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ABSTRACT 

In many practical applications of simulation it is desirable 
to optimize the levels of integer or binary variables that are 
inputs for the simulation model. In these cases, the objec-
tive function must often be estimated through an expensive 
simulation process, and the optimization problem is NP-
hard, leading to a computationally difficult problem. We 
investigate efficient solution methods for this problem, and 
we propose an approach that reduces the number of runs of 
the simulation by using ridge regression to approximate 
some of the simulation calls. This approach is shown to 
significantly decrease the computational cost but at a cost 
of slightly worse solution values.  

1 INTRODUCTION 

Simulation-based optimization of discrete decision vari-
ables is difficult both because the optimization problem it-
self is NP-hard and because using a simulation model to 
evaluate each trial solution can be computationally de-
manding. At the same time, simulation-based discrete op-
timization problems are of great practical significance. For 
example, Çağnan and Davidson (2004) and Davidson and 
Çağnan (2004) developed a discrete event simulation 
model that estimates the amount of time needed to restore 
electric power to utility customers after an earthquake 
given a set number of available crews. Optimizing the 
number of crews at each possible location is an important 
way to reduce the duration of electric power outages after 
earthquakes given a fixed budget. However, the response 
of the electric power system and similar infrastructure sys-
tems is complex, making analytical solutions or expert 
guesses about the best crew allocation unreliable in these 
situations. A numerical, simulation-based optimization 
routine is needed. Lee and Azadivar (1985) and Nair, 
Keane, and Shimpi (1998) provide further examples of dis-
crete simulation-based optimization. 
The computational complexity of the simulation to-
gether with the NP-hard nature of the optimization problem 
suggest two main methods for reducing the computational 
burden of solving this type of problem. The first is by re-
ducing the number of potential solutions that must be 
evaluated to find a good solution, and the second is by re-
ducing the computational time required to evaluate each 
potential solution that is generated. In this paper we inves-
tigate the use of genetic algorithms for solving this prob-
lem, and we present a new approach that focuses on the 
second of these methods – reducing the computational time 
required to evaluate each potential solution – by approxi-
mating the results of the full simulation run for some can-
didate solution evaluations. 

2 BACKGROUND 

A number of different approaches have been proposed for 
the joint simulation-based discrete optimization (SBDO) 
problem that focus primarily on reducing the number of 
potential solutions examined. In an overview, Swisher et 
al. (2000) discuss the use of ordinal optimization, simu-
lated annealing, genetic algorithms, tabu search, and the 
Nelder-Mead algorithm. Lee and Azadivar (1985) show 
how a modified simplex algorithm can be used for the 
SBDO problem, and Shi, Chen, and Yücesan (1999) pre-
sent a procedure based on nested partitions and statisti-
cally-based control of the number of simulation runs. 
While the simulation control approach used by Shi, Chen, 
and Yücesan (1999) does attempt to reduce the number of 
simulation runs needed to evaluate each potential solution, 
the main focus of the paper was on combining this with 
nested partitions to reduce the number of solutions that are 
examined. Tompkins and Azadivar (1995) and Azzaro-
Pantel et al. (1998) both present genetic algorithms for 
solving the SBDO problem in the context of production 
and manufacturing. These algorithms seek to find good so-
lutions by successively generating candidate solutions and 
then evaluating the objective function value for each of 
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these solutions based on running a simulation model. If n 
potential solutions are to be examined, n complete runs of 
the simulation model are needed. If the simulation model is 
computationally expensive to run, this limits the number of 
potential solutions that can be evaluated. In the work that 
follows, we use a genetic algorithm as our optimization 
approach because genetic algorithms are widely used in 
simulation-based optimization. However, the general ap-
proach that we develop – using ridge regression to reduce 
computational burden – could be applied in conjunction 
with any iterative optimization procedure. 

A second approach for reducing the computational 
burden of solving the SBDO problem is to try to reduce the 
amount of computational effort required to evaluate the ob-
jective function value for each candidate solution, either 
through reducing the number of replications needed for 
each simulation run or by reducing the number of simula-
tion runs required. Noisy genetic algorithm theory (e.g., 
Aizawa and Wah 1993; Giguère and Goldberg 1998) aims 
to achieve this in the context of optimizing continuous de-
cision variables on the basis of a simulation model by con-
trolling the number of candidate solutions to evaluate for 
each iteration of the optimization algorithm and the num-
ber of simulation replications used to evaluate each candi-
date solution. In this approach, the number of replications 
of the simulation program begins small and grows through 
successive generations according to pre-defined rules. 

An alternate approach is to base the evaluation of 
some or all of the candidate solutions on an approximation 
to the simulation model rather than on the simulation 
model itself. Nair, Keane, and Shimpi (1998) and Kodiya-
lam, Nagendra, and DeStafano (1996) both explore this 
approach, the former in designing a truss and the later in 
designing a composite structure for a spacecraft. Both of 
these papers use linear regression to approximate the re-
sults of a computationally expensive structural design 
model together with a genetic algorithm for the optimiza-
tion of discrete decision variables. In both cases, the objec-
tive function values returned by the structural models were 
treated as the dependent variables, and the decision vari-
able values were treated as the independent variables. With 
this approach, the approximation model is first fit based on 
a small number of runs of the computationally expensive 
structural model and is then used to evaluate successive 
candidate solutions. The approximation model can be up-
dated occasionally based on one or more runs of the expen-
sive structural model. This approach thus reduces the com-
putational burden by reducing the number of times the 
expensive model must be run. However, as discussed by 
Nair, Keane, and Shimpi (1998) and discussed further be-
low, approximation by ordinary least squares regression 
has significant drawbacks. 

Approximating the simulation results with an ordinary 
least squares (OLS) regression model and then using this 
approximation for at least some of the iterations of an op-
timization algorithm for the SBDO problem is intuitively 
appealing, but subject to several limitations. If properly 
formulated and fitted, the regression model would hope-
fully approximate the simulation results well enough to 
keep the optimization routine converging towards a good 
solution without running the simulation model. The ap-
proximation need not be perfect, just good enough to guide 
the optimization algorithm. However, OLS suffers from 
several drawbacks in this context. First, as discussed by 
Nair, Keane, and Shimpi (1998), the approximation is gen-
erally only reasonable for a bounded region containing the 
candidate solutions used to fit the model. For problems in 
which the decision variables are integer-valued, this region 
may be small. Approximations outside this region may be 
significantly in error, leading the optimization routine to 
move in the incorrect direction on its next step.  

The second and potentially more severe limitation of 
using OLS regression to approximate simulation results is 
that in many cases an OLS fit based on a population of 
candidate solutions can suffer from the problem of colin-
earity. This colinearity can arise in two ways. First, if the 
number of candidate solutions used to fit the model is large 
relative to the number of decision variables, the input data 
for the fit would likely be at least nearly collinear, leading 
to numerical instability in the estimation of the OLS pa-
rameters. Second, assuming that the optimization algorithm 
examines multiple candidate solutions in each iteration, 
one would hope that as the algorithm converges towards a 
good solution, the candidate solutions it generates become 
more similar. These late-iteration solutions would almost 
certainly be collinear. This colinearity can make it difficult 
or impossible to fit standard OLS models, and, even when 
these models can be fit, the resulting parameter estimates 
are often highly sensitive to small changes in the input data 
(see, for example, Montgomery and Peck 1992). In these 
cases, use of OLS can give poor predictions at points not in 
the data set used to fit the model. 

In this paper we present a more robust approach for 
approximating the results of the simulation model based on 
ridge regression. We show that this approach can over-
come the problems of OLS and lead to a significant reduc-
tion in the number of simulation runs required and thus in 
the computational burden of solving SBDO problems. 

3 RIDGE REGRESSION 

When OLS regression is used with nonorthogonal (collin-
ear) data, the resulting estimates of the regression parame-
ters ( β̂ ) typically have inflated variance and are unstable 
(Montgomery and Peck 1992). That is, the parameter esti-
mates are highly sensitive to the input data, and thus may 
give poor predictions when used with other data sets. This 
problem arises because OLS produces the minimum vari-
ance estimates among all possible unbiased β̂ s. Ridge re-
gression, originally proposed by Hoerl and Kennard 
(1970), is one of the primary methods used to deal with the 
problem of colinearity in regression modeling. It does not 
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require that the parameter estimates be unbiased. Instead, it 
seeks to minimize the variance in the parameter estimates 
( Rβ̂ ) and adds a biasing parameter, k, to the regression 
equation to remove the problem of colinearity. The stan-
dard OLS and ridge regression equations for parameter es-
timation are shown in equations (1) and (2) respectively, 
where X is a matrix of the independent variables, y is a 
vector of the dependent variables, I is the identity matrix, 
and k is the biasing parameter (see Montgomery and Peck 
1992, pp. 329-331). 

 
  OLS:   ( ) yXXX ''ˆ 1−=β  (1) 

 
  Ridge: ( ) yXkIXXR ''ˆ 1−−=β  (2) 

 
As the biasing parameter (k>0) increases, the bias in the 

parameter estimates increases, but the variance decreases. 
High bias would tend to systematically skew the estimates 
produced by a regression model while high variance would 
make the regression estimates very sensitive to the particular 
set of input data used. Thus, there is a trade-off between bias 
and variance that needs to be made in selecting a k to use in 
an analysis. One method for selecting a value for k uses a 
simple graphical technique in which the parameter estimates 
are plotted versus k, and a value of k is selected such that the 
parameter estimates are relatively stable (e.g., Hoerl and 
Kennard 1970). Other more quantitative methods are based 
on various measures of the improvement in the fit over OLS, 
with the goal being the maximization of the improvement 
(e.g., Mallows 1973, Wahba, Golub, and Health 1979). We 
use the graphical approach. 

As with the OLS approach of Nair, Keane, and Shimpi 
(1998) and Kodiyalam, Nagendra, and DeStafano (1996), 
ridge regression can be integrated into SBDO solution pro-
cedures as a replacement for some or all of the simulation 
runs. The general idea is to first randomly generate a set of 
initial solutions and evaluate their objective function values 
using the simulation model, fit the regression model based 
on these initial solutions, and then use this fitted model in 
place of the simulation model in estimating the objective 
function values for at least some of the future candidate so-
lutions generated by the optimization routine. The regression 
fit may be updated in some iterations based on new simula-
tion runs. This approach can be used with any optimization 
algorithm that iteratively generates candidate solutions, the 
objective function values of which must then be estimated 
with a simulation run. Before presenting a particular imple-
mentation utilizing a genetic algorithm, we first present the 
pseudo-code for using ridge regression below. 
 

1. Randomly generate initial set of candidate solu-
tions, evaluating the objective function for each 
by running the simulation model. 

2. Set resample = R, iter = 1. 
3. Fit the ridge regression model based on the feasi-
ble solutions in the cumulative set of candidate 
solutions. 

4. If iter ≠  resample 
a. Run optimization routine to generate a new 

set of candidate solutions with objective func-
tion evaluation based on the current ridge re-
gression model. 

b. iter = iter +1. 
  Else 

c. Run optimization routine to generate a new set 
of candidate solutions with objective function 
evaluation based on simulation model runs. 

d. iter = iter + 1, resample = resample + R 
e. Add all newly generated feasible candidates 

to the database used to fit the ridge model. 
f. Re-fit the ridge model based on the cumula-

tive database. 
5. If the stopping criteria is not met, goto (4), else 

stop. The optimal solution is the best solution in 
the final set of candidate solutions. 

 
Note that if R, the resampling interval, is set equal to 

one, the ridge regression will never be used to estimate ob-
jective function values. Conversely, if R is set equal to or 
greater than the maximum number of iterations, the ridge 
regression model will be used as the basis for all objective 
function estimates after the initialization. In the next sec-
tion we describe a particular implementation of ridge re-
gression approximation using a genetic algorithm. This 
case serves as the test problem that we will use to compare 
our proposed approach with a genetic algorithm that does 
not use ridge regression.  

4 TEST PROBLEM 

In order to demonstrate the use of ridge regression for the 
SBDO problem and compare it with other approaches, we 
use, as an illustration, a discrete event simulation model of 
the process of restoring electric power after the occurrence 
of an earthquake. The problem is a simplified version of 
the problem addressed by Çağnan and Davidson (2004) 
and Davidson and Çağnan (2004). This simulation model 
seeks to estimate the time required for a utility company to 
restore electric power to their customers after the occur-
rence of an earthquake, given a fixed number of each of 
four different types of crews. 

As discussed by Çağnan and Davidson (2004) and 
Davidson and Çağnan (2004), the electric power system is 
modeled as a set of substations, generation plants, and dis-
trict yards as the nodes of the system. In order for power to 
be restored to a given area, that area’s substation must be 
working, and it must be connected to a working generation 
plant. In the process of repairing the system after an earth-
quake, each of the substations and generation plants must 
be inspected to determine its damage state before it can be 
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repaired. In the simplified model used in this paper, the in-
spections can be carried out by any of three crew types 
(on-duty operators, off-duty operators, and inspection 
teams), each of which requires a different amount of (sto-
chastic) travel time to begin its inspection. Each substation 
and generation plant can have one or more on-duty or off-
duty operators associated with it. If a node is inspected and 
found to be damaged, a repair team is sent from a district 
yard to restore that node to service. Inspection and repair 
teams can only be located at the district yards. Inter-node 
travel times and repair times are stochastic, while inspec-
tion times are assumed to be deterministic. In the simpli-
fied model used in this paper, there are three substations, 
one generation plant, and one district yard. The objective 
of the optimization is to minimize the time needed to re-
store electric power to all utility company customers. 

The decision variables are the numbers of on-duty op-
erators (Ij), off-duty operators (Oj), inspection teams (ISj), 
and repair teams (Rj) to locate at each node j. Each type of 
crew (indexed in k) has an associated cost (e.g., training 
costs and salary) if located at node j given by α(k)

j, and there 
is a budget (B) available for crew training that cannot be ex-
ceeded. The objective is to minimize the expected amount of 
time (T) needed to restore power to all substations subject to 
a budget constraint, and the restoration time is estimated by 
the discrete event simulation model using the values of the 
decision variables as input parameters. There can be at most 
one of each type of operator associated with each node, and 
there can be no more than five inspection teams and no more 
than five repair teams located at the district yard. The set of 
all substations is noted as S, the set of all yards is noted as Y, 
and the set of all generation stations is noted as G. The 
mathematical formulation of this problem is given below in 
equations (3) – (8). 

 
 [ ]TEMin

jjj IRISO
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With four types of crews to allocate at only five differ-

ent nodes, there are twenty integer decision variables 
(some of which are constrained to be zero), yielding 1x1021 
possible solutions, many of which are infeasible. Due to 
the computational burden of the simulation model, an effi-
cient optimization algorithm combined with as few simula-
tion runs as possible are needed to solve this problem. 

In the test problem, earthquakes occur randomly over 
the planning horizon, leading to random occurrence of 
damage states. The state of each substation and generation 
station is assumed to be binary – damaged or undamaged. 
All costs are given based on the same planning horizon 
(e.g., 20 years) as the damage probabilities. Table 1 gives 
the set of damage probabilities used in the test problem. 

 
Table 1:  Test Problem 

Node Damage Probability 
Substation One 0.1 
Substation Two 0.1 
Substation Three 0.1 
Generating Plant 0.01 

 
 The set of probabilities used in the example problem is 
meant to be realistic in terms of an actual infrastructure 
system that is subject to rare natural hazards such as earth-
quakes, and to test the ability of the methods to handle the 
types of unlikely system states likely to arise in practice. 
With only 24 possible system damage states, the restoration 
simulation is run a pre-determined number of times (to be 
discussed below) for each possible system state to estimate 
the expected restoration time conditional on the damage 
state. Then these conditional expected values are converted 
into an unconditional expected restoration time for a given 
set of decision variable values using the calculated prob-
abilities of the 16 different system states. For a larger sys-
tem, importance sampling would be needed to generate the 
system damage states. 

5 OPTIMIZATION APPROACHES TESTED 

In order to examine the impacts of using the ridge regres-
sion approximation in place of some of the simulation runs, 
we compared several optimization approaches. In all of 
these, a genetic algorithm was our underlying optimization 
algorithm. The particular genetic algorithm that we used 
was based on the Genetic Algorithm Toolbox for Matlab 
described by Chipperfiled et al. (1994). This toolbox pro-
vides the basic building blocks from which our algorithm 
was built. Our algorithm uses a non-linear fitness ranking 
approach with a selective pressure of two, stochastic uni-
versal sampling for the selection of parents to combine to 
form new children, a cross-over rate of 0.7, a high muta-
tion rate of 20%, and fitness-based reinsertion of the chil-
dren solutions with 20% of the parents replaced with the 
highest valued children in each generation. The high muta-
tion rate (20%) and replacement rate (20%) mean that our 
genetic algorithm will maintain a relatively high degree of 
randomness in creating new candidate solutions while at 
the same time converging towards good solutions. The mu-
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tation rate and replacement rates were selected based on 
initial exploratory runs varying the mutation rate between 
0.2% and 50% and the replacement rate from <5% to 80%. 
In these runs, the consistency of the solutions over multiple 
runs with fixed parameter values was compared with the 
amount of time required to find a solution, and mutation 
and replacement rates were selected that balanced these. 

We used a population size of 5 individuals with 10 
generations (again, selected based on exploratory runs). 
For larger problems, more individuals and a larger number 
of generations would be needed as discussed below. A 
penalty method assigning a value of 99 (plus a random 
number between 0 and 1 to avoid ties in the fitness rank-
ing) was used to impose the feasibility constraints, and the 
simulation model was not run for infeasible solutions. In 
all approaches tested except random generation of candi-
date solutions, the number of replications of the restoration 
process run for each damage state was determined by the 
duration sizing approach of Aizawa and Wah (1993) with a 
base case growth parameter (γ ) of 0.005 and an initial 
replication size of three. This yields an increasing number 
of replications over the course of the optimization, focus-
ing the simulation effort on the later generations where 
more accurate objective function estimates are more 
important. We also report the results of varying γ . The 
optimization approaches that we tested were: (1) the 
genetic algorithm with the full simulation run for each 
candidate solution evaluation, (2) the genetic algorithm 
with some of the simulation runs replaced by the ridge 
regression approximation, and (3) pure random search for 
comparison. As will be discussed below, the control 
parameters for both genetic algorithm approaches were 
varied. In order to account for the variability inherent in 
the solutions produced by genetic algorithms, we ran each 
approach 30 times with identical control parameters in 
order to allow fair statistical comparison of the results. 

5.1 Optimization with Complete Simulation Runs 

The baseline against which we compared the approach us-
ing ridge regression was the genetic algorithm for which 
the evaluation of all candidate solutions was based on a full 
run of the simulation (“GA-Full”). That is, each time a 
candidate solution was to be evaluated, the simulation was 
run r times for each of the sixteen damage states, requiring 
16r replications. As discussed above, the r used in each 
generation was determined by the adaptive duration sizing 
approach of Aizawa and Wah (1993). We ran the Full GA 
approach for 10 generations. For larger, more realistic 
problems more generations would be needed. 

5.2 Optimization with Ridge Approximation 

In implementing the ridge regression approximation, we 
used the algorithm outlined in the pseudo-code in Section 
3. We will term this approach the “GA-Ridge” approach. 
In testing GA-Ridge, the simulation was run every R gen-
erations. That is, for generations that were an integer mul-
tiple of R, the genetic algorithm calculations were done on 
the basis of the full simulation, but for all other generations 
the objective function evaluations were based on the ridge 
regression model. A log was kept of all feasible candidate 
solutions for which a simulation-based estimate of the ob-
jective function value was available. Each R generations, 
the ridge regression model was re-fit based on the newly 
updated log of simulated solutions. Thus, while the ridge 
fits in the early generations may be poor, they become in-
creasingly better over the course of successive generations. 
We used the Ridge GA approach with R equal to 2 and 5. 
The number of simulation replications was determined by 
the same approach as for GA-Full. 

5.3 Optimization with Random Search 

In the random search approach, a series of 10 sets of 5 can-
didate solutions were generated, with the lowest-valued 
(best) solution from each of the 10 sets saved. The algo-
rithm was constrained to generate only solutions that did 
not violate the constraints given by equations (5) to (8). In 
evaluating the candidate solutions, the simulation model 
was run for only 1 restoration time replication for each 
damage state in order to decide if a randomly generated 
candidate solution should be kept as a good solution. This 
low number of replications was selected to make the CPU 
time required for the random search algorithm comparable 
to the CPU time required for the other approaches which 
also used small numbers of replications for early genera-
tions. The procedure used for generating the candidate so-
lutions was the same algorithm used to generate the initial 
set of candidate solutions for the genetic algorithm ap-
proaches. This random solution generator, which is built in 
to the GA Toolbox, is relatively expensive computation-
ally. This led to the use of a small number of evaluative 
simulation replications with the random search to keep the 
CPU time per run comparable to the other methods. 

6 RESULTS AND DISCUSSION 

Figures 1 and 2 summarize the results of the optimization 
runs for a number of different budget levels. Note the log 
scale on the x-axis in these figures. Figure 1 gives the 
mean and 95% confidence intervals of the feasible solu-
tions found in the 30 runs of the four optimization ap-
proaches (GA-full, GA-Ridge (R=5), GA-Ridge (R=2), 
and Random Search). Figure 2 gives the same information 
for all solutions found, with a penalty of 99 plus a uniform 
(0,1) random number assigned to infeasible solutions. In 
some of the cases shown in Figure 2, a significant number 
of the optimization runs did not find a feasible final solu-
tion, and these infeasible solutions have been dropped in 
Figure 1. The percentage given by each of the confidence 
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intervals in Figure 1 is the percentage of the 30 final solu-
tions that were infeasible. 

 

 
Figure 1: Mean and 95% Confidence Intervals of the 
Feasible Optimal Results from 30 Optimization Runs 
for Each Approach for Various Budget Levels 

 

 
Figure 2: Mean and 95% Confidence Intervals of all 
Optimal Results from 30 Optimization Runs for Each 
Approach for Various Budget Levels 

 
The results in Figures 1 and 2 show that for the three 

lowest budgets (300, 900, and 1000), the problem is diffi-
cult enough that none of the algorithms do particularly well 
or clearly outperform the other algorithms in terms of the 
quality of the solutions found. The two GA-Ridge ap-
proaches are faster on average than the other two ap-
proaches. All four approaches yield infeasible solutions in 
30% - 40% of the optimization runs. These low budgets 
represent hard optimization problems in the sense that all 
four approaches have a difficult time finding feasible solu-
tions. With the budget of 300, the feasible solutions found 
by the GA-Ridge approaches have higher (worse) mean 
restoration times than those found by random search and 
GA-Full. However, these differences are not statistically 
significant due to the high variability in these results. With 
budgets of 900 and 1000, the means and 95% confidence 
intervals for the feasible solutions found by all four meth-
ods are very similar. 

For the three higher budgets shown in Figures 1 and 2 
(1100, 1200, and 1500), the GA-Full and Random Search 
approaches yield slightly better objective function values 
than the two GA-Ridge approaches, and these differences 
are statistically significant. The optimal mean restoration 
times found by the GA-Ridge approaches were approxi-
mately 8-10% higher (worse) that those found by the GA-
Full approach. These results thus suggest that based only 
on the feasible solutions found, the ridge-based approaches 
are not as accurate as the GA-Full or even Random Search 
(except for the budget of 1500), but the GA-Ridge ap-
proaches do save a considerable amount of computational 
effort. It should also be noted that even though the Random 
Search had the advantage of generating only solutions that 
did not violate equations (5) – (8), it did not always yield a 
feasible solution. The genetic algorithm approaches did 
generate solutions that violated the constraints given by 
equations (5) – (8).  

Figure 3 summarizes the percentage of solutions found 
by each approach that were infeasible for each budget. This 
figure shows that for low budgets, none of the tested ap-
proaches consistently find feasible solutions. However, for 
high budgets (1200 and 1500) all approaches do well in 
finding feasible solutions. The percentage of feasible solu-
tions monotonically increases with budget for GA-Full and 
GA-Ridge(2), while this is not the case for the GA-
Ridge(5) and Random Search algorithms, suggesting that 
the GA-Full and GA-Ridge(2) behave in a less random 
manner in terms of their ability to find feasible solutions.  

 

 
Figure 3: Percentage of Final Solutions that Were In-
feasible for Each Approach for Various Budgets 

 
The different approaches require different amounts of 

CPU time to find solutions, as summarized in Figure 4. 
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These results show that for low budgets (i.e., difficult prob-
lems), the GA-Full and GA-Ridge approaches require simi-
lar amounts of computational time. This is due to the fact 
that many of the solutions found at these low budgets are 
infeasible, reducing the number of runs of the simulation 
model and thus the opportunities for the GA-Ridge ap-
proaches to gain an advantage in CPU time required. How-
ever, as the budget is increased, the difference in computa-
tion time between the approaches becomes statistically 
significant, with GA-Ridge(5) requiring less time than GA-
Ridge(2) which in turn requires less time than GA-Full. In 
all cases, the Random Search procedure required more 
computational time. This was primarily due to the compu-
tational burden of randomly generating a constrained value 
for each of the 20 decision variables at each iteration using 
the algorithm in the Genetic Algorithm Toolbox. While we 
may have been able to more efficiently generate random 
solutions with a custom algorithm, instead we used the 
same algorithm used to generate initial populations for the 
GA approaches in order to provide a fair comparison of the 
methods. We have not shown the time CPU time required 
by the random search approach in Figure 4 because it is 
dependent on the particular random generator that we used. 

 

 
Figure 4: Comparison of CPU Time Required (in Seconds) 

 
Figure 5 shows the means of the 30 optimal values of 

each of the 20 decision variables for each of the four optimi-
zation approaches together with the standard deviations of 
these optimal decision variable values. The results are based 
on a budget of 900 and a gamma value of 0.005. These re-
sults show that all four approaches return similar values for 
the first 10 decision variables – the number of on-duty and 
off-duty operators at each station. However, the mean values 
for these binary variables are all in the vicinity of 0.4 to 0.6, 
suggesting that the algorithms are returning highly variable 
values for these binary decision variables. The 11th through 
20th decision variables correspond to the number of inspec-
tion teams and repair teams located at each station. Variables 
11-14 and 16-19 give the number of each of these types of 
teams at the substations and generation stations – locations 
where these teams cannot be located and still contribute to 
restoration. Thus, we would expect the algorithms to return 
values of 0 for these decision variables. The random search 
does do this because it was constrained to do so. The GA-
Full and GA-Ridge approaches were not so constrained, and 
they consequently do yield positive values of these variables 
in some runs. Note that although all four approaches yield 
similar answers on average for variables 15 and 20, the 
number of inspection and repair teams to have at the district 
yard, the two GA-Ridge approaches tend to yield lower 
numbers for these variables. Thus, the four approaches all 
give similar decision variable values for this case. 

 

 
Figure 5: Means and Standard Deviations of the Opti-
mal Decision Variable Values for 30 Runs of Each Al-
gorithm with a Budget of 900 and gamma = 0.005 

 
Finally, we also varied the value of γ  used in the 

GA-Ridge and GA-Full approaches over a range from γ  
= 0.001 toγ = 0.05. Table 2 gives the percentage of solu-
tions found by each approach that were infeasible for 
each γ  used.  

 
Table 2:  Effect of γ  on Percentage of Infeasible Solutions  

Percent Infeasible γ  GA-Full GA-Ridge(5) GA-Ridge(2) 
0.001 30% 30% 50% 
0.005 30% 33.3% 40% 
0.007 26.7% 33.3% 36.7% 
0.01 33.3% 26.7% 43.3% 
0.05 16.7% 36.7% 40% 

 
Table 2 shows that the percentage of infeasible solu-

tions found by each of the approaches is similar over the 
entire range of γ  values used, suggesting that the ability 
of the methods to return feasible solutions is not highly de-
pendent on the value of γ  used. The results in Table 2 also 
show that the GA-Full approach returned a lower percent-
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age of infeasible solutions than either of the GA-Ridge al-
gorithms in all but one case. Thus, the GA-Full approach 
does appear to be more efficient at finding feasible solu-
tions. While not shown here, the optimal mean restoration 
times found by the approaches were similar for the differ-
ent values of γ . 

We also applied the GA-Full and GA-Ridge approaches 
to a larger test problem with 18 substations and 2 generation 
stations in order to examine how well our results generalize 
to larger, more difficult problems. We ran the GA-Full ap-
proach with 50 individuals/population for 30, 50, 75, and 
100 generations, and we ran the GA-Ridge approach with 50 
individuals for: (a) 300 generations with simulation every 50 
generations, (b) 300 generations with simulation every 10 
generations, and (c) 100 generations with simulation every 3 
generations. The summary of the results of these runs are: 

 
• The GA-Ridge approach reduces the computa-

tional time by an order of magnitude in the larger 
test problem, from approximately 55 hours to ap-
proximately 5 hour per run on a Pentium III 733 
MHz computer. 

• The solutions found by the GA-Ridge approaches 
are 10%-20% worse than those found by the GA-
Full approach run for 100 generations. This result 
held for all GA-Ridge approaches tested for the 
larger problem. 

• The solutions found by the GA-Full approach are 
worse than those found by the GA-Ridge ap-
proaches when GA-Full is run for only 30 or 50 
generations. The results for 75 generations are 
highly variable between runs, with some runs 
yielding better solutions than GA-Ridge and some 
worse. When run for only 30 generations, GA-Full 
failed to find feasible solutions in most attempts. 

 
While preliminary, these results do suggest that the conclu-
sions based on the small test problem do generalize to lar-
ger problems. The GA-Ridge approach saves a significant 
amount of computation time at the cost of a small reduc-
tion in the quality of the solution found. 

7 CONCLUSIONS 

This paper has presented the results of testing approaches 
for efficiently solving simulation-based discrete optimiza-
tion problems. Overall, the results presented in this paper 
suggest the following. 
 

1. For problems in which there are either few feasi-
ble or many good solutions, the choice of solution 
approach among those tested here does not matter 
much. For hard problems with few feasible solu-
tions, all of the tested approaches have difficulties 
finding feasible solutions consistently. For easy 
problems with many good solutions, all ap-
proaches yield good solutions. 

2. The ridge-based optimization approaches save a 
significant amount of computational time in solv-
ing SBDO problems. 

3. The ridge-based approaches yield slightly worse 
solutions than the full genetic algorithm approach. 

 
There is clearly a trade-off between solution accuracy 

and computational burden in using ridge-based genetic al-
gorithms for solving simulation-based optimization prob-
lems. As the degree of approximation increases (i.e., as R 
increases), the GA-Ridge approaches require much less 
computational time but return less accurate solutions. This 
trade-off must be managed on a problem-specific basis. 
For relatively easy problems in which it is computationally 
feasible to solve the problem with the GA-Full approach, 
this approach is likely best. However, for problems in 
which the simulation model is complex enough that solv-
ing the problem with the GA-Full approach is computa-
tionally prohibitive, the GA-Ridge approach is a good al-
ternative. In many cases, it can provide good solutions with 
much less computational burden. 
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