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ABSTRACT 

Response Surface Methodology (RSM) is an optimization 
tool that was introduced in the early 50´s by Box and Wilson 
(1951). In this paper we are interested in finding the best set-
tings for an automated RSM procedure when there is very 
little information about the objective function. We will pre-
sent a framework of the RSM procedures that is founded in 
recognizing local optima in the presence of noise. We em-
phasize both stopping rules and restart procedures. The re-
sults show that considerable improvement is possible over 
the proposed settings in the existing literature. 

1 INTRODUCTION 

Response Surface Methodology (RSM) is an optimization 
tool that was introduced in the early 50´s by Box and Wil-
son (1951). It is a collection of mathematical and statistical 
techniques that is useful for the approximation and optimi-
zation of stochastic functions. These techniques are em-
ployed in order to estimate the optimization function and to 
find search directions to sub-regions of the domain with 
improved and hopefully optimal solutions.  

RSM is based on approximations of the objective 
function by a low order polynomial on a small sub-region 
of the domain. Using regression analysis based on a num-
ber of observations of the stochastic objective function, the 
best local solution is determined together with a search di-
rection for possible improvement. To this end, the stochas-
tic function is evaluated in an arrangement of points re-
ferred to as an experimental design. Many applications for 
the RSM procedure are performed in a manual setting, for 
example in physical, engineering, biological, clinical and 
food sciences (Myers, Khuri, and Carter 1989). 

In a manual setting the user can interfere in the optimi-
zation process according to his/her personal intuition and 
likings. In an automated RSM optimization exercise the set-
tings of the algorithm have to be fixed in a systematic man-
ner. We want to design a RSM algorithm that will not stop 

 

to ask for input from the user during an optimization run, in-
stead the algorithm will read the input, performs a system-
atic search for an (local) optimum and reports the optimum 
back to the user. The OPTQUEST (Glover, Kelly, and La-
guna 1999) simulation optimization procedure operates in 
similar way, yet it is primarily oriented at optimization of 
discrete decision variables and it uses other techniques. 

In this paper we are interested in finding the best set-
tings for such an automated RSM when there is very little 
information about the objective function. We consider sto-
chastic objective functions with unknown variance and ob-
jective functions that are very time consuming to evaluate 
for each solution. When optimizing a simulation model, 
one estimates the model parameters that optimize specific 
stochastic output statistics of the simulation model. In this 
optimization exercise the simulation model is considered to 
be a black box. The advantage of such a procedure is that 
the original simulation model can be left intact, while pro-
cedures like infinitesimal perturbation require changes that 
are not desirable for very complex models. 

For an automated RSM to be called successful it 
should be precise and fast. The procedure should recognize 
when no further progress is being made and the differences 
in the subsequent iterations can only be attributed to the 
noise in the objective function. The procedure should also 
be able to recognize sub-regions of the domain with optima 
and it should be able to find directions for improvement. 

We will present a framework of the RSM procedures 
that is founded in recognizing local optima in the presence 
of noise. It includes feedback iterations, precision checks 
and restart procedures. We iterate between first-order and 
second-order approximations in order to continue the search 
for optima beyond the first-order approximation. We there-
fore also extensively discuss the use of stopping criteria. 

In the literature we found that there are rather confus-
ing and non-systematic recommendations for the settings 
of automated RSM procedures. To standardize the algo-
rithm we fix some of the possible choices in the process 
based on existing literature. Other choices are defined in a 
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number of test algorithms that are compared using test 
functions and a simulation model well known in the medi-
cal literature. 

The setup of this paper is as follows. In Section 2 we 
extensively discuss the setting of the RSM that we found in 
the literature and we fix a number of the settings based on 
pre-tests and literature. Other choices for the settings are 
subject to experiments and the design of the tests is dis-
cussed in Section 3. The test functions are described in 
Section 4 and the test results are given in Section 5. Fi-
nally, in Section 6 we discuss the test results and give our 
recommendations. 

2 RESPONSE SURFACE METHODOLOGY 

In this section we will describe all steps and procedures of 
the RSM algorithm with emphasize on the choices that 
need to be defined for an automated RSM. Without loss of 
generality, we discuss the RSM method for a minimization 
problem. The second assumption that we will make is that 
the objective function is of a stochastic nature, and that we 
want to optimize the expected value of the stochastic out-
put.  Mathematically, this problem can be described by 
 

(1) 
 
where ),...,1( kf ξξ  is equal to )),...,1((( kFE ξξ . 

Here, ),...,(( 1 kF ξξ  denotes stochastic output for given in-
put },...,{ 1 kξξ , and )),...,((( 1 kFE ξξ  denotes its expected 
value. We further assume that the variance in the function 
values is not known. This situation especially arises in 
simulation studies, where the objective function can be 
seen as a black box that returns an output value for a given 
input. Simulation models do not assume a function form 
and are subject to an unknown stochastic error. A minimi-
zation exercise aims to find the input parameters that result 
into the minimum output value, such as finding the best set 
of service employees that will lead to the minimum waiting 
time for a queuing model. 

In general the RSM procedure comprises two phases. 
In the first phase the objective function is locally approxi-
mated by first-order polynomials, in the second phase the 
objective function is approximated by a second-order 
polynomial. In both phases we define a region of interest, 
which is a sub-region of the domain. For the approxima-
tions the stochastic objective function is evaluated a num-
ber of times in the points of an experimental design, which 
is a specific arrangement of the points that usually lie on 
the borders of the region of interest. When the first-order 
model is found to be adequate a steepest descent procedure 
is applied to find a new region of interest. Otherwise the 
RSM moves to the second phase. When a second-order 
model is approximated and found to be adequate a station-
ary point needs to be found and classified and an appropri-
ate action should be taken. Usually the algorithm is termi-

kDDf ℜ⊆ℜ→  ,:min
nated and the stationary point is returned. However, we 
will discuss why it is profitable to continue the algorithm 
beyond the second order approximation especially for a 
stochastic function with unknown error variance. In par-
ticular we will define an extension where we return to a 
first-order approximation in some cases and we include 
stopping rules based on the quality of the current center 
point rather than a certain phase in the optimization proc-
ess. Figure 1 shows the optimization process on a very 
global scale and displays when a stopping rule is checked. 
The dotted arrow shows the proposed extension. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: Schematic Overview of the Algorithm 

 
The stopping rules applied are the same after first- and 

second-order approximation. We define an iteration of the 
RSM algorithm as the run between two checks of the stop-
ping criteria of the algorithm. There are a number of 
choices that need to be implemented in an automated RSM 
procedure using a consistent decision rule. These choices 
can be divided into �building blocks�, �strategic moves� 
and �stopping rules� of the algorithm. Notice that we fol-
low the steps of the framework proposed by Neddermeijer 
et al. (2000a). Each step in this framework is either a build-
ing block or a strategic move. 

The building blocks of the algorithm consist of well-
defined procedures that can be used to determine the next 
move of the algorithm. Strategic moves of the algorithm 
determine the action taken when a building block returns a 
result. In the next sections we will discuss the literature 
and our extensions of the RSM by describing the building 
blocks and strategic moves. Then we discuss the stopping 
rules and we discuss the option to restart the algorithm 
with its initial settings in the current center point. Finally 
there are a number of parameter settings such as the sig-
nificance levels of statistical tests. 

2.1 Building Blocks 

2.1.1 Design for the First-Order Approximation 

There are many designs to choose from, like fractional or 
full factorial, and two-level or three-level designs (Myers 

First-order approximation 

Second-order approximation.

Stop? 

Stop? 
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and Montgomery 1995). All these designs can be aug-
mented by the center point of the region of interest. In non-
automated optimization the user tries to fit a first-order ap-
proximation with different designs, apply coding of the pa-
rameters to find better regression estimates or recalculate 
the objective value in the design points. For instance, repli-
cating the evaluation of the objective function in the center 
point provides protection against curvature (Myers and 
Montgomery 1995). For an automated RSM procedure we 
follow the literature and evaluate the objective function 
once in the 2k points of a two-level full factorial design and 
5 times in the center point of the current region of interest 
(Myers and Montgomery 1995; Joshi, Sherali, and Tew 
1998). This design is orthogonal and does not require as 
many points as a three-level full factorial design. In our 
opinion two-level fractional factorial designs consist of too 
few points to approximate objective functions with 2 or 3 
parameters well enough. Furthermore, full factorial designs 
can quite easily be augmented to derive a second-order de-
sign (see e.g. Neddermeijer et al. 2000a). 

2.1.2 Test the First-Order Model for Adequacy 

Usually, a test for lack of fit (Weisberg 1985) and a test for 
significance of regression are performed (Myers and 
Montgomery 1995). Box and Draper (1987) showed that 
the test for lack of fit is a joint test for interaction between 
factors as well as for curvature. In non-automated optimi-
zation one can decide to use other tests and one can vary 
the significance levels based on the results of these tests. 

If there is no lack of fit and not all the regression coef-
ficients are equal to zero we will perform the line search. If 
one of the tests fails then we conclude that this model is 
not adequate and we fit a second order model. 

2.1.3 Perform a Line Search in the  
Steepest Descent Direction 

If the first-order model is found to be adequate a line 
search is performed from the center point of the current re-
gion of interest in the steepest descent direction to find a 
point of improved response. Numerous implementations of 
the line search have been proposed (Box and Draper 1987; 
Myers and Montgomery 1995; Khuri and Cornell 1996; 
Joshi, Sherali, and Tew 1998; Neddermeijer et al. 1999; 
Kleijnen, den Hertog and Angün 2003). We will use in-
crements k∆∆ ,...,1  along the path of steepest descent 
equal to the distance from the center point to the point of 
intersection of the direction of steepest descent and the 

sphere given by ∑
=

=∆
k

i
i

1

2 1  (Neddermeijer et al. 1999). In 

a manual RSM algorithm one can observe the results of a 
line search and use personal likings to stop the search. 
However, in automated optimization, the algorithm needs a 
stopping rule that recognizes the lack of improvement in 
response during the line search. 

The most straightforward rule ends the line search 
when an observed value of the objective function is higher 
than the preceding observation (Del Castillo 1997). We 
will not use this stopping rule, known as the 1-in-a-row 
rule, because it is sensitive to the noise from the response 
surface function. In a similar way, the n-in-a-row stopping 
rule ends the line search when n observed values of the ob-
jective function are higher than the preceding observation. 
In the Myers and Khuri stopping rule (1979), the line 
search is ended when the mean response in a line search 
point, is significantly higher than the mean response in a 
preceding line search point. This rule requires evaluating 
the response surface function in a line search point more 
than once, because the variance of the response is not 
known at the start of the algorithm. In our algorithms we 
use the small sample t test in order to compare the mean 
responses in different points. This statistical test is robust 
with respect to both non-normality and unequal variances 
(Wackerley, Mendenhall, and Schaeffer 1996).  We will 
test our version of the Myers and Khuri rule against the 3-
in-a-row rule for our setting, where the variance in the sto-
chastic objective function is not known a priori (contrary to 
the setup by Del Castillo and Myers and Khuri). 

2.1.4 Design for the Second-Order Model  
on the Region of Interest 

The regression coefficients of this model are again deter-
mined by regression analysis, applied to observations per-
formed in an experimental design. A popular second-order 
design is the central composite design (CCD; Myers and 
Montgomery 1995). The CCD arises when the full (or frac-
tional) factorial design is augmented by the first-order de-
sign with 2k axial points (Box and Wilson 1951). We make 
this design spherical by choosing the new points such that 
all points are equidistant to the center point of the current 
region of interest (Myers and Montgomery 1995). This de-
sign is chosen for two reasons. First of all this design can 
almost be rotated and the loss in rotation is trivial (Myers 
and Montgomery 1995). Furthermore, if we would use a 
design that is rotatable, the distance of the new points to 
the center point would be large as compared to the distance 
of the existing points to the center point. 

2.1.5 Test the Second-Order Model for Adequacy 

This module checks if a second-order model describes the 
behavior of the objective function in the current region of 
interest. Similar to the first-order model a lack of fit test 
can be used. Now, the null hypothesis of this test is that the 
true regression model is quadratic. In non-automated opti-
mization one can use different significance levels or decide 
to overrule the outcomes of the lack of fit test. 
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2.2 Strategic Moves 

2.2.1 When the First-Order Model is Adequate 

If the first-order approximation is found to be adequate, a 
steepest descent procedure will be applied from the current 
center to find a new center point as used in most literature 
(Box and Wilson 1951; Box and Draper 1987; Fu 1994; 
Myers and Montgomery 1995; Khuri and Cornell 1996; 
Joshi, Sherali, and Tew 1998). This new point is then used 
as the center point of the next region of interest. On this new 
region, the objective function will be approximated again by 
a first-order model (Myers and Montgomery 1995). 

2.2.2 When the First-Order Model is Inadequate 

If the first-order model is not accepted, there is some evi-
dence of curvature or interaction between the factors in the 
current region of interest, or the regression coefficients are 
all equal to zero. Most references suggest approximating 
the response surface function by a second-order model 
(e.g. Fu 1994; Myers and Montgomery 1995; Neddermei-
jer et al. 2000a). An alternative is to increase the precision 
of the function evaluation in the design points. However 
this alternative is very time consuming and does not guar-
antee that the inefficiency is solved. 

2.2.3 When the Second-Order  
Approximation is Adequate 

If the second order approximation is found to be adequate 
then the appropriate action depends on the location and the 
nature of the stationary point. It is shown (Greenwood, 
Rees, and Siochi 1998) that for many functions a first-
order model is inappropriate over a large percentage of the 
domain, so the algorithm can turn to the second phase quite 
early. The first stationary point found by a second-order 
approximation is therefore not likely to be the best point in 
the domain. If we stop the algorithm at this point (Fu 1994; 
Kleijnen 1998) the optimum could still be located far away 
from the current region of interest. If a minimum is found 
inside the region of interest, we can use this point as the 
center of a new design and a new second order approxima-
tion can be performed. We suggest reducing the size of this 
region of interest because we assume that we are close to 
the minimum of the objective function. If the stationary 
point of the second-order polynomial is a maximum, a sad-
dle point or a minimum outside the current region of inter-
est we perform ridge analysis to find a new stationary point 
that lies inside the current region of interest, because it is 
not correct to extrapolate the second-order model outside 
the current region of interest (Myers and Montgomery 
1995). We conclude that we are not close to the optimum 
and propose to return to a first-order approximation in or-
der to find a direction of improvement. By making this 
choice we now need stopping rules to decide when we are 
satisfied with the current point. In section 3.2 we will dis-
cuss a number of rules and our tests will show the best 
stopping rules for specific functional forms. 

2.2.4 When the Second-Order  
Model is Inadequate 

If the second-order model is found to be inadequate, we as-
sume that either the region of interest is too large or that the 
stochastic nature of the function disturbs the approximation 
process. Stopping the algorithm at this point is only a good 
idea if there is some good indication that the current center 
point is close to the optimum. If we do not have this indica-
tion we propose to continue the algorithm. If we increase the 
precision used in evaluating a design point, the variance of 
the response will be reduced and therefore the second-order 
polynomial will better approximate the objective function. 
We will thus either reduce the size of the current region of 
interest (Joshi, Sherali, and Tew 1998) or we will increase 
the precision used in evaluating the design points. 

2.3 Stopping Rules 

In automated optimization the RSM algorithm needs to be 
ended by consistent stopping rules that do not end the algo-
rithm before a good solution is found and also do not un-
necessarily prolong the algorithm. In section 2.2. we re-
ferred to the RSM literature where the optimization is 
ended after estimating only one second-order model (Fu 
1994; Kleijnen 1998). We recommend ending the optimi-
zation if either the estimated response value does not im-
prove sufficiently anymore, or, in case there are budget 
constraints, if a fixed maximum number of (function) 
evaluations have been performed. In this section we ex-
plain why these criteria seem to be consistent and how we 
apply them on the automatic algorithm. We also propose 
one more stopping criterion: stop the algorithm if the input 
values do not change anymore, i.e. if consecutive center 
points are close to each other. 

2.3.1 The Estimated Response Does Not Improve 
Sufficiently Anymore (IMPROVE) 

Algorithms to find the optimum of a deterministic function 
can simply be ended if the function value does not improve 
sufficiently in consecutive iterations. When optimizing 
stochastic objective functions though, one has to take noise 
into account. Because we assume that the variance of the 
response is not known at the start of the algorithm we have 
to estimate it by evaluating the response in the new center 
point of the region of interest more than once. We then 
need some statistical test to determine if there is sufficient 
progress or if the different mean response in the center 
points is completely due to the noise. Notice that if the 
mean response does not decrease significantly in consecu-
tive center points we could still make progress. For in-



Nicolai, Dekker, Piersma, and van Oortmarssen 

 
stance the mean response can decrease from value 10.2 to 
8.1 in 5 iterations, while in each separate iteration the 
change is not significant. We therefore implement the fol-
lowing criterion. Stop the algorithm if the mean response 
in the latest center point is not significantly different from 
the mean response in the penultimate center point in n con-
secutive iterations. It is important to note that the penulti-
mate center point is only changed in case the mean re-
sponse differs significantly from the mean response in the 
latest center point. The number of iterations n is subject to 
tests. Notice that this stopping rule is based on the known 
stopping rules for the steepest descent line search. It makes 
use of elements of both the Myers and Khuri rule as well as 
the n-in-a-row rule. 

2.3.2 Convergence of Input Values (CONVERG) 

Algorithms that are used to find the optimum of a determi-
nistic function are sometimes ended if the input parameters 
of the function do not change anymore. We also propose to 
end the algorithm if the Euclidian distance between two 
consecutive center points is small, i.e. less than ε · √k, 
where ε is a small number and k is the number of parame-
ters of the objective function. In this way, the precision of 
each estimated parameter will be approximately ε. 

2.3.3 Fixed Maximum Number of  
Function Evaluations (EVAL) 

Our interest in the RSM is especially intended for stochas-
tic models where the calculation of the corresponding sto-
chastic objective function is very expensive or time-
consuming. Therefore, ending the algorithm after a maxi-
mum number of function evaluations is appropriate when 
there are budget constraints. Notice that this stopping crite-
rion does not consider the noise. 

2.4 A Restarting Mechanism 

Because RSM is a local search method there is no guaran-
tee for finding a global optimum. The first center point 
used in the RSM procedure is chosen by the user or ran-
domly selected and can influence the outcome of the pro-
cedure. Neddermeijer et al. (2000a) consider multiple start-
ing points and/or multiple searches from the same starting 
point, when optimizing a stochastic objective function. In 
this study, we will use an adjusted mechanism that is based 
on these suggestions. 

To escape from a non-optimal region we propose to 
restart the algorithm as soon as the algorithm is stopped by 
one of the stopping criteria using the current best center 
point found as the new starting point. Because the algo-
rithm cannot escape from a non-optimal region when the 
size of the region of interest is too small, we propose to re-
set the size of the region to its initial value. In all optimiza-
tion runs the best solution, i.e. the parameter values for 
which the mean response of the stochastic objective func-
tion is best, will be remembered. So this restarting proce-
dure will not deteriorate the solution found in the �normal� 
optimization run. Of course the response function is sto-
chastic, so it is possible that the mean response measured 
in a non-optimal point is better than the mean response 
measured in the real optimal point. 

2.5 Parameter Settings 

The parameter settings will all be subject to tests. For in-
stance the significance of the lack of fit test can be per-
formed at a significance level of 2.5%, 5% or 10%. We 
will also test by how much we have to increase the preci-
sion of the function evaluation in the design points and by 
how much we have to decrease the size of the region of in-
terest to solve the inadequacy of the second order model. 

3 TEST DESIGN 

In this paper we want to find automated RSM procedures 
that consistently perform well for stochastic objective func-
tions with unknown variance. For such procedures there are 
two important issues: how can we find an (area that contains 
an) optimum and when do we decide that the current center 
point is a satisfactory solution, i.e. when do we stop the al-
gorithm? There is a trade-off between the running time of 
the algorithm and the quality of the algorithm. An efficient 
algorithm produces a solution of high quality within a rea-
sonable time. Our emphasize on stochastic functions further 
complicates the task for the RSM procedure, we now need to 
recognize when the difference in response in the sequence of 
recent center points is only due to noise, and that no further 
improvement can be expected. 

We therefore emphasize stopping rules and restart 
procedures. In a pre-testing phase we have determined the 
parameter values that give the best performance with re-
spect to running time and quality of the solutions returned. 
We also discuss only strategic moves that we feel have the 
most impact on the efficiency of the RSM procedure. We 
benchmark our set-up against the set-up by Fu (1994) who 
stops after the second-order model is found to be inade-
quate for the first time. 

In particular we consider the following alternatives: 
We test the 3-in-a-row stopping rule against our version of 
the Myers and Khuri stopping rule for the steepest descent 
line search in the first phase. The steepest descent proce-
dure should efficiency recognize a new region of interest. 
If it fails to do so then the second-order approximation, 
that performs locally, will be of no use. Del Castillo (1997) 
concludes that the Myers and Khuri stopping rule domi-
nates the 3-in-a-row rule for stochastic functions with 
known variance. When the variance is unknown and it 
should be determined by the algorithm it is not clear 
whether the Myers and Khuri rule is still as successful. 
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When the second-order model is found to be adequate 
and a minimum is found within the region of interest we as-
sume that we are close to a (local) optimum. We then shrink 
the region of interest with either 50% or 10%. The exact 
values are set by pre-testing, but the difference between 
these shrink-percentages is important. When the region of 
interest is shrunk by 10% it will take more time to focus on a 
certain region that is suspected to contain the global opti-
mum and the algorithm could be unnecessarily prolonged. 
However if we shrink the region of interest too soon, we are 
at higher risk of returning a local optimum. The success of 
the alternatives will closely interact with the stopping rules 
and restart procedures. For instance, we have good hope that 
the 50% shrink procedure (ensures fast convergence) in con-
nection to a strict stopping rule with respect to noise (en-
sures fast convergence) and a restart procedure that returns 
to the original size of the region of interest (recognize qual-
ity of solutions) will perform well. 

When the second-order approximation is rejected ei-
ther the noise is dominant or the region of interest is too 
large. Since we do not believe that there is any justification 
that the current center point is close to the optimum we 
want to continue either with a second-order model in the 
neighborhood of the current center point or with a first-
order approximation. We have no intuition which correc-
tion  (reduce noise or shrink region of interest) will give 
better results and test both options. 

As a result we will test eight algorithms, using all pro-
posed alternatives in combination with the others (see Ta-
ble 1). For all these eight algorithms we will study the ef-
fect of the stopping rules and restart procedures explained 
in Section 2.3 and 2.4. 

 
Table 1: The Test Design 

Algo- 
rithm 

Nr 

Stopping rule  
steepest descent 

Shrink  
region of  
interest 

Solve second- 
order inade- 

quacy 
1 3-in-a-row 50% Noise reduction 
2 3-in-a-row 50% Shrink design 
3 3-in-a-row 10% Noise reduction 
4 3-in-a-row 10% Shrink design 
5 Myers and Khuri 50% Noise reduction 
6 Myers and Khuri 50% Shrink design 
7 Myers and Khuri 10% Noise reduction 
8 Myers and Khuri 10% Shrink design 

 
The set-up of the tests is as follows. First we apply the 

algorithms for a large number of iterations and for each 
algorithm record the relevant values for the application of 
the stopping criteria. Especially, at each iteration we record 
(the mean response in) the current (best) center point, the 
number of function evaluations, and the Euclidean distance 
between the current and the last center point. We then de-
cide on the exact implementation of each stopping rule 
such that the average performance of each algorithm for a 
test set defined in the next section is �best�. Each algo-
rithm can have a different implementation of the stopping 
rules for which it performs best. The criteria for the pre-
ferred performance of the stopping rules are based on the 
quality of the solutions compared to the optimum values of 
the deterministic test functions. Notice that we have full 
knowledge of the optima of the test functions and corre-
sponding solution values. We can therefore observe the pa-
rameters of each stopping rule of the RSM procedure for 
every test function and determine when the procedure is no 
longer effectively improving the solutions. The parameter 
values are taken such that the average performance over 
the test functions is best because we assume that we have 
no previous knowledge of the objective function. Note that 
we apply each algorithm on each test function 100 times to 
find the average behavior of the algorithm. 

It should be said that the optimality of a solution com-
prises two things: the response of the objective function 
and the parameter values. In chemical processes it may be 
more important to find a minimum response, whereas in 
the estimation of parameters of a simulation model the val-
ues of the parameters are more important. Therefore, we 
will not only compare the minimized stochastic output with 
the minimum response, but also the estimated parameter 
values with the actual location of the minimum. 

In a second phase we run the algorithms again for the 
new implementations of the stopping rules and we apply a 
restart procedure when each algorithm is stopped. The restart 
procedure is applied once and the result of the algorithm after 
the restart is returned as the output of the algorithm. 

The performance of the algorithms is compared to the 
performance of four algorithms using the stopping criterion 
of Fu applied to the same set of test functions. 

4 THE TEST PROBLEMS 

In this study we will test the optimization algorithms on a 
set of 7 test functions with known optima, which consist of 
a deterministic term and a stochastic term. These functions, 
e.g. the Rosenbrock, Powell, Beale and Wood function, are 
also used in comparing different versions of Nelder and 
Mead simplex method (NMSM) (Neddermeijer et al. 
2000b) and in comparing RSM algorithms with NMSM 
algorithms (Neddermeijer et al. 1999). We will also con-
sider a (micro)simulation version of an existing cancer-
screening model (Day and Walter 1984). This model has 
three parameters that need to be estimated from an ob-
served data set using constrained optimization of a good-
ness-of-fit statistic (van Oortmarssen et al. 1990; Nedder-
meijer et al. 1999). For this particular model the optimal 
parameters can also be determined analytically, but we are 
interested in the performance of the RSM procedure for 
this simulation exercise. For a more detailed description of 
above test problems we refer to Nicolai and Dekker (2004). 
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5 RESULTS 

From a number of preliminary tests we obtained the pa-
rameter settings as described in section 2.5. Table 2 shows 
the settings we use in all algorithms. 
 

Table 2: Parameter Settings 
Parameter Setting 

Significance level 
statistical tests 5% 

Shrink design 50% 
Increase precision 0.95 / 25% 

 
Table 2 shows that all statistical tests are performed at a 
significance level of 5% and the size of the design will be 
decreased by 50% to solve the inadequacy of the second 
order model. For the first seven test functions the precision 
of the function evaluation will be increased by multiplying 
the standard deviation of the stochastic part by 0.95. For 
the micro-simulation model the number of simulated life 
histories will be increased by 25%. 

In the first phase of the numerical experiments we want 
to determine the exact implementations of the stopping crite-
ria. Because we cannot compare the mean of the solutions of 
an algorithm over iterations we have recorded the results of 
the eight algorithms for a number of implementations of the 
stopping criteria. These implementations are shown in Table 
3. Note that these implementations may depend on the num-
ber of parameters (nPar) of a test problem. 
 

Table 3: Implementations of Stopping Criteria 
Criterion Implementation 

IMPROVE 5·i, i =1,2,3,4,5 
CONVERG 5E-04j·√nPar, j=1,2,4,10,20 

EVAL 50·k·2nPar, k=1,2,3,4,5 
*nPar: the number of parameters of a test function 

 
In Table 4 the results of the application of algorithm 1 

on test problem 6 are shown. The first column contains the 
description of the stopping criterions and in the second 
column the setting of each criterion is given. The third col-
umn shows the mean (standard deviation) of the absolute 
difference between the actual optimum and the actual value 
(i.e. without noise) of the objective function in the found 
minimum. In the fourth column the mean (standard devia-
tion) of the Euclidean distance between the minimum and 
the found minimum is given. The last row actually shows 
the results of stopping the algorithm after the maximum 
number of iterations, in this case 150. Note that this par-
ticular test problem has two parameters. 

The results in Table 4, which are representative for  
the majority of the results of the first phase of numerical 
experiments, show that the more iterations the algorithm 
runs the lower the actual mean response becomes. How-
ever, it appears that the Euclidean distance between the es- 

 

b

Table 4: Results of Applying Algorithm 1 on Function 6 
Criterion SETTING Difference DISTANCE

IMPROVE 5 0.329(0.307) 1.877(0.029)
 10 0.283(0.190) 1.874(0.035)
 15 0.266(0.177) 1.876(0.036)
 20 0.255(0.168) 1.878(0.045)
 25 0.254(0.171) 1.878(0.044)

CONVERG 1.41E-02 0.319(0.302) 1.877(0.038)
 7.07E-03 0.264(0.189) 1.878(0.046)
 2.83E-03 0.249(0.165) 1.879(0.052)
 1.41E-03 0.241(0.156) 1.880(0.054)
 7.07E-04 0.243(0.158) 1.880(0.054)

EVAL 200 0.347(0.317) 1.875(0.024)
 400 0.275(0.198) 1.873(0.035)
 600 0.263(0.176) 1.874(0.038)
 800 0.262(0.176) 1.877(0.042)
 1000 0.241(0.155) 1.883(0.056)

Max. iterations 150 0.228(0.141) 1.882(0.074)

imated parameters and the actual location of the minimum 
oes not always become smaller as the algorithm runs 
onger. In general we may conclude that the algorithms itera-
ively find solutions with smaller and smaller mean re-
ponses although the difference with the actual best parame-
er values does not change so much anymore. In general it 
ppears that the CONVERG stopping criterion outperforms 
he other two criterions with respect to the absolute differ-
nce and Euclidean distance (Nicolai and Dekker 2004). 

Note that in Table 4 the standard deviation of the differ-
nce between the actual minimum value and the actual ob-
ective value in the found minimum is relatively large. It ac-
ually appears that the algorithm also finds solutions for 
hich the deviation is very close to zero. Therefore, apply-

ng the algorithm more than once gives a high probability of 
inding a good solution. Since in practice the actual values 
re not known, the estimated response in the found solutions 
ust be compared to determine which solution is better. 

As it was stated before, the performance of an algorithm 
oes not only depend on the precision of the solutions found, 
ut also on the computing time. When optimizing stochastic 
bjective functions the number of function evaluations 
eeded to obtain a certain solution is an important indicator 
or the computing time. In Table 5 the average (standard de-
iation) of the number of evaluations needed to fulfill the 
topping criteria IMPROVE and CONVERG when algo-
ithm 1 is applied on function 6 are shown. 

The values in Table 5 show that the difference in the 
umber of function evaluations between the least restrictive 
etting and the most restrictive setting of each stopping crite-
ion is a factor 5. Moreover, the number of evaluations in 
unning the algorithm 150 iterations is three times higher 
han the number of evaluations done for the most restrictive 
etting of the CONVERG stopping rule. For this specific al-
orithm applied on function 6 the gain in precision, see Ta-
le 4, does not balance the extra computing time.  
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Table 5: Number of Function Evaluations Required to 
Fulfill the Stopping Criteria 

Criterion SETTING EVAL 
IMPROVE 5 279(89) 

 10 575(376) 
 15 886(572) 
 20 1226(763) 
 25 1424(762) 

CONVERG 1.41E-02 274(110) 
 7.07E-03 442(204) 
 2.83E-03 702(292) 
 1.41E-03 878(336) 
 7.07E-04 1024(361) 

Max. iterations 150 3331(106) 
 

If we combine the results in Tables 4 and 5, we see that 
algorithm 1 minimizes test function 6 more precisely using 
less function evaluations. However, in general it appears that 
the number of evaluations required to fulfill stopping crite-
rion CONVERG is much higher than for IMPROVE (Nico-
lai and Dekker 2004). This especially holds for the test func-
tions with more than three variables. In the second phase of 
the numerical experiments we compare the above-defined 
eight algorithms with four algorithms, which use the stop-
ping criterion of Fu. Moreover, we test whether the restart 
mechanism has an effect on the solutions. 

In Table 6 the results of applying algorithm 1 using 
the stopping criterion of Fu are shown. Note that we use 
the numbering of the algorithms as given in Table 1 and 
that we have applied algorithms 1, 2, 5 and 6 using the 
stopping criterion of Fu. In these algorithms the option of 
decreasing the size of the design is not used, since the Fu 
algorithms stop after one second-order model. In the first 
column of Table 6 the number of the test function is given. 
Test function number 8 is the micro-simulation model. In 
the second and third column the average (standard devia-
tion) of the absolute deviation between the actual objective 
value in the optimum and the actual value of the objective 
function in the found minimum are given, where the third 
column contains the results for applying the restarting 
mechanism. The fourth column shows the mean number of 
function evaluations that the algorithm carried out to find 
the minimum, the restarting mechanism included. 
 

Table 6: Results of Applying Fu Algorithm 1 
Test Function No Restart Restart EVAL 

1 9.92(86) 1.28(0.40) 127 
2 19334(0) 18287(0.01) 108 
3 0.96(1.16) 0.242(0.25) 61 
4 1102(3524) 120(1200) 455 
5 7.83(19.8) 0.33(0.36) 2264 
6 1207(701) 679(739) 80 
7 4203(3174) 2664(3069) 387 
8 0.109(0.11) 0.094(0.099) 54 
From extensive experimentation (Nicolai and Dekker 
2004) it appears that algorithm 1 outperforms the other al-
gorithms, so we continue with this algorithm. The results 
in Table 6 show that the restarting mechanism increases 
the precision of the found solutions very much. However, 
if we compare the solutions for test function 6 in Table 6 
with the results in Table 4, we see that even applying the 
least restrictive version of stopping criterion CONVERG 
results in a far more precise solution. Note that the average 
number of evaluations for the Fu algorithm is 80, whereas 
it is 274 for test algorithm 1. In general it appears that the 
Fu stopping criterion ends the algorithm too soon (Nicolai 
and Dekker 2004). 

6 CONCLUSIONS 

In this paper we have analyzed settings for an automated 
RSM procedure for simulation optimization. Numerical 
results show that considerable improvement is possible 
over the proposed settings in the existing literature. Sto-
chastic objective functions with unknown variance need 
different settings than objective functions with known 
variance in order to find good solutions. The trade-off be-
tween running time of the algorithm and the quality of the 
solutions returned can be tuned by setting the appropriate 
stopping criteria and applying restart procedures. 
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