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ABSTRACT

We consider the optimal computing budget allocation
(OCBA) problem where the simulated designs are correlated.
The exact optimal allocation is presented for two designs,
and an approximation proposed for more than two designs.
Numerical experiments for several examples compare the
approximation with some other allocation procedures. Re-
sults on convergence rates and the non-Gaussian setting are
also discussed.

1 INTRODUCTION

The optimal computing budget allocation (OCBA) problem,
introduced in Chen et al. (1997, 2000), is to allocate a fixed
simulation budget among a finite number of designs, in order
to maximize the probability of correct selection. Previous
OCBA work has addressed only the setting where the differ-
ent designs are sampled independently. This work considers
the correlated case, providing an alternative approximate so-
lution to the one in Fu et al. (2004) and presenting a brief
summary of recent results in Xiong and Fu (2004). These
results are useful in at least two ways: specifying efficient
allocations based on estimates of the means, variances, and
correlations; and estimating the gain in computational ef-
ficiency by inducing correlation in the experiments. The
exact optimal allocation is derived for two designs. For the
general case (more than two designs), we present an ap-
proximation whose solution matches the independent case
of Chen et al. (2000) when the correlation is taken to zero.
In that work, the optimal allocation depends on the indi-
vidual design variances and pairwise mean differences with
the best. The allocations derived here include an additional
dependence to be expected: the correlations with the best
design.

2 PROBLEM SETTING

The objective is to find an allocation of the total number
of simulation replications that maximizes the probability of
correct selection, denoted by PCS, where “correct selection"
will be defined as selecting the design with largest mean.
Letting µi denote the mean for design i, we assume without
loss of generality that design 1 is the best, i.e., µ1 > µi ∀i >

1. Denoting Ni as the # simulation replications allocated
to design i and J̄i as the sample average for design i over
Ni replications, the problem is to select N1, N2, , . . . , Nk

in order to maximize P(J̄1 − J̄i > 0, i = 2, . . . , k), subject
to the budget constraint N1 +N2 + . . .+Nk = T , where T

is the total computing budget (# simulation replications).
We further assume that the samples are jointly nor-

mally distributed, with paired covariance and correlations
given by Cij (equal to variance σ 2

i for j = i) and
ρij = Cij /(σiσj ), respectively. Then, {J̄i , i = 1, . . . , k}
and {J̄1 − J̄i , i = 2, . . . , k} are also multivariate normal

with respective covariance matrices � =
[

Cij

max(Ni ,Nj )

]
k×k

and � = [λij ](k−1)×(k−1) = XT �X, where X is a k×(k−1)

matrix with 1’s in the first row, -1’s in the diagonal starting
on the first entry of the second row, and 0’s otherwise. For
example, for k = 2, we have

λ11 = σ 2
1

N1
+ σ 2

2

N2
− 2C12

max(N1, N2)
. (1)
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3 SOLUTION FOR TWO DESIGNS

For two designs, the problem reduces to minimizing λ11
given by (1), i.e., the following optimization problem:

min
N1,N2

{
σ1/σ2

N1
+ σ2/σ1

N2
− 2ρ12

max(N1, N2)

}
(2)

subject to N1 + N2 = T .
Simplifying notation, we drop the subscript on ρ12 and

define c = σ1/σ2, assuming without loss of generality that
c ≥ 1. Then (2) can be rewritten as

min
N1,N2

{
c

N1
+ 1/c

N2
− 2ρ

max(N1, N2)

}
. (3)

When ρ = 0, it is known that the optimal solution is

N1

N2
= σ1

σ2
,

i.e., the simulation allocation depends only on the standard
deviations when there is no correlation in the sampling.

To handle the difficulty introduced by the max(N1, N2)

in (3), the analysis is divided into two cases: (a) N1 ≥
N2, and (b) N1 ≤ N2. Furthermore, we now treat the
minimization of (3) as a continuous variable optimization
problem.

For case (a) N1 ≥ N2, the function to be minimized in
(3) becomes the following:

ha(N1) = c − 2ρ

N1
+ 1/c

T − N1
. (4)

Differentiating and setting to zero, one obtains:

N1

N2
= √c(c − 2ρ). (5)

The ratio given by (5) can provide a further indication of
the effect of correlation on the relative allocation. In the
case of independent simulations (i.e., ρ = 0), N1/N2 = c,
where c is the ratio of the standard deviations.

Substituting N2 = T − N1, we obtain the solution

Na
1 = T

√
c(c − 2ρ)

1 + √
c(c − 2ρ)

. (6)

However, two additional conditions need to be satisfied in
order for this to be valid: c − 2ρ ≥ 0, and c(c − 2ρ) ≥ 1,

since N1 ≥ N2 was assumed. The second condition reduces
to c − 1/c ≥ 2ρ, which implies the first condition, since
c > 0. If this is not satisfied, then (4) is monotonically
increasing in N1, and the solution occurs at the boundary
N1 = N2.
For case (b) N1 ≤ N2, we have objective function

hb(N1) = c

N1
+ 1/c − 2ρ

T − N1
.

Similar to case (a), the first-order condition leads to

N2

N1
=
√

1

c

(
1

c
− 2ρ

)
, (7)

and we can show that if 1/c − c ≥ 2ρ, then hb(N1) is
minimized at

Nb
1 = T

1

1 +
√

1
c
( 1

c
− 2ρ)

; (8)

otherwise, hb(N1) is monotonically decreasing in N1, and
the solution occurs at the boundary N1 = N2.

Combining cases (a) and (b), we have the overall solu-
tion based on three regions for 2ρ: (Recall that we assumed
c ≥ 1 without loss of generality, so that N1 corresponds to
the system with the higher variance and c−1/c ≥ 1/c−c.)

(i) If 2ρ ≥ c − 1/c, then the optimum allocation is
N1 = N2 = T/2;

(ii) If 1/c − c ≤ 2ρ ≤ c − 1/c, then the optimum
allocation is given by (6), which has N1 ≥ N2.
Note that taking 2ρ = c − 1/c in (6) also gives
N1 = N2 = T/2, so there is continuity with the
previous case;

(iii) If 2ρ ≤ 1/c − c, then the optimum allocation is
given by either (6) or (8), depending on which of
ha(N

a
1 ) and hb(N

b
1 ) is smaller.

Thus, to complete the allocation specification, we need to
compare ha(N

a
1 ) and hb(N

b
1 ) in the region 2ρ ≤ 1/c − c:

ha(N
a
1 ) = 1

cT

(
1 +√c(c − 2ρ)

)2

= 1

cT

(
1 + c2 − 2cρ + 2c

√
1 − 2ρ/c

)
,

hb(N
b
1 ) = c

T

(
1 +
√

1

c
(
1

c
− 2ρ)

)2

= 1

cT

(
c2 + 1 − 2cρ + 2c

√
1 − 2ρc

)
.

Since c ≥ 1 and 2ρ ≤ 1/c − c ≤ 0, we have
√

1 − 2ρ/c ≤√
1 − 2ρc, so that ha(N

a
1 ) < hb(N

b
1 ) if c > 1 and equality

occurring when c = 1. Therefore, the optimum allocation
is given by (6) in the region 2ρ ≤ 1/c − c, which is the
same as in the region 1/c − c ≤ 2ρ ≤ c − 1/c.
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Summarizing mathematically, we can write

N∗
1 =
{

Na
1 ≥ N∗

2 2ρ ≤ c − 1/c,

T /2 = N∗
2 2ρ ≥ c − 1/c,

(9)

nd N∗
2 = T − N∗

1 . More discussion of the solution and a
implified analysis is contained in Fu et al. (2004).

APPROXIMATE SOLUTION FOR THREE
DESIGNS

e now consider the case of three designs, i.e., k = 3. For
his case, we want to maximize

f (N1, N2, N3)=
∫

u11x1≥µ2−µ1

∫
u22x2≥µ3−µ1−u12x1

e− x2
1 +x2

2
2 dx2dx1,

(10)
.t. N1 + N2 + N3 = T , where u11 = √

λ11, u12 =
12/

√
λ11, u22 =

√
(λ11λ22 − λ2

12)/λ11, and N1, N2, N3

nter via the following equations:

λ11 = σ 2
1

N1
+ σ 2

2

N2
− 2C12

max(N1, N2)
, (11)

λ12 = σ 2
1

N1
− C12

max(N1, N2)
− C13

max(N1, N3)
(12)

+ C23

max(N2, N3)
, (13)

λ22 = σ 2
1

N1
+ σ 2

3

N3
− 2C13

max(N1, N3)
. (14)

n general, this maximization problem is analytically in-
ractable. Therefore, we propose an approximate problem,
here again we treat the variables as continuous. First,
e note that exp(−(x2

1 + x2
2 )/2) decreases exponentially

ith respect to x2
1 + x2

2 , so as a surrogate for maximizing
(N1, N2, N3), which involves integration over an infinite

egion

{(x1, x2)|u11x1 ≥ µ2 − µ1, u12x1 + u22x2 ≥ µ3 − µ1},

e instead maximize the size of the circle centered at the
rigin that is contained in this region, which is equivalent to
aximizing the circle’s radius given by min(d2, d3), where

d2 = µ1 − µ2

u11
= µ1 − µ2√

λ11
(15)

d3 = µ1 − µ3√
u2

12 + u2
22

= µ1 − µ3√
λ22

(16)
are the distances from the origin to the lines u11x1 = µ2−µ1
and u12x1 + u22x2 = µ3 − µ1, respectively, i.e.,

arg max
N1,N2,N3

∫
u11x1≥µ2−µ1

∫
u22x2≥µ3−µ1−u12x1

e− x2
1 +x2

2
2 dx2dx1

≈ arg max
N1,N2,N3

min(d2, d3) ≡ (N ′
1, N

′
2, N

′
3).

The error of this approximate solution decreases exponen-
tially with T (see Fu et al. 2004 for details).

Next, we discuss how to maximize min(d2, d3). Based
on (11), (14), (15), and (16), we have

Lemma 1 di is monotone with respect to Ni (i =
2, 3); in particular, increasing if C1i < 1

2σ 2
i or C1i >

1
2σ 2

i , Ni < N1; else decreasing (if C1i > 1
2σ 2

i , Ni > N1).
This gives the following result:
Lemma 2 min(d2, d3) is maximized at d2 = d3.

Based on Lemma 2, we set d2 = d3, which leads to

λ11

λ22
=
(

µ1 − µ2

µ1 − µ3

)2

. (17)

This approach can be further extended to the case of more
than three designs, which we do in the next section, where
an iterative solution procedure is proposed. First, however,
we consider a special case where we can obtain an explicit
analytical solution.

4.1 A Special Case for Three Designs

We consider a special case where designs 2 and 3 are
symmetric, i.e., µ2 = µ3, σ2 = σ3, and σ12 = σ13, so
that N2 = N3, λ11 = λ22, and d2 = d3. Then the original
problem of maximizing min(d2, d3) is reduced to minimizing
λ11 = λ22, i.e.,

min
N1,N2

{
σ1/σ2

N1
+ σ2/σ1

N2
− 2ρ12

max(N1, N2)

}
(18)

s.t. N1 + 2N2 = T , which is similar to the case of two
designs. Again, define c = σ1/σ2, but instead of assuming
that c ≥ 1, we need to consider two regions: c ≥ 1/

√
2

and c ≤ 1/
√

2.
We again divide the analysis into two cases: (a)

N1 ≥ N2(= N3), and (b) N1 ≤ N2 = (N3), and treat
the minimization problem as a continuous variable opti-
mization problem. For case (a) N1 ≥ N2, the function to
be minimized in (18) becomes:

ga(N1) = c − 2ρ12

N1
+ 2/c

T − N1
, (19)
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and the analogous solution is given by

N1

N2
= √2c(c − 2ρ12). (20)

Comparing Equation (20) with Equation (5), we can see
that the relative weight for allocating the computing budget
to the best design becomes greater as we increase the
number of designs. This partially explains the observations
made in Chen et al. (2000) that N1 is much larger than
Ni(i = 2, . . . , k) when the number of designs k is large.

Substituting 2N2 = T − N1 leads to the solution anal-
ogous to (6):

Na
1 = T

√
(c − 2ρ12)c/2

1 + √
(c − 2ρ12)c/2

. (21)

However, this solution is only valid under N1 ≥ N2, which
from (20) implies that 2ρ12 ≤ c − 1/(2c). When 2ρ12 >

c−1/(2c), ga(N1) is minimized at the boundary N1 = N2.
For case (b) N2 ≥ N1, the objective function is

gb(N1) = c

N1
+ 2(1/c − 2ρ12)

T − N1
, (22)

which is minimized at

N2

N1
=
√

1

2c

(
1

c
− 2ρ12

)
,

giving the solution

Nb
1 = T

1

1 +
√

2
c

( 1
c

− 2ρ12
) , (23)

if 2ρ12 ≤ 1/c − 2c; otherwise, gb(N1) is minimized at the
boundary N1 = N2.

When c ≥ 1/
√

2, we have c − 1/(2c) ≥ 0 ≥ 1/c − 2c.
Therefore, combining cases (a) and (b), we have the overall
solution based on three regions for 2ρ12:

(i) If 2ρ12 ≥ c − 1/(2c), then the optimum allocation
is N1 = N2 = N3 = T/3;

(ii) If 1/c−2c ≤ 2ρ12 ≤ c−1/(2c), then the optimum
allocation is given by (21), which has N1 ≥ N2;

(iii) If 2ρ12 ≤ 1/c−2c, then the optimum allocation is
given by either (21) or (23), depending on which
of ga(N

a
1 ) and gb(N

b
1 ) is smaller.
Finally, we compare ga(N
a
1 ) and gb(N

b
1 ) in the region

2ρ12 ≤ 1/c − 2c:

ga(N
a
1 ) = 2

cT

(
1 +
√

c(c − 2ρ12)

2

)2

,

gb(N
b
1 ) = c

T

(
1 +
√

2

c
(
1

c
− 2ρ12)

)2

.

Hence

ga(N
a
1 ) − gb(N

b
1 )

= 2

T

(
ρ12 +√2(1 − 2ρ12/c) −√2(1 − 2cρ12)

)
= 2

T

(
ρ12 − 4ρ12(1 − c2)/c√

2(1 − 2ρ12/c) + √
2(1 − 2cρ12)

)
= 2ρ12

T

(
1 − 4(1 − c2)/c√

2(1 − 2ρ12/c) + √
2(1 − 2cρ12)

)
.

Since c ≥ 1/
√

2 and 2ρ12 ≤ 1/c − 2c (≤ 0), we have

1 − 4(1 − c2)/c√
2(1 − 2ρ12/c) + √

2(1 − 2cρ12)

≥ 1 − 2
√

2√
2(1 − 2ρ12/c) + √

2(1 − 2cρ12)
≥ 0.

Therefore, ga(N
a
1 ) ≤ gb(N

b
1 ) for 2ρ12 ≤ 1/c − 2c, which

leads to

N∗
1=
{

T
√

(c−2ρ12)c/2
1+√

(c−2ρ12)c/2
(≥ N2) 2ρ12 ≤ c − 1/(2c);

T/3 (= N2) 2ρ12 ≥ c − 1/(2c) ≥ 0.

(24)
When c ≤ 1/

√
2, we have 1/c − 2c ≥ 0 ≥ c − 1/(2c),

and the three regions for ρ12 are:

(i) 2ρ12 ≥ 1/c − 2c: in this region the optimum
allocation is N1 = N2 = N3 = T/3;

(ii) c − 1/(2c) ≤ 2ρ12 ≤ 1/c − 2c: in this region the
optimum allocation is given by (23), which has
N2 ≥ N1;

(iii) 2ρ12 ≤ c − 1/(2c): in this region the optimum
allocation is given by either (21) or (23), depending
on which of ga(N

a
1 ) and gb(N

b
1 ) is smaller.

Unfortunately, in this case, which of ga(N
a
1 ) and gb(N

b
1 )

is smaller depends on the actual values of c (≤ 1/
√

2) and
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ρ12, so we write:

N∗
1 =



T 1

1+
√

2
c
( 1

c
−2ρ12)

(≤ N2)

if c − 1/(2c) ≤ 2ρ12 ≤ 1/c − 2c;

arg min
{
ga

(
T

√
(c−2ρ12)c/2

1+√
(c−2ρ12)c/2

)
,

gb

(
T 1

1+
√

2
c
( 1

c
−2ρ12)

)}
if 2ρ12 ≤ c − 1/(2c) ≤ 0;

T/3 (= N2) if 2ρ12 ≥ 1/c − 2c ≥ 0.
(25)

Combining (24) and (25), the solution is as follows:

N∗
1 =



T
√

(c−2ρ12)c/2
1+√

(c−2ρ12)c/2
(≥ N2)

c ≥ 1/
√

2, 2ρ12 ≤ c − 1/(2c);
T 1

1+
√

2
c
( 1

c
−2ρ12)

(≤ N2)

c ≤ 1/
√

2, c − 1/(2c) ≤ 2ρ12 ≤ 1/c − 2c;
arg min

{
ga

(
T

√
(c−2ρ12)c/2

1+√
(c−2ρ12)c/2

)
,

gb

(
T 1

1+
√

2
c
( 1

c
−2ρ12)

)}
c ≤ 1/

√
2, 2ρ12 ≤ 1/c − 2c ≤ 0;

T/3 (= N2) otherwise.
(26)

Remark. Consistent with the results obtained for the two-
design case in the previous section, when the correlation
ρ12 is positive and high enough — i.e., the last situation
in (26) where 2ρ12 ≥ c − 1/(2c) ≥ 0 for c ≥ 1/

√
2 or

2ρ12 ≥ 1/c − 2c ≥ 0 for c ≤ 1/
√

2 — the equal allocation
(N1 = N2 = N3 = T/3) is again optimal.

5 MORE THAN THREE DESIGNS

The approach used for the three-design case that led to
Equation (17) can also be applied to the general case of k

designs (k ≥ 3). Let

di+1 = µ1 − µi+1√
λii

,

which is the distance from the origin to hyperplane∑i
m=1 um,ixm = µi+1 − µ1 (i = 1, . . . , k − 1). It can be

similarly shown that min(d2, · · · , dk) is maximized when

di = dj ∀i, j > 1,
which leads to the constraint (for any j = 1, . . . , k − 1)

λjj

λii

=
(

µ1 − µj+1

µ1 − µi+1

)2

, for i = 1, . . . , k − 1, i 	= j ,

(27)
where

λii = σ 2
1

N1
+ σ 2

i+1

Ni+1
− 2C1,i+1

max(N1, Ni+1)
, i = 1, . . . , k − 1.

(28)
Equation (27) is central to the optimal allocation of the
computing budget, relating the factors that have the most
significant impact on the computing budget allocations: i)
the variances for each design; ii) the differences in means
between each of the designs and the best design; and iii)
the correlations between each of the designs and the best
design. The relationships implied by equation (27) among
the first two factors also appear to be consistent with our
intuition from the independent case. For example, as the
difference between µ1 and µi+1 increases, the allocation to
design i+1 (i.e., Ni+1) decreases. Intuitively speaking, this
means that design i + 1 is much worse than design 1 and
so less attention should be paid to this inferior design. On
the other hand, if the variance for design i + 1 (i.e., σ 2

i+1)
increases, Ni+1 should increase due to the high uncertainty
for design i + 1.

Recall that we wish to maximize dj , which is equivalent
to minimizing λjj subject to (27) and

∑k
i=1 Ni = T .

To simplify notation, we define for N1 ≥ Ni ,

C̃1i = σ 2
1 − 2C1i , C̃ii = σ 2

i , (29)

and for N1 < Ni ,

C̃1i = σ 2
1 , C̃ii = σ 2

i − 2C1i . (30)

This allows us a more compact expression for λii :

λii = C̃1,i+1

N1
+ C̃i+1,i+1

Ni+1
. (31)

Without loss of generality, we fix j = 1 in (27), i.e., we
wish to minimize λ11. Defining

βi+1 ≡ λ11

λii

=
(

µ1 − µ2

µ1 − µi+1

)2

, (32)

we define a new (Lagrangian) objective function that incor-
porates the constraints:

L(N1, N2, . . . , Nk, δ, δ3, . . . , δk) = λ11

+
k∑

δi(λ11 − βiλi−1,i−1) + δ(

k∑
Ni − T ), (33)
i=3 i=1
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where δ, δ3, . . . , δk are Lagrange multipliers. Then

L(N1, N2, . . . , Nk, δ, δ3, . . . , δk) =(
C̃12

N1
+ C̃22

N2

)(
1 +

k∑
i=3

δi

)

−
k∑

i=3

δiβi

(
C̃1i

N1
+ C̃ii

Ni

)
+ δ

(
k∑

i=1

Ni − T

)
, (34)

and again treating the variables as continuous,

∂L

∂N1
= − C̃12

N2
1

(
1 +

k∑
i=3

δi

)
+

k∑
i=3

δiβi

C̃1i

N2
1

+ δ, (35)

∂L

∂N2
= − C̃22

N2
2

(
1 +

k∑
i=3

δi

)
+ δ, (36)

∂L

∂Ni

= δiβi

C̃ii

N2
i

+ δ, for i ≥ 3. (37)

Strictly speaking, due to (29) and (30), the Kuhn-Tucker
conditions require (Ni−N1)∂L/∂Ni = 0, but as an easier ap-
proximation, we simply solve ∂L/∂Ni = 0, i = 1, 2, . . . , k,
which does not necessarily hold when the optimal values
of Ni and N1 are equal. Under this condition, (35)-(37)
lead to

N1 =
√√√√ k∑

i=2

C̃1i

C̃ii

N2
i . (38)

For independent systems (i.e., C1i = 0 =⇒ C̃1i = σ 2
1 ),

(38) reduces to the formula derived in Chen et al. (2000).
It also agrees with the k = 2 solution obtained in (5) and
(7). In our setting, we can solve for each Ni using (31)
and (32), which we combine as

(
µ1 − µ2

µ1 − µi

)2

= βi =
C̃12
N1

+ C̃22
N2

C̃1i

N1
+ C̃ii

Ni

, i = 2, ..., k. (39)

In principle, these equations can be solved to determine {Ni}.
However, since they depend on the values of the means
and variances/covariances, we propose the following two-
stage algorithm, where the initial stage is used to estimate
the means and variances/covariances, and the second stage
calculates {Ni} based on these estimates to allocate the bulk
of the computational budget (assuming kn0 � T ).
In order to implement the CBA algorithm, the step marked
(*) requires further details. It was purposely left unspec-
ified, because it is a numerical estimation step that can
be done in several ways. Here, we describe one possible
implementation, which was used in our numerical examples
reported in the next section.
Note that for any {Ni} satisfying (38) and (39), {MNi}
also satisfies these equations (where M > 0 is any constant).
Thus, one can find any solution {Ni} satisfying (38) and
(39) first, and then normalize according to

∑
i Ni = T . In

particular, arbitrarily choose a value for N1 (e.g., N1 = 1),
and then solve for Ni in terms of N2 using (39). Substituting
into (38), one can then solve for N2 and then have the rest
of the Ni . Doing this leads to

Ni = βiC̃ii

C̃12 + C̃22/N2 − βiC̃1i

, i > 2, (40)

1 =
k∑

i=2

β2
i C̃ii C̃1i(

C̃12 + C̃22/N2 − βiC̃1i

)2 , (41)

the latter to be solved for N2.
In actual implementation, the means and vari-

ances/covariances are estimated using the corresponding
sample quantities. Let ∗ denote the index of the design
with current best sample mean, and ∗∗ denote the index
of the design with the current 2nd best sample mean. Set
N∗ = 1 and solve for N∗∗ using Equation (41), with the
variable N2 replaced by N∗∗, and then apply (40) to find Ni

for the remaining i 	= ∗, ∗∗, where in both Equations (40)
and (41), {βi} and {C̃ij } will be estimated by the respective
sample quantities (denoted sample means by {X̄i} and latter

estimates by {β̂i} and {̂̃Cij }), e.g.,

β̂i =
(

X̄∗ − X̄∗∗
X̄∗ − X̄i

)2

, i 	= ∗, so that β̂∗∗ = 1. (42)

Once (40) and (41) are successfully solved, the {Ni} are
renormalized and appropriately rounded to integers so that
they sum to the total computation budget T . There is one
problem that can be encountered for high enough positive
correlation relative to the variances of the designs (this is
even true theoretically, not just empirically), which is the
situation in which all of the coefficients of N2

i , i > 1 (i 	=
∗ in the samples) are negative in (38). This corresponds to
the last condition in (9) and (26) in the respective two-design
case and three-design special symmetric case. As a result,
if this occurs, we simply chose the equal allocation.

In finding the solution, the most time-consuming step is
to find {N∗∗} which satisfies (41). Many numerical methods
are available for this purpose. One has to calculate the sum-
mation term in (41) a few times for different trial values of
{N∗∗} in order to find the solution. The computational bur-
den, however, of this procedure is still negligible compared
with carrying out a typical discrete-event simulation.
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Correlated Budget Allocation (CBA) Algorithm

• Inputs: k (# designs), T (total simulation budget), and n0 (initial sample size for each design).

• Step 1. Estimate {µi } and {Cij }, based on n0 replications of each design.

• Step 2. Use estimates of {µi } and {Cij }, including the indices for the best and 2nd best designs based on the sample
means, in (29), (30), (38), and (39) to determine new {Ni }. (*)

• Step 3. Perform (Ni − n0)+ additional replications of design i, i = 1, ..., k.

• Return design with largest (overall) sample mean.
For k = 3, we can work out a solution without having
to resort to this iterative procedure.

1 =
β2

2 C̃22C̃12(
C̃12 + C̃22/N2 − β2C̃12

)2 + β2
3 C̃33C̃13(

C̃12 + C̃22/N2 − β3C̃13

)2 ,

β2 = 1, β3 = (µ1 − µ2/µ1 − µ3)
2 .

Let

x = C̃22/N2, αi = β2
i C̃ii C̃1i , i = 1, 2, γ = C̃12−β3C̃13.

1 = C̃22C̃12

x2 + β2
3 C̃33C̃13(

C̃12 + x − β3C̃13

)2 ,

x2 = α2 + α3x
2

(γ + x)2 =⇒ (x2 − α2)(γ + x)2 = α3x
2,

yielding the quartic equation

x4 + 2γ x3 + (γ 2 − α2
2 − α3)x

2 − 2γα2x − α2γ
2 = 0,

which has a known “closed-form" solution.
We now consider a special case N1 >> Ni(i =

2, . . . , k). Based on (27), we have

Ni

Nj

≈ σ 2
i (µ1 − µj )

2

σ 2
j (µ1 − µi)2

∀i, j > 1, (43)

which is the same as the result obtained in Chen et al. (2000)
for independent systems.

6 NUMERICAL EXAMPLES

We consider a few numerical examples to compare the
performance of the CBA algorithm proposed in the last
section with the OCBA algorithm (Chen et al. 2000) —
which henceforth we will call the independent budget al-
location (IBA) algorithm, since it is derived based on in-
dependent sampling, and to contrast it with the correlated
version proposed here — and with the simple baseline
benchmark alternative of equal budget allocation (EBA),
i.e., N1 = N2 = · · · = Nk = T/k. For each example, the
probability of correct selection, denoted by PCS, is esti-
mated using 100,000 independent “macro" replications of
each budget allocation algorithm, leading to approximately
three decimal places of precision. All examples had 10
designs with total computing budget of T = 500 and ini-
tial allocation of n0 = 10 (100 total samples), leaving 400
samples to be allocated in the second stage of the IBA and
CBA algorithms. Another evaluation of the computational
savings was obtained by increasing T successively for EBA
in order to estimate the total sampling budget required to
achieve the same level of PCS as CBA.

6.1 Equal Variance Example

This is adopted from Example 1 in Chen et al. (2000):
J̃im ∼ N(10 − i, 62), i = 1, 2, · · · , 10, first is best design.
Four levels of correlation considered: -0.2, 0.0, 0.2, 0.9.
The estimated PCS is given by the following (total sampling
budget required by EBA to reach CBA-achieved PCS shown
in parentheses):

correlation EBA CBA IBA
-20% 0.758 0.817 (760) 0.811
0% 0.778 0.858 (870) 0.858
20% 0.808 0.893 (910) 0.889
90% 0.996 0.996 (500) 0.964

In all three procedures, positive correlation leads to improve-
ment in simulation efficiency, whereas negative correlation
has negative impact on the simulation efficiency. Except at
the very highest correlation level, IBA outperforms EBA,
and CBA performs the best, providing a savings of over
50% in the total computational budget over EBA to achieve
the same level of PCS. With very high positive correlation,
however, the allocation of CBA coincides with EBA, which
indeed outperforms the IBA allocation.

6.2 Unequal Variances Example

Same as previous, except the means and variances were
(i.i.d.) randomly generated from U(0, 10) and U(24, 48)

distributions, respectively:
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i 1 2 3 4 5
µi 8.34 0.98 6.49 0.10 8.03
σ 2

i 34.35 44.34 28.12 35.93 44.49
i 6 7 8 9 10
µi 6.21 9.78 9.10 1.32 3.27
σ 2

i 43.39 39.72 24.31 42.10 24.42

Thus, in this example, the best design is design 7, and the
results are as follows:

correlation EBA CBA IBA
-20% 0.653 0.697 (670) 0.690
0% 0.667 0.713 (670) 0.713
20% 0.691 0.771 (790) 0.741
90% 0.957 0.957 (500) 0.827

Again, CBA outperforms both EBA and IBA.

6.3 Single-Server FCFS U/U/1 Queue

The interarrival times are U(4, 14) and service times
U(1, 15.5 + 0.5i), i = 1, .., 10, with design performance
(µi) as the expected negative (to make it a maximization
problem) average system time over the first 15 served cus-
tomers, so design 1 is the best. We compare two cases:
one with independent sampling (indicated by “IND") and
one with correlated sampling (indicated by “CRN"), using
the same arrival process but independent service times. We
also consider a sequential version of CBA, denoted by “se-
qCBA" in the results below, that starts with n0 samples
for each design as before, but then instead of allocating all
of the remaining samples (400 for this particular example)
at once, the computing budget is distributed incrementally
by an amount � (� = 20 used in this particular example)
in each iteration until the total computing budget T is ex-
hausted. The two-stage procedure is a special case with
� = T − n0k. The results are as follows:

EBA CBA IBA seqCBA
IND 0.828 0.932 (1140) 0.932 0.967 (1720)
CRN 0.857 0.943 (1020) 0.935 0.977 (1680)

Again, CBA is more efficient than the other two compared
algorithms, with the relative performance similar to that
of the ρ = 0 and ρ = 0.2 cases in the previous two
examples, although the reduction in computational burden
is even more significant, as EBA requires more than twice
the budget as CBA for the same PCS level. The sequential
version further improves the efficiency significantly, as now
EBA requires more than triple the budget as seqCBA for
the same PCS level. Similar results were observed in Chen,
He, and Yücesan (2003) and Fu et al. (2004).

7 RECENT EXTENSIONS

We summarize two recent significant results regarding the
non-Gaussian setting and the rate of convergence of the allo-
cation algorithm, the details of which are described in Xiong
and Fu (2004). Under the setting where the samples come
from a non-Gaussian distribution with well-defined moment
generating function and such that the copula between any
two sampling distributions is linear (which includes the in-
dependent case), we can establish a procedure similar to
the that in Fu et al. (2004) to locate an approximate solu-
tion. The second result addresses the issue of convergence
rate. Let {Ñi , i = 1, · · · , k} and {Ni, i = 1, · · · , k} be the
approximate solution and the exact solution, respectively.
Under the framework of Gaussian distributions and some
further mild assumptions, we can show max

i
|Ñi −Ni | < C

for some constant C that is independent of the total com-
puting budget T .
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