles than individ-
ual observations, and plan to develop guidelines for using 
the new method in those terms. Counting length in cycles 
automatically incorporates the effect of serial correlation 
on the effective sample size of the data.) 

We have made several modifications to adapt the TB 
to the selection problem. First, while we recognize that 
data from the transient phase are not stationary, we simply 
ignore that fact and use all the data. Second, to enforce the 
null hypothesis of zero mean difference required in the se-
lection procedure, and also to better capture intra-sample 
variation, we create from each difference series its “mir-
rored” version, which is simply the series reflected about 
the origin. Third, we form the set of chunks from which we 
resample by pooling the chunks from all M series of differ-
ences and M their mirror images. Pooling and mirroring 
allow us to better capture the inter-sample variation evident 
in highly autocorrelated time series. Then we finish by cre-
ating artificial time series of the same length as the real dif-
ference series, resampling from the pool of chunks derived 
from the 2M series and concatenating the sampled chunks 
until the bootstrap series has the required length. Repeating 
this process B times produces the final pseudo-data needed 
for a significance test. We regard the distribution of the B 
values as the null distribution of the raw data, which are 
the cumulative mean differences. A value of B around 100 
or more seems to suffice. 

At this point, the analysis proceeds along classical 
lines. We revert back to the actual simulation results, 
which consist of M values of the cumulative mean differ-
ence. The grand mean of these values is the test statistic. 
Its standard error is estimated by the standard deviation of 
the B values of the cumulative means of the bootstrap se-
ries divided by √M. Dividing the grand mean by this esti-
mated standard error gives the sample value of the test 
statistic. Comparing the observed test statistic to a t-
distribution with B-1 degrees of freedom yields a two-tail 
p-value for the observed simulation results. 

The final stage of the method is to demand confirma-
tion of apparently significant results. If the resulting p-
value is below a threshold P, we reach a preliminary con-
clusion that the mean difference is not zero. However, we 
require confirmation before making a final conclusion, so 
we append a “data gulp” of g simulation observations to 
each of the M independent replications and re-analyze the 
problem. If we get C consecutive rejections from the same 
side of the null distribution, we determine that there is a 
winner and nominate the system with the lower grand 
mean for its M cumulative means. If, instead,  the p-value 
falls above the threshold P or the rejection is from the 
other side of the null distribution, we append another data 
gulp, reset the count of consecutive rejections to zero, and 
repeat the analysis. 

When there are more than two alternative systems in-
volved, the new method compares all possible pairs of sys-
tems. If a clear winner is detected between two systems, the 
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inferior one is eliminated for further consideration. The se-
quential procedure stops when there is only one system left.  

Figure 1 represents the new approach in flowchart 
form. 

4 SIMULATION EXPERIMENTS 

To facilitate comparison, we duplicated the setup of the 
GKMN experiments. These used three types of systems: 
M/M/1 queues, AR(1) and MA(1) processes. The utiliza-
tion levels of the queues and the extent of autocorrelation 
in the ARMA processes were exactly the same as in 
GKMN: 60% or 90% utilization for the best queues and 
lag-1 autocorrelations of 0.9 and 0.497 for the AR(1) and 
MA(1) processes, respectively. (Note that GKMN did not 
adjust these alternatives to have equal difficulty, so com-
 

parison across system types is not appropriate.) The com-
parisons for each system involved varying numbers of al-
ternative systems. The alternatives were arranged in one of 
two configurations. In the MDM configuration, the ex-
pected performance of the alternatives was arranged in a 
sequence with a constant offset between the mean per-
formance of the alternatives. In the SC configuration, 
which was applied only for the M/M/1 experiments, the 
best alternative had expected performance offset by the 
same amount from all the others. 

The GKMN experiments were conducted under labo-
ratory conditions. That is, certain parameters, such as the 
length of the initial simulation run, were established at val-
ues optimized using knowledge that would not be available 
in practice (e.g., the length of the initial run n0).  Other pa-
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Figure 1: The Flow Chart of the New Procedure 
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rameter values, such as the choices of variance estimator 
and batch size, were varied as experimental factors, result-
ing in tables with multiple results. In the following section, 
we select for citation those results that were best by either 
PCS or number of observations, which always derived 
from different parameter choices.  

Our experiments used the same test systems and con-
figurations as GKMN. One difference, which we believe is 
not significant, is that we used the NAG C random number 
generator instead of the one in GKMN. We treated the pa-
rameters of the new method as experimental factors: the 
number of short independent replications (M), the number 
of consecutive rejections required before declaring a win-
ner (C), and the p-value required to make a decision (P). 
We determined the length of the initial simulation runs n0, 
the data gulp size, g, and the number of bootstrap replica-
tions, B, using only casual empirical analysis without at-
tempting to optimize these parameters. For each combina-
tion of factor levels, we created R = 1000 independent 
replications. 

5 RESULTS 

The results of the BWM experiments are presented in Ta-
bles 1-4, which correspond to the order of results in 
GKMN. The tables have a common format. The BWM re-
sults are reported for various combinations of the BWM 
parameters P = p-value allowing rejection of the hypothe-
sis test of identical system performance, M = number of 
independent simulation replications, and C = number of 
consecutive rejections of the null hypothesis before a deci-
sion is final. Two results are reported for each combination 
of parameter values: the sample average number of simula-
tion observations required before a selection decision was 
made, and the sample proportion of trials in which the best 
system was properly identified (PCS). Each pair of results 
is based on R = 1000 independent replications of the ex-
periment. The estimates are expressed in the form of 95% 
confidence intervals for the true mean and proportion, re-
spectively. In each table, some of the cells are shaded; 
these shaded cells contain results that dominate both of the 
two best results for KN++, which are shown below the 
BWM results in each table. 

Table 1 shows results for identifying the best of ten 
AR(1) processes with means offset in steps (MDM con-
figuration). The best KN++ results achieved a 94.6% PCS 
after an average of 15,200 simulation observations and a 
98.9% PCS after an average of 34,900 observations. BWM 
dominated KN++ for many parameter combinations. For 
example, with P = 0.05, M = 1, and C = 3, BWM achieved 
a 99.5% PCS after an average of  7,600 observations. 

Table 2 shows results for identifying the best of ten 
MA(1) process in the MDM configuration. Here too BWM 
dominated KN++. For instance, whereas KN++ achieved a 
98.8% PCS after an average of 1,700 observations, BWM 
reached a 99.7% PCS after 560 observations. 
 

Table 1: Average Number of Observations ( 410× ) 
and Estimated Probability of Correct Selection when 
K = 10 AR(1) Processes with φ  = 0.9 in MDM 
Configuration  

BWM 
±95%CI’s  

C P M
1 2 3 

0.46±0.03 0.65±0.03 0.76±0.04 1
94.6%±1.4% 98.1%±0.8% 99.5%±0.4%

0.58±0.03 0.82±0.04 1.01±0.04 2
98.4%±0.8% 99.8%±0.3% 99.9%±0.2%

0.72±0.04 1.04±0.04 1.29±0.04 

0.05

4
99.4%±0.5% 99.8%±0.3% 100%±0% 

g=500 n0=500 B=100 R=1000 

KN++ (GKMN Tables 3 and 4) 
  

Summary (Var estimator A) 
1.52 Best #Obs 94.6%       
3.49 Best PCS 98.9% 

 
Table 2: Average Number of Observations ( 410× ) and 
Estimated Probability of Correct Selection when K = 10 
MA(1) Processes with θ  = 0.9 in MDM Configuration  

BWM 
±95%CI’s  

C P M
1 2 3 

0.037±0.002 0.056±0.002 0.073±0.003 1
98.9%±0.6% 99.7%±0.3% 100%±0% 
0.049±0.002 0.075±0.002 0.097±0.003 2
99.8%±0.3% 100%±0% 100%±0% 
0.065±0.002 0.108±0.002 0.152±0.003 

0.05

4
100%±0% 100%±0% 100%±0% 

g=100 n0=100 B=100 R=1000 
 

KN++ (GKMN Tables 5 and 6) 
    

Summary (Var estimator A) 
0.17 Best #Obs 98.8% 
0.30 Best PCS 99.5% 
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Table 3 shows results for the more difficult problem of 
selecting the best of five heavily loaded M/M/1 queues 
with offset means (MDM configuration). The computa-
tional savings with BWM were substantial. KN++ needed 
an average of 619,000 observations to attain a 96.7% PCS, 
but BWM needed only 167,000 observations on average to 
achieve the same PCS. 

 
Table 3: Average Number of Observations 
( 510× ) and Estimated Probability of Correct Se-
lection when K = 5 M/M/1 Queues with ρ ≥  0.9 
in MDM Configuration 

BWM 
±95%CI’s 

  C   P M 
1 2 3 

0.52±0.04 0.98±0.04 1.16±0.04   1 
65.6%±2.9% 84.9%±2.2% 92.8%±1.6%

0.96±0.07 1.50±0.08 1.67±0.08 2 
79.6%±2.5% 92.7%±1.6% 96.6%±1.1%

1.45±0.10 2.02±0.11 2.23±0.12 4 
89.0%±1.9% 96.8%±1.1% 99.1%±0.6%

1.64±0.11 2.05±0.12 2.35±0.12 6 
91.6%±1.7% 97.3%±1.0% 99.1%±0.6%

1.70±0.11 2.30±0.12 2.51±0.13 8 
94.1%±1.5% 99.1%±0.6% 99.8%±0.3%

1.66±0.11 2.30±0.12 2.76±0.14 

0.025 

10 
95.3%±1.3% 98.8%±0.7% 99.8%±0.3%

0.31±0.04 0.75±0.05 0.99±0.06 1 
56.4%±3.1% 76.2%±2.6% 87.6%±2.0%

0.49±0.04 0.85±0.04 1.00±0.04 2 
66.4%±2.9% 87.4%±2.1% 93.0%±1.6%

0.90±0.08 1.33±0.09 1.74±0.11 4 
78.7%±2.5% 92.3%±1.7% 97.0%±1.1%

0.93±0.07 1.49±0.09 1.75±0.09 6 
86.5%±2.1% 96.3%±1.2% 98.3%±0.8%

1.05±0.08 1.62±0.10 1.88±0.10 8 
86.9%±2.1% 97.2%±1.0% 99.1%±0.6%

1.14±0.09 1.73±0.10 1.95±0.10 

0.05 

10 
89.5%±1.9% 98.2%±0.8% 99.2%±0.6%

g=1000 n0=1000 B=100 R=1000 
 

KN++ (GKMN Tables 7 and 8) 
    

Summary (Var estimator A) 
2.49 Best #Obs 90.9% 
6.19 Best PCS 96.7% 
 

Table 4 shows results for identifying the best of ten 
heavily loaded M/M/1 queues where one is offset from the 
other nine (SC configuration). KN++ required an average 
of 107,500 observations to reach a PCS of 95.2%, whereas 
BWM achieved the same PCS with only 20,200 observa-
tions on average 

 
Table 4: Average Number of Observations 
( 410× ) and Estimated Probability of Correct 
Selection when K = 10 M/M/1 Queues with ρ ≥  
0.6 in SC Configuration 

BWM 
±95%CI’s 

  C   P M
1 2 3 

2.13±0.15 2.30±0.11 2.51±0.09 1
85.3%±2.2% 96.0%±1.2% 98.4%±0.8%

2.29±0.14 2.35±0.08 2.73±0.08 2
90.6%±1.8% 99.1%±0.6% 99.9%±0.2%

2.39±0.15 2.89±0.09 3.41±0.08 4
98.1%±0.8% 99.9%±0.2% 100%±0% 

2.60±0.18 3.19±0.08 3.92±0.08 6
98.7%±0.7% 100%±0% 100%±0% 

2.57±0.11 3.56±0.08 4.47±0.09 8
99.6%±0.4% 100%±0% 100%±0% 

2.64±0.08 3.92±0.09 4.94±0.09 

0.05

10
100%±0% 100%±0% 100%±0% 
1.30±0.08 1.71±0.08 1.89±0.07 1

70.7%±2.8% 87.8%±2.0% 94.9%±1.4%
1.73±0.13 2.02±0.10 2.20±0.07 2

84.2%±2.3% 96.2%±1.2% 98.9%±0.6%
2.05±0.18 2.45±0.11 2.83±0.08 4

94.4%±1.4% 98.9%±0.6% 99.9%±0.2%
2.28±0.21 2.69±0.08 3.43±0.09 6

96.6%±1.1% 100%±0% 99.9%±0.2%
2.12±0.13 3.05±0.07 3.82±0.07 8

97.7%±0.9% 100%±0% 100%±0% 
2.29±0.17 3.29±0.07 4.42±0.07 

0.1

10
99.2%±0.6% 100%±0% 100%±0% 

g=1000 n0=1000 B=100 R=1000 
 

KN++ (GKMN Table 10) 
    

Summary ( 3B  column) 
6.96 Best #Obs 89.0% 
10.75 Best PCS 95.2% 
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6 CONCLUSIONS 

The BWM method compared favorably to the KN++ 
method, requiring fewer simulation observations for the 
same or better PCS. Specifically, BWM required only 
about 18-30% (AR: 0.76/3.49; MA: 0.056/0.30; M/M/1: 
1.67/6.19 and 2.02/10.75) as many observations in all test 
cases. These gains were made without extensive tuning of 
the BWM parameters. 
 The price of this reduction in simulation observations 
is the overhead of bootstrapping. This overhead is negligi-
ble compared to the time required to run a simulation 
model of a large system. Once the simulation observations 
are in hand, the bootstrap simply rearranges and resamples 
from them without requiring new execution of the costly 
simulation code. 
 We can relate this work to the list of unresolved issues 
listed at the end of GKMN. First, the problem of initializa-
tion bias is ignored by BWM, apparently with impunity. It 
would be reassuring to understand the limits of this robust-
ness. The sequential nature of the algorithm means that the 
extent of dependence on transient observations varies. If 
the difference between the mean performance of two alter-
natives is large, most or all of the decision may be based 
on transient data. If the difference is subtle, more observa-
tions will be required, and the transient phase may be a 
small proportion of the total dataset. Second, the need to 
obtain sufficient initial data to get a variance estimator 
with chi-squared distribution is obviated in the BWM 
method by a combination of multiple replications and the 
bootstrap. Third, the difficulty of analyzing the use of 
common random numbers (CRN) remains an interesting 
theoretical problem. To reproduce the GKMN results, we 
did not use CRN in our experiments, but there is no reason 
why this cannot be done. 
 Much work remains to better understand, optimize and 
justify the BWM method. But these early results are en-
couraging, since speedups by factors of four or more prom-
ise to be very helpful in practice. Further research is ongo-
ing to develop guidelines for parameter settings, to extend 
the empirical investigation to more complex systems not 
studied in GKMN, and to better understand the theoretical 
properties of the new bootstrap method. 
 In particular, we need to identify situations where the 
new approach could be confounded by a reversal in the 
rankings developed in the transient phase when the systems 
reach steady state. It is necessary but not sufficient to rule 
out most kinds of time-varying systems (e.g., consider a 
comparison between a queueing system that adds servers in 
mid-day against a system that adds them at the end of the 
day). To the extent that averages computed from transient 
results have high variance, this problem may be self-
limiting, but further work on this topic is in order. 
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