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ABSTRACT

We present a new sequential, eliminating procedure for se-
lecting the best system in a single-factor Bernoulli-response
experiment with an odds-ratio indifference zone, where best
refers to the system with the largest probability of success
on any given trial. Analytical results show that the proposed
procedure is more efficient than existing procedures in that it
requires fewer observations to identify the best system when
only two systems are being considered. Empirical results
show that the procedure is more efficient for comparing up
to five systems when the specified odds-ratio indifference
zone is greater than two.

1 INTRODUCTION

The Bernoulli selection problem is a special case of the
more general ranking-and-selection problem of designing
an experiment to select the best out of a group of K systems.
The term “best” often refers to the system having the largest
expected value. In the Bernoulli selection problem this is the
system with the largest probability of success on any given
trial, where trials are binary observations sampled from each
of the K Bernoulli systems being considered. Traditional
applications for Bernoulli selection are reliability and quality
control, where outcomes are considered successes if they
survive the mission or meet the quality standard, and they
are failures otherwise. The reliability context is the most
common in discrete-event, stochastic simulation.

A procedure used for solving the Bernoulli selection
problem must specify how many samples to take from each
system to guarantee a probability of correct selection (PCS)
≥P ∗. In addition, if it is possible to obtain observations from
systems individually (sequential sampling) and in different
orders (switching), rather than collecting observations in a
single stage, then the procedure must also specify how often
and in what order to switch sampling between systems.
We present a procedure for selecting the best of K sys-
tems in a single-factor Bernoulli-response experiment using
an odds-ratio indifference zone θ > 1, which is the minimal
odds ratio worth detecting. This procedure is a sequential,
eliminating procedure that is superior to existing Bernoulli
selection procedures developed by Bechhofer, Kiefer, and
Sobel (1968) and Paulson (1994) in that it reduces the ex-
pected number of observations required to correctly select
the best system with a pre-specified minimum probability
P ∗ when the number of systems K is small (K ≤ 3). In
cases where the minimal odds ratio worth detecting is large
(θ ≥ 2) our procedure is superior to the existing procedure
when comparing up to five systems (K ≤ 5).

1.1 Problem Statement

The following three inputs are assumed to be given: (1)
K ≥ 2 Bernoulli systems π1, π2, …, πK with unknown
probabilities of success p1, p2, …, pK , where independent
random samples can be drawn from each of the systems;
(2) PCS P ∗ such that 1/K < P ∗ < 1; and (3) odds-
ratio indifference zone θ such that θ > 1. For notational
convenience, we will assume p1 ≤ p2 ≤ · · · ≤ pK from
here on, so that (unknown to us) system K is the best. A
correct selection is said to be made if the system associated
with pK is selected whenever

pK(1 − pK−1)

pK−1(1 − pK)
≥ θ. (1)

The left-hand side of (1) is the odds ratio, since it is the
odds of success vs. failure for system K , divided by the
odds of success vs. failure for system K − 1.

The metric used to evaluate procedures is the expected
number of observations required to select the best system
with probability ≥ P ∗. Procedures that, on average, require
fewer observations to make a correct selection are preferred.
An alternative metric used by Hong and Nelson (2003) to
evaluate selection procedures is total computational cost,
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which includes the costs of sampling and of switching
between systems. This metric has not been applied to the
Bernoulli selection problem and will not be considered here.

1.2 Preliminaries

This paper focuses on Bernoulli selection procedures that
are eliminating and utilize an odds-ratio indifference zone.
Eliminating procedures cease sampling from systems that
are inferior once the data collected indicate that the system
in question is no longer in contention for the best, as opposed
to non-eliminating procedures where each system remains
in the pool of candidates for selection until the experiment
is run to completion. Elimination can significantly decrease
the total number of observations required to make a correct
selection, and computer simulation is the ideal environment
for sequential, eliminating procedures because sampling can
be automated.

Three types of indifference-zone formulations are used
in Bernoulli selection experiments. In each case the goal is
to have a PCS ≥ P ∗ when condition (2), (3) or (4) holds:
Absolute:

pK − pK−1 ≥ δ > 0, (2)

Odds Ratio:

pK(1 − pK−1)

pK−1(1 − pK)
≥ θ > 1, (3)

Relative Risk:
pK

pK−1
≥ ψ > 1. (4)

We briefly discuss the absolute and odds-ratio indiffer-
ence zones. For a more comprehensive discussion refer to
Bechhofer, Santner, and Goldsman (1995). The absolute
indifference zone is fairly intuitive. When specifying an
absolute indifference zone, the magnitude of the individual
probabilities pK and pK−1 are irrelevant; the only con-
sideration in choosing δ is the difference between pK and
pK−1. However, the odds-ratio indifference zone is depen-
dent on the the magnitude of the individual probabilities
pK and pK−1. For example, in the case where p1 = 0.10,
p2 = 0.30, and p3 = 0.50, the absolute difference between
p2 and p1 is 0.20, which is the same as the absolute differ-
ence between p3 and p2. However, the odds ratio between
p2 and p1 is 3.86, which is not the same as the odds ratio
between p3 and p2, which is 2.33. The odds ratio magnifies
small differences when the probabilities are near 0 or 1.

An important distinction between the absolute and odds-
ratio indifference zone is that when an absolute indifference
zone is specified, the maximum number of observations
required to make a correct selection with probability ≥ P ∗
can be pre-determined. This type of procedure is referred
to as a closed procedure. Alternatively, when an odds-ratio
indifference zone is specified, an open procedure must be
used. This means that no upper bound on the number of
observations required to make a selection with probability
P ∗ can be pre-determined and hence sequential sampling
must be permitted. Sequential sampling allows for collecting
observations from each system in multiple data-collection
stages.

A benefit that the odds-ratio formulation provides is
the ability to model the Bernoulli selection problem as a
random walk in the case where

pK(1 − pj )

pj (1 − pK)
= θ, for j = 1, 2, . . . , K − 1

which is referred to as the slippage configuration (SC). In this
random walk model, let Xi,n be the nth Bernoulli observation
from system i. Let {Sij (n); n = 0, 1, . . .} represent the
state-change process between systems i and j , such that

Sij (n) =
Nij (n)∑
l=1

(Xi,l − Xj,l),

with Nij (n) being the number of Bernoulli trials required
to attain n state changes between systems i and j . Thus,

Nij (n) = min{m :
m∑

l=1

I (Xi,l �= Xj,l) = n},

where I is the indicator function. Then, we can show that
for any j �= K when the SC applies

Pr{SKj (n + 1) = b |SKj (n) = a}

=



θ/(θ + 1), b = a + 1
1/(θ + 1), b = a − 1
0, o.w.

(5)

and {SKj (n); n = 0, 1, . . .} is a discrete-time Markov chain.
Notice that the transition probabilities depend only on θ

and not the specific values of the success probabilities.

1.3 Previous Work

Bernoulli selection procedures that utilize an odds-ratio
indifference zone have been developed by Bechhofer, Kiefer,
and Sobel (1968) and Paulson (1994). These two procedures
are referred to as BKS and BP, respectively.

Procedure BKS is derived from basic random walk
results. This procedure is sequential and non-eliminating.
The advantage of BKS compared to BP is that it lowers the
expected number of data collection stages, but this is at the
cost of increasing the total number of observations required
to make a selection. In a simulation context, a stage could
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be the number of calls made to run the simulation model if
each call results in an independent observation from each
of the remaining K Bernoulli systems. So, for example, if
K = 5, BKS may call the simulator 100 times obtaining
100 observations from each of the 5 systems for a total
of 500 observations. On the other hand BP may call the
simulator 50 times obtaining 50 observations from each of
the 5 systems, and then eliminate 3 of the 5 systems. Next,
BP may call the simulator 100 times obtaining observations
from only the 2 remaining systems. Thus, BP would have
made 150 calls to the simulator but only (5)(50)+(2)(100)
= 450 total observations.

There are applications in which minimizing the num-
ber of data collection stages, rather than the total number
of observations, should be the primary objective. In such
applications, the cost of obtaining individual observations
is low relative to the cost of setting up the experiment at
each stage. This is typically not the case in simulation ex-
periments, nor is it the objective of our proposed procedure,
so we do not consider BKS further.

Procedure BP is most comparable to our proposed pro-
cedure in that it is a sequential, eliminating procedure, which,
relative to other Bernoulli selection procedures, effectively
reduces the expected total number of observations required
to make a correct selection. Paulson (1994) developed this
procedure for the more general problem of selecting the
best from a group of K Koopman-Darmois populations.
All samples are assumed to be independent. The frequency
function of Xi,n is of the form

fi(x) = exp[xβi + g(βi) + h(x)],

which is subject to the restriction that g(βi) has a derivative
dg/dβi that is decreasing in βi , which is satisfied in the
Bernoulli selection problem where

βi = ln

(
pi

1 − pi

)

and

g(βi) = −ln(1 + eβi ) = ln(1 − pi).

Furthermore, the absolute indifference-zone formulation

ln

(
pK

1 − pK

)
− ln

(
pK−1

1 − pK−1

)
≥ δ,

can be re-written as

ln

(
pK(1 − pK−1)

pK−1(1 − pK)

)
≥ δ,
leading to the odds-ratio indifference zone

pK(1 − pK−1)

pK−1(1 − pK)
≥ θ.

with θ = eδ . For the BP selection procedure see Bechhofer,
Santner, and Goldsman (1995).

Next, we present a new Bernoulli selection procedure,
which is followed by an empirical analysis comparing our
procedure to BP. Empirical results indicate that our pro-
cedure is more efficient than BP in terms of the expected
total number of observations required to make a selection
in cases where the number of systems is small (K ≤ 3) or
the minimal difference between systems worth detecting is
large (θ ≥ 2) and K ≤ 5.

2 PROCEDURE BWN

Our proposed procedure, BWN, is a sequential, eliminating
procedure that utilizes an odds-ratio indifference zone to
select the best of K systems in a Bernoulli-response ex-
periment with PCS ≥ P ∗. Conceptually, BWN works by
making pairwise comparisons between each inferior system
and the unknown best system. In developing BWN, we first
notice that

PCS ≥ Pr{πK eliminates {π1, π2, . . . , πK−1}}. (6)

This inequality becomes more conservative as K increases
because the more systems being compared, the higher the
probability that any of these systems may eliminate each
other, rather than being eliminated by the best. This in-
equality also becomes more conservative as θ decreases
because we are indicating that we wish to detect very small
differences between systems, and this increases the proba-
bility that any of the inferior systems will eliminate each
other because they are all close.

We use the Bonferroni inequality to break up the overall
PCS requirement into pairwise comparisons between each
of the K − 1 inferior systems and the best. Applying the
Bonferroni inequality, we can show that

Pr{πK eliminates {π1, π2, . . . , πK−1}}

≥ 1 −
K−1∑
i=1

Pr{πi eliminates πK},

which implies that overall the

PCS ≥ 1 −
K−1∑
i=1

Pr{πi eliminates πK}. (7)
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Thus, we require

PCSi ≥ 1 − 1 − P ∗

K − 1

for each pairwise comparison i = 1, 2, . . . , K − 1. The
required PCS for each pairwise comparison is denoted Preq ,
where

Preq = 1 − 1 − P ∗

K − 1
. (8)

The Bonferroni inequality also becomes more conser-
vative as K increases. The effect of both the Bonferroni
inequality and the inequality used in Equation (6) becoming
overly conservative is that the procedure is less efficient in
terms of the expected number of observations required to
make a correct selection.

We model the state-change process {SKj (n)} for j =
1, 2, . . . , K − 1 as a random walk with symmetric upper
and lower absorbtion boundaries ±B0 as shown in see
Figure 1. This is referred to as a “gambler’s ruin" (GR)
problem (see Ross 2000) with state space S = {−B0, −B0+
1, . . . , B0} and state transitions given by Equation (5) except
that −B0 and B0 are now absorbing states. Since we use
the Bonferroni inequality to break the problem into paired
comparisons, and since we assume the worst case (the SC)
for each pair, we only need to consider a single state-change
process, say {SK1(n)}.

In the GR, the PCS is equivalent to the probability of
being absorbed in state B0, which is

PCS = 1 − 1

1 + θB0
. (9)

Therefore, given K , θ , and P ∗, we can choose integer B0
such that

1 − P ∗

K − 1
≥ 1

1 + θB0
,

or

B0 ≥ ln(1 − P ∗) − ln(P ∗ + (K − 2))

ln(1/θ)
. (10)

The motivation for modelling the Bernoulli selection
problem as a GR is that when K = 2, this model is superior
to BP, which is the current best sequential, eliminating
Bernoulli selection procedure in terms of expected number
of observations required to make a correct selection.

Proposition 1: The GR approach is more efficient than
BP for the case K = 2, and the difference between them
increases as P ∗ decreases.

Proof: We are considering the case where K = 2, which
greatly simplifies both procedures. In the GR the stage at
State Change (n) Current State 
1 3 -3
2 3 -3
3 3 -3
4 3 -3
5 3 -3
6 3 -3
7 3 -3
8 3 -3
9 3 -3

10 3 -3
11 3 -3

State Change (n)

C
ur

re
nt

 S
ta

te

B0

-B0

0

Figure 1: Region Defined by Gambler’s Ruin

which the procedure terminates is the smallest n such that

|S21(n)| ≥ +B

where

B0 = ln(1 − P ∗) − ln(P ∗)
ln(1/θ)

= ln(1 − P ∗) − ln(P ∗)
− ln(θ)

.

Therefore, we stop as soon as

|S21(n)| ≥ − ln(1 − P ∗) + ln(P ∗)
ln(θ)

.

The BP elimination rule stops as soon as

θ |S21(n)| ≥ 1

1 − P ∗ .

Taking the natural log of this we get

|S21(n)| ln(θ) ≥ ln(1) − ln(1 − P ∗) = − ln(1 − P ∗).

Therefore we stop as soon as

|S21(n)| ≥ − ln(1 − P ∗)
ln(θ)

>
− ln(1 − P ∗) + ln(P ∗)

ln(θ)
.

�

The GR is a special case of BWN that occurs only when
the right-hand side of Equation (10) happens to be integer.
For example, in the case where θ = 3.0, P ∗ = 0.90, and
K = 2, using Equation (8) we calculate that Preq = 0.90
and using Equation (10) we calculate that B0 ≥ 2. From
Equation (9), the PCS is 0.90 when B0 = 2, which is exactly
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Preq . In this case, BWN is equivalent to the GR model we
described.

In cases where (10) is not integer, we must be round
up to the nearest integer to assure that the PCS ≥ Preq .
For example, in the case where θ = 3.0, P ∗ = 0.95, and
K = 2, we calculate Preq = 0.95 and B0 ≥ 2.68. Hence,
to assure that PCS ≥ Preq , we rounded B0 = �2.68� = 3.
We then calculate that when B0 = 3, PCS = 0.97, which
is greater than Preq = 0.95.

The consequence of having to round-up when (10) is
not integer is that BWN becomes more conservative in terms
of the expected number of observations required to make
a selection. This inefficiency illustrates the prominent role
discreteness plays in the Bernoulli selection problem and,
loosely speaking, is due to the fact that the region defined by
the ±B0 is too wide. However, it is possible to reduce the
inefficiency caused by rounding by cutting-down the region
to help eliminate some of the excess area. BWN provides
a strategic way for removing the excess area, which was
motivated by Kim and Nelson’s (2001) procedure KN .
The final region defined by BWN, illustrated in Figure 2,
is comparable in shape to the triangular region of KN ,
illustrated in Figure 3. In fact, KN can be used for the
Bernoulli selection problem, but it is inefficient relative to
BWN because it was designed for normal populations rather
than Bernoulli populations.

The BWN region is defined by the the outer-most hor-
izontal absorbing boundaries ±B0, the outer-most vertical
boundary N0, the series of inner horizontal boundaries
B = {±BJ , ±BJ−1, . . . ,±B1} and the series of inner ver-
tical boundaries N = {N1, N2, . . . , NJ }. Truncating and
narrowing the region as the number of state changes in-
creases effectively reduces the expected number of obser-
vations required to make a correct selection when (10) is
not integer-valued (note that when (10) is integer-valued
the region cannot be truncated without the PCS dropping
below Preq ). However, calculating the PCS for this type
of region is more complicated than calculating the PCS for
a GR model. The trick to calculating the overall PCS for
the entire region is to break the region up into rectangles.
We define rectangles by the cross products of their horizon-
tal boundaries [xa, xb], where xa < xb, and their vertical
boundaries [yc, yd ], where yc < yd . For example, consider
the BWN region defined by ±B0 = 3, N0 = 11, B = {2, 1},
and N = {10, 9} as shown in Figure 2. This region can be
broken into rectangles as follows: R0 = [0, 9] × [−3, 3],
R1 = [9, 10] × [−2, 2], and R2 = [10, 11] × [−1, 1].

After dividing the region into rectangles, we compute
the PCS for the initial rectangle R0, and then condition on not
being absorbed in this rectangle and compute the conditional
PCS for the next rectangle R1. This conditioning argument
can be applied iteratively for all rectangles R0, R1, . . . , RJ ,
providing the ability to calculate the overall PCS for any
notched region composed of rectangles in series.
State Change (n)
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Figure 2: Region Defined BWN

State Change

C
ur

re
nt

 S
ta

te

Figure 3: Region Defined by KN

We calculate the PCS for the first rectangle as shown
in Figure 4: Given the initial state space S = {−B0, −B0 +
1, . . . , B0} where ±B0 are absorbing states, state-change
process {SK1(n), n = 0, 1, . . .}, the initial transient states
Q0 = {−B0 +1, −B0 +2, . . . , B0 −1}, the probabilities of
starting in each of the initial transient states q ∈ Q0, and the
height of the J th jump BJ , formulate the one-step transition
matrix P0 for the initial rectangle R0 on S. Let C0 denote
the set of states that, if occupied at state change NJ , indicate
we have made a correct selection; C0 = {BJ , . . . , B0} in
the first rectangle.

The PCS for sub-rectangle R0, denoted PCS(R0), cor-
responds to the probability of being in any state c ∈ C0
after state change NJ :

PCS(R0) =
∑
q∈Q0

∑
c∈C0

Pr{SK1(0) = q}P (NJ )
0 (q, c). (11)

To compute the PCS of the next sub-rectangle R1, we
must first compute the probability of starting in each of
the transient states q ∈ Q1 where Q1 = {−B0 + BJ +
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Figure 4: Example Rectangle from BWN Region

1, . . . , B0 − BJ − 1} at state change NJ as follows:

Pr{SK1(NJ ) = q} =
∑
i∈Q0

Pr{SK1(0) = i}P (NJ )
0 (i, q).

(12)

Given the probability of starting in each of the states q ∈ Q1
and the height of the next jump BJ−1, we can then compute
the PCS for sub-rectangle R1 by formulating the one step
transition matrix P1 on the state space S = {−BJ , −BJ +
1, . . . , BJ } where ±BJ are absorbing states, letting C1 =
{BJ−1, . . . , BJ } and using Equation (11).

When the last rectangle is reached, a correct selection is
said to be made if we reach the upper absorbing boundary
B1 before the lower absorbing boundary −B1 or if we
end up in any state above the horizontal axis (i.e., states
1, 2, . . . , B1 − 1) at state change N0. In the case where the
process ends in state 0, then select the best randomly.

2.1 Example PCS Calculation

We calculate the PCS for the first rectangle of the BWN
region illustrated in Figure 4 as an example. This region is
the region specified by our proposed procedure for the case
where K = 2, P ∗ = 0.95, and θ = 3. For this region there
are a total of J = 3 jumps, S = {−3, −2, −1, 0, 1, 2, 3}
where ±3 are absorbing states, and Q0 = {−2, −1, 0, 1, 2}.
Applying Equation (5) we formulate the one-step transition
matrix for rectangle R0 on state space S as follows:

P0 =




1 0 0 0 0 0 0
.75 0 .25 0 0 0 0
0 .75 0 .25 0 0 0
0 0 .75 0 .25 0 0
0 0 0 .75 0 .25 0
0 0 0 0 .75 0 .25
0 0 0 0 0 0 1



In this example, the probabilities of starting in each of
the initial transient states q ∈ Q0 are as follows:

Pr{SK1(0) = q} =
{

1, if q = 0
0, o.w.

Also, in our example N3 = 9, B3 = 2, and C0 = {2, 3}.
Then, we apply Equation (11) to calculate PCS(R0) = 0.8677.
If we were to continue this process for each rectangle we
would find that, applying Equation (12), the transient state
probabilities are

Pr{SK1(9) = q} =



0.0751, if q = 1
0.025, if q = −1
0, o.w.

Continuing, we find that PCS(R1) = 0.0563 and PCS(R2)
= 0.0282 for an overall PCS = 0.9522.

Given the ability to compute the PCS for any number
of sub-rectangles in series, the problem then is to determine
how many sub-rectangles of what dimensions to divide the
outer region. The goal is to get the PCS associated with
the region as close to Preq as possible by systematically
removing pieces of the region to guide it toward a triangular
shape. The following algorithm BWN is a heuristic approach
for doing this; it is heuristic in the sense that we cannot
prove that the final region is in any sense optimal, but we
can prove that it maintains the required PCS.

2.2 BWN Setup

Setup for the BWN selection procedure requires the fol-
lowing inputs: K ≥ 2 Bernoulli systems, desired PCS P ∗
such that 1/K <P ∗< 1, and odds-ratio indifference zone
θ > 1. BWN outputs the outer-most horizontal absorbing
boundaries ±B0, the outer-most vertical boundary N0, the
number of inner rectangles J , the series of inner horizon-
tal boundaries {±BJ , ±BJ−1, . . . ,±B1} for each of the
j = 0, 2, . . . , J rectangles, and the series of inner vertical
boundaries {N1, N2, . . . , NJ } for each of the j = 0, 2, . . . , J

inner rectangles. There are a total of J + 1 rectangles in-
cluding the initial rectangle R0 = [0, NJ ] × [−B0, B0].
Step 0: Calculate the required PCS, denoted Preq , nec-

essary for each pairwise comparison to achieve an
overall PCS ≥ P ∗

Preq = 1 − 1 − P ∗

K − 1
.

Step 1: Find the minimum absorbtion boundary B0,
which corresponds to the height of the outer rect-
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angle.

B0 =
(

ln(1 − P ∗) − ln(P ∗ + (K − 2))

ln(1/θ)

)
.

If B0 is integer-valued, the region is defined by
{±B0} and N0 = ∞. Stop.
Else set B0 = �B0�, initialize N = B0, and go to
Step 2.

Step 2: Find the minimum N0 at which the process can
be terminated, which corresponds to the width of
the outer rectangle. First, formulate the one-step
transition matrix P0 on {−B0, −B0 + 1, . . . , B0}.
Then calculate

PCS =
B0∑
s=1

P
(N0)
0 (0, s) + 0.5P

(N0)
0 (0, 0).

If PCS < Preq , set N0 = N0 + 1 and repeat Step
2.
Else initialize j = 1, Bj = 1 and Nj = N0 − 1
and go to Step 3.

Step 3: Find the height of the j th sub-rectangle Rj .
First, calculate the overall PCS for the region,
which consists of rectangles R0 = [0, Nj ] ×
[−B0, B0], . . . , Rj = [N1, N0] × [−B1, B1] using
Equations (11) and (12).
If PCS ≥ Preq set Bj = Bj − 1 and go to Step 4.
Else set Bj = Bj + 1.
If Bj = B0, stop.
Else repeat Step 3.

Step 4: Find the width of the j th sub-rectangle. First,
set Nj = Nj − 1. Then calculate the overall
PCS for the region, which consists of rectangles
R0 = [0, Nj ] × [−B0, B0], . . . , Rj = [N1, N0] ×
[−B1, B1] using Equations (11) and (12).
If PCS ≥ Preq , repeat Step 4.
Else set Nj = Nj + 1 go to Step 5.

Step 5: Check to see if we can remove an additional
rectangle. If Bj < B0, increment j = j + 1, and
go to Step 3.
Else set J = j and stop.

Remark: Due to computational issues associated with
finite arithmetic it is practical to add a small value ε

to Preq for checking the first inequality in Step 2 of
this setup procedure (i.e., PCS ≤ Preq + ε). Mat-
lab code for executing the BWN setup can be obtained
from <www.iems.northwestern.edu/˜nelsonb/
BWNSetup.zip>.
2.3 BWN Selection

Given W = {1, 2, . . . , K}, the set of all systems in con-
tention for the best, and the outputs from the BWN setup,
the BWN selection procedure finds the system associated
with the largest probability of success on any given trial
with PCS ≥ P ∗ when the odds ratio is ≥ θ .

Step 0: Define a vector B ′(n), n = 0, 1, . . . , N0 such
that

B ′(n) =




B0, if n ≤ NJ

BJ , if NJ < n ≤ NJ−1
BJ−1, if NJ−1 < n ≤ NJ−2
...

...

B1, if N1 < n ≤ N0

Step 1: Obtain independent Bernoulli samples from
each πi, i ∈ W . Calculate

Sij (n) =
Nij (n)∑
l=1

(Xi,l − Xj,l),

for all i, j ∈ W such that i �= j .
If Sij (n) = B ′(n) remove system j from set W .
If Sij (n) = −B ′(n) remove system i from set W .
If |W| = 1 stop and choose the only remaining
element of W as the best system.
Otherwise repeat Step 1.

3 EMPIRICAL ANALYSIS

In this section we report on an empirical evaluation of BWN
as compared to BP.

3.1 Experimental Design

We performed simulation experiments to compare BWN to
BP. There were five factors to be considered: (1) the number
of systems being compared, K , (2) the PCS, P ∗, (3) the
odds-ratio indifference zone, θ , (4) choice of pK , which is
the largest probability of success on any given trial, and (5)
the configurations of pK−1, . . . , p1.

We tested the following levels of each of the five factors
Factor 1 (4 levels): K = 2, 3, 4, 5
Factor 2 (3 levels): P ∗ = 0.90, 0.95, 0.99
Factor 3 (3 levels): θ = 1.5, 2.0, 3.0
Factor 4 (2 levels): pK = 0.85 and pK = 0.35
Factor 5 (2 levels): Slippage Configuration (SC) where

pK(1 − pj )

pj (1 − pK)
= θ, for j = 1, 2, . . . , K − 1,

http://www.iems.northwestern.edu/~nelsonb/BWNSetup.zip
http://www.iems.northwestern.edu/~nelsonb/BWNSetup.zip
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and the Equally-Spaced Configuration (EC) where

pi(1 − pj )

pj (1 − pi)
= θ, for i = 2, 3, . . . , K, and j = i − 1.

We ran a full-factorial experimental design, requiring
144 simulation experiments. Each simulation experiment
was replicated 2500 times. The results of the simulation
experiments are discussed in the next section.

3.2 Empirical Results

We have included a subset of the experimental results that
illustrate the effects of changing K , θ , and P ∗. These
results are in Table 1. We did not include the experimental
results from changing the configuration (EC versus SC) or
changing pK because these effects were relatively insignif-
icant. However, BWN performed slightly better in the EC
configuration than in the SC configuration.

The main results from the empirical analysis are as
follows:

1. BWN is always more efficient than BP when K = 2,
and BWN is usually at least as good as BP for
K = 3. This is consistent with Proposition 1 where
we proved that BWN is more efficient than BP for
K = 2.

2. As anticipated, BWN performs worse as K in-
creases, which is due to the fact that the inequal-
ities used in Equations (6) and (7) become more
conservative as K increases.

3. BWN performs better as P ∗ decreases, which is
consistent with Proposition 1. For example, the
savings in terms of expected number of observations
required to make a correct selection is much greater
for P ∗ = 0.90 than it is for P ∗ = 0.99.

4. BWN performs better as θ increases. This is ex-
pected due to the fact that the inequality used in
Equation (6) is less conservative as θ increases,
which increases the efficiency of BWN. As a result,
in cases where θ ≥ 2, BWN is superior to BP for
up to K = 5.

4 CONCLUSIONS

In this paper we have presented a sequential, eliminating
procedure, BWN, for selecting the best of K systems in a
single-factor Bernoulli-response experiment using an odds-
ratio indifference zone. We have shown analytically that
BWN is superior to the existing procedure BP in that it re-
quires fewer observations to identify the best system when
only two systems are being considered. Empirical results
show that BWN is often superior to BP for K = 3. Fur-
thermore, when θ ≥ 2, BWN is often superior for up to
K = 5. However, BWN does not scale up for comparing a
large number of systems so for K > 5 BP should be used.
When only a few systems are being compared, considerable
savings can be obtained by using BWN, especially in cases
where the minimal practical difference worth detecting, θ ,
is large.
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Table 1: Estimated Expected Number of Observations to Make a Correct Selection for the SC
When pK = 0.85

θ = 1.5 θ = 2.0 θ = 3.0
P ∗ = 0.90 P ∗ = 0.99 P ∗ = 0.90 P ∗ = 0.99 P ∗ = 0.90 P ∗ = 0.99

K BWN BP BWN BP BWN BP BWN BP BWN BP BWN BP
2 155 169 387 391 53 65 123 126 16 29 47 51
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5 809 754 1329 1318 261 251 431 430 95 98 157 160
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