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ABSTRACT

Forecasting is of prime importance for accuracy in decision
making. For data sets containing high autocorrelations, fail-
ure to account for temporal dependence will result in poor
forecasting. TES (Transform-Expand-Sample) is a class of
stochastic processes to model empirical autocorrelated time
series and is used in Monte Carlo simulation. Its merit is
to simultaneously capture both the empirical distribution
function and the autocorrelation function. The transition
structure of TES processes can be utilized to calculate fore-
casts for future periods. In this paper, we utilize phase-type
random variables as the innovation density in TES model
fitting methodology, and we investigate the forecasting per-
formance of TES processes compared to traditional auto
regressive integrated moving-average models. We find that
TES models yield forecasts as accurate as time series models.

1 INTRODUCTION

Improving decision making practices in a supply chain is
a major source of competitive advantage in today’s uncer-
tain business environments. Resolving uncertainty in early
phases of the decision making process will result in better
planning and accuracy of supply chain activities, and im-
proved customer service levels, lesser inventories and lower
costs. Forecasting is one of the key ingredients necessary
to clear up uncertainties in the early stages of planning.
It is a crucial driver for procurement, manufacturing and
distribution activities in a supply chain.

Improving the quality of forecasts has been a challenging
problem. Failure to account for large autocorrelations, trend,
and seasonality in data sets is the ingredient contributing
to lack of accuracy in forecasting. In literature, time series
models such as Winters exponential smoothing, Box-Jenkins
auto regressive integrated moving-average (ARIMA), and
multiple regression have been used to account for these
type of patterns. Likewise, TES models can be utilized to
generate forecasts for correlated data sets. Melamed (1991)
introduced TES processes that can be used to generate
correlated events in Monte Carlo simulation.

The primary objective of time series modelling (TSM)
is to study techniques and measures for drawing inferences
from past data. It accounts for the fact that data points
taken through time may have an underlying structure (such
as autocorrelation, trend or seasonal variation) and this
structure will persist over time. The approach consists of
establishing mathematical models to represent the data set.
Then, the models can be employed to describe and analyze
the sample data, and make forecasts for the future. The main
advantage of time series models is that they can handle any
persistent patterns in data (Box and Jenkins 1976, Brockwell
and Davis 2002).

TES is a methodology (Jagerman and Melamed 1992a,
Jagerman and Melamed 1992b, Jagerman and Melamed
1994, Melamed 1991, Melamed 1993, Melamed 1997) to
model empirical time series from a stationary probability
law. Its merit is to capture both the empirical distribution
and autocorrelation function, simultaneously. It can model
a wide variety of autocorrelation functions (e.g.monotone,
oscillating, alternating etc.) and is suitable for Monte Carlo
simulation of autocorrelated time series. The analytical
formulas of TES process provide calculation of autocorre-
lations as well as its transition structure. Forecasts for the
future can be calculated by utilizing the known transition
structure of TES processes (Jagerman and Melamed 1995).

This paper reports an experimental study in order to
compare TES process forecasting to traditional Box-Jenkins
ARIMA models. Similar comparative studies exist in lit-
erature. Among the recent ones, Alon, Qi, and Sadowski
(2001) presents a study that compares artificial neural net-
works to time-series forecasting methods in predicting US
aggregate retail sales. Thomakos and Guerard (2004) com-
pare naive, ARIMA, nonparametric and transfer function
models on several data sets. Zou and Yang (2004) suggest
combining several time series models to get more accurate
forecasts and compare them to individual methods. Our
study differs from others since it exploits TES forecasting
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procedure. Jagerman and Melamed (1995) also implement
the TES forecasting methodology based on the use of mix-
ture of uniform random variables as the innovation density.
This paper contains an extensive computational study of
TES forecasting, and in our experiments, we exploit phase
type random variables as the innovation density.

The remainder of the paper is organized as follows.
Section 2 gives an overview of TSM methodology. Section
3 explains TES processes and its empirical modelling. Sec-
tion 4 illustrates the TES forecasting approach. Section 5
contains a comparison study of TES forecasting to general
ARIMA models. Finally, we give a brief conclusion in
section 6.

2 TIME SERIES MODELS

Time series models are used to draw inferences from past
data. In these models, past data is analyzed in order to iden-
tify patterns recurring over time. Then, forecasts for future
periods are developed based on such underlying patterns.

The applications of time series models include forecast-
ing future values of the series, testing hypothesis, monitoring
and simulation, among others. Following is a formal defi-
nition and properties of a time series.

A discrete time series {Xt }, t = 0, 1, 2, . . . is a sequence
of observations recorded at time t . Correspondingly, a con-
tinuous time series is the one where observations recorded
continuously. The autocorrelation function of {Xt } with
common mean µ and variance σ 2 < ∞ is defined at lag τ

as

ρx(τ ) = E[(Xt+τ − µ)(Xt − µ)]
σ 2 , τ = 1, 2, 3, . . . .

A time series is said to be stationary, if its statistical properties
remain constant over time, i.e., its mean is independent of
time and its autocorrelation function is independent of time
for each lag.

The autocorrelation function provides valuable infor-
mation about how much successive values in a time series
depends on each other. It can be thought of an indication
of change in one observation if there is a change in the
other. In addition, it plays an important role in forecasting
future values based on the present and past values.

Box and Jenkins (1976) provides a methodology for
fitting a model to an empirical data set. The systematic
approach identifies a class of models appropriate for empir-
ical data sequence at hand and estimates its parameters. A
general class of Box and Jenkins models include ARIMA
models that can model a large class of autocorrelation func-
tions (Box and Jenkins 1976, Brockwell and Davis 2002).
The model is a combination of auto regressive (AR) and
moving-average (MA) models for differenced data. An AR
model is simply a regression of the current observation to
the previous ones. Formally, if {Xt }, t = 0, 1, 2, . . . are
the values of observations recorded at time t , then

Xt = φ1Xt−1 + φ2Xt−2 + . . . + φpXt−p + Zt

is called an AR process of order p where Zt is a white
noise process with mean 0 and variance σ 2 and φ’s are finite
weight parameters. On the other hand, an MA model is a
regression of the current value against the previous white
noise, i.e.,

Xt = Zt + θ1Zt−1 + . . . + θqZt−q

where θ ’s are constants. Then, {Xt } is an ARMA(p,q)
process, if {Xt } is stationary and if for every t ,

Xt −φ1Xt−1 − . . .−φpXt−p = Zt +θ1Zt−1 + . . .+θqZt−q .

The process {Xt } is said to be an ARMA(p,q) process with
mean µ, if {Xt − µ}, deviations from the mean, is an
ARMA(p,q) process. Finally, the integrated ARMA model,
ARIMA(p,d,q), is an ARMA(p,q) model to the d times
differenced data. Differencing is a tool in order to remove
trend and seasonality from the empirical data.

The general approach to time series modelling includes:

• Plotting the series and examining the data for trend,
seasonal component, any outlying observations and
apparent changes.

• Removing the trend and seasonal components to
get stationary residuals.

• Using the second order statistics of data, fitting a
model to the residuals.

• Checking for goodness of fit.
• Using the model for further analysis, e.g., fore-

casting.

3 TES PROCESSES

In this section, we will give a brief overview of TES pro-
cesses. TES is a modelling methodology (Jagerman and
Melamed 1992a, Jagerman and Melamed 1992b, Jager-
man and Melamed 1994, Melamed 1991, Melamed 1993,
Melamed 1997) of empirical time series to capture its
marginal distribution as well as the autocorrelation function.
Together with Monte Carlo simulation, its analytical back-
ground makes it a viable tool to forecast future values of
empirical time series data (Jagerman and Melamed 1995).

The TES modelling procedure satisfies three important
requirements of fitting a model to an empirical data set.
The first one is to match the marginal distribution of the
model to the marginal distribution of the time series, which
is a first-order characteristic of the data. The second one
is to approximate the autocorrelation function of the data,
a second-order statistics. Finally, the third requirement is
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that the sample paths generated by the TES model should
resemble their empirical counterparts.

Similar to other autocorrelated sequence generation
procedures, TES process utilizes background and foreground
schemes. That is, an auxiliary sequence is generated from
a stationary process by some recursive relationship. Then,
the target foreground sequence is obtained by making a
transformation of the background sequence.

There are mainly two types of TES processes, TES+ and
TES−. The former is to generate positive autocorrelations
while the latter is for alternating values. A TES+ process can
be generated as follows. First, a background variate U+

n is
generated by utilizing the following recursive relationship:

U+
n = 〈U+

n−1 + Vn〉, n > 0

where U0 is a uniform random variate on (0, 1), Vn is an
i.i.d random sequence (called as the innovation sequence
since they bring new randomness at each step) with a
common density function, fv , independent of U+

0 , . . . U+
n−1,

and 〈〉 is the modulo-1 arithmetic operator, i.e., 〈x〉 =
x − max{integer n : n ≤ x}, resulting in the fractional part
of n. Then, the foreground sequence X+

n is obtained by
some transformation (called distortion) from [0, 1] to real
numbers, i.e.,

X+
n = D(U+

n ), n > 0.

In order to prevent visual discontinuities in Monte Carlo
sample paths generated by the TES model, an intermedi-
ary stitching transformation is applied to the background
sequence. It is a piecewise linear transformation and it
preserves all the properties of the original sequence. The
transformation is given by

Sξ (y) =




y
ξ
, 0 ≤ y < ξ

1−y
1−ξ

, ξ ≤ y < 1

where ξ ∈ [0, 1).
Empirical TES modelling methodology consists of se-

lecting the TES model sign, TES+ or TES−, a stitching
parameter, ξ , an inversion transformation, D, and an inno-
vation density, fv .

Initially, TES model sign is selected by investigating
the empirical autocorrelations. Then, in order to specify a
distortion, D, data sequence is modelled as an empirical
histogram since any general density function can be ap-
proximated by a mixture of uniform distributions (Altıok
and Melamed 2001). Consequently, D is chosen as the
inverse of the histogram distribution (it is composed of a
transformation and a stitching function). So, the random
sequence X+

n has the same marginal distribution as the
histogram (by the inversion transformation method (Altıok
and Melamed 2001; Bratley, Fox, and Schrage 1987; Law
and Kelton 1991)). Finally, a general density function, fv ,
is used as the innovation density. Among the candidate
densities are mixture of uniform innovations and phase-
type distributions because of their generality and versatility
(Altıok 1997). Selecting an appropriate stitching parameter
and innovation density require an extensive search proce-
dure that give rise to TES models whose autocorrelation
function approximates its empirical counterpart. However,
using phase-type random variables as the innovation density
substantially reduces our search space since they have less
parameters than mixtures of uniform random variables.

Successful applications of the TES models consist of
machine fault arrivals, some financial time series mod-
els, MPEG-compressed VBR video, texture synthesis, and
H.261-Compressed video (Hill and Melamed 1995a, Hill
and Melamed 1995b). An algorithmic empirical TES model
fitting methodology using mixture of uniform innovation
sequences can be found in (Altıok and Melamed 2001,
Jelenkovic and Melamed 1995).

4 FORECASTING CAPABILITIES OF TES
PROCESSES

After we fit a TES model to an empirical data set using
phase-type innovation variables, all the autocorrelations and
transition densities of the model can be calculated using
accurate analytical formulas. Utilizing the transition struc-
ture of the TES model, forecasts for future periods can be
calculated as conditional expectations of the process given
a current value. All the mathematical background for point
estimates can be found in (Jagerman and Melamed 1995).

We employed TES forecasting methodology on various
data sets. In the following figures is the implementation of
the TES forecasting procedure on Dow Jones Utilities (DJU)
Index, recorded between Aug.28–Dec.18, 1972 (Brockwell
and Davis 2002, Makridakis and Wheelwright 1989). The
TES model was constructed by matching the empirical distri-
bution and autocorrelation function to the above mentioned
data set, simultaneously. We have used phase type random
variables in the construction of the TES process.

The DJU Index data set has 78 points. We split the
data into fit and test periods in order to check the accuracy
of the forecasting method rigorously. The TES model was
identified by using 68 of them. The rest 10 points were used
for out-of-sample evaluation of the forecasting approaches.
In addition, we illustrated the goodness of fit of the TES
model to the data in the in-sample period.

The DJU Index data can be seen in Figure 1. In addition,
we have included a Monte Carlo sample path generated using
the fitted TES model. It can be seen from the figure that
the sample path generated by the TES model resembles its
empirical counterpart which may be considered as satisfying
the qualitative modelling requirement.
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Figure 1: Empirical Data and the Generated Monte Carlo
Sample Path

Further, in Figure 2, we can see the almost exact
atch between the autocorrelation functions of the empirical

bservations and the TES model.
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Figure 2: Autocorrelation Functions for Data and the
TES Model

In the following figures, the forecasts generated by the
ES model are presented. The forecasts are calculated based
n the conditional expectations given the current value of
he series. Therefore, for a given data point, both one-
eriod-ahead and multiple-period-ahead predictions can be
omputed. In order to show the goodness of fit of the TES
odel to the in-sample data, we started conditioning on the
rst data point and compute estimate for the second period,
onditioned on the second data point and calculate prediction
or the third period, and continue in this manner till the
nd. In Figure 3, the graph of data and the one-period-ahead
orecasts at every fit point are presented.
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Figure 3: In-sample Forecasting for Dow Jones Utilities
Index

In addition, we have illustrated the accuracy of one-
period-ahead forecasts in the test period. In Figure 4,
we have forecasted only at the out-of-sample period. For
forecasting performance, we have utilized the last 10 points
of the data and calculate quantities such as root mean squared
error (MSE) and mean absolute percentage error (MAPE).
The resulting root MSE and MAPE for out-of-sample data
are 0.4561 and %.29, respectively for Dow Jones Utilities
Index. A comparison of this result to traditional ARIMA
models can be found next section.
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Figure 4: Out-of-sample Forecasting for Dow Jones Util-
ities Index

5 COMPARISON OF TES FORECASTING TO
ARIMA MODELS

In this section, we compare the accuracy of the TES fore-
casting methodology to the traditional ARIMA models. The
error measures of interest are square root of MSE (RMSE)
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and MAPE. The forecasting error is obtained by subtracting
the forecasted values from the true values, i.e., et = Xt −Ft .
We can calculate MSE by squaring each of the individual
errors, et , and taking the average of those squared numbers,
i.e.,

MSE =
∑n

i=1 e2
i

n
. (1)

On the other hand, MAPE is computed by dividing the abso-
lute errors by the corresponding true values, then averaging
those deviations and multiplying by 100, i.e.,

MAPE =
∑n

i=1 |Xt − Ft |/Xt

n
100. (2)

We have conducted extensive computational experiments to
test the accuracy of TES forecasting using several empir-
ical data sets. We have first utilized the TES modelling
methodology to fit a model to an empirical data set and
then generated forecasts from those fitted models. Then, we
have exploited time series modelling approach to fit ARIMA
models on the same data set, generated forecasts, and fi-
nally, compared the above mentioned forecasting accuracy
measures, i.e., RMSE and MAPE.

Most of the data sets are borrowed from (Brockwell
and Davis 2002) and for all of them, we have specified part
of the data except the last ten points as the fit period and the
remaining as the test points. After fitting the models, the
accuracy measures were calculated using the test points.

The “Lake Huron” data shows the water level of Lake
Huron in feet (reduced by 570), between 1875–1972 (Brock-
well and Davis 2002, Makridakis and Wheelwright 1989).
Data set “Sales” is sales data from Box and Jenkins (1976)
and “Appc” represents private housing units started in the
U.S.A. (monthly, from the Makridakis competition, se-
ries 922). Data set “Petroleum” is from Monthly En-
ergy Review database and represents monthly total domestic
field petroleum production from January 1984 to Decem-
ber 2003 (URL: <http://www.eia.doe.gov/emeu/
mer/petro.html>). All the computations were con-
ducted by using Matlab Release 12.1. Matlab Optimization
Toolbox was utilized to fit the TES models.

Table 1 shows the computational results for different
forecasting methods. In the first row, we used the Dow Jones
data to compare the two forecasting procedures. TES fore-
casting procedure yields root mean square error of 0.4561
and mean absolute percentage error of %0.29. In the mean-
time, ARIMA model yields RMSE of 0.5298 and MAPE
of %0.28. As can be seen from the computational results,
TES forecasting methodology yields forecasts as accurate
as ARIMA models. This makes TES forecasting procedure
an attractive complement to time series models, especially
when data exhibits high autocorrelations.
In addition, TES processes were extremely useful in
modelling empirical data series, especially in capturing au-
tocorrelations.

6 CONCLUSIONS

In this paper we compared the forecasting performance of
TES models to traditional time series models on several data
sequence. The data sets included were highly autocorrelated
which is appropriate for TES modelling. Our preliminary
analysis suggests that in addition to its analytical modelling
of autocorrelated time series and Monte Carlo simulation,
using TES models as a forecasting tool yields forecasts as
accurate as time series models. In addition, using phase-
type random variables as the innovation density considerably
decreases search for model fitting, which makes it possible
to frequently update the fitted model.

Extension of our work include exploiting TES fore-
casting procedure on non-stationary time series, i.e.; when
there is strong trend and seasonal patterns in time series,
and determining rules for model updating procedures.
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