
Proceedings of the 2004 Winter Simulation Conference
R .G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, eds.

EXPLOITING TEMPORAL UNCERTAINTY IN PROCESS-ORIENTED DISTRIBUTED SIMULATIONS

Margaret L. Loper

Georgia Tech Research Institute
Georgia Institute of Technology

347 Ferst Drive
Atlanta, GA 30332, U.S.A.

 Richard M. Fujimoto

College of Computing
Georgia Institute of Technology

Atlanta, GA 30332, U.S.A.
ABSTRACT

Existing research has defined a new type of simulation
time called Approximate Time, where the simulation’s
knowledge about the values that represent time is uncer-
tain. The approach is based on temporal uncertainty and
uses time intervals rather than precise time values to repre-
sent time. Simulation language constructs are necessary to
provide a convenient means of exploiting the temporal un-
certainty to simulation modelers. To address this problem,
a new time advance primitive for process-oriented simula-
tions was developed, termed the Interval Hold construct.
Interval Hold is an extension of the well-known hold
primitive used in conventional simulation languages. This
paper defines the interval time advance primitive and de-
scribes an algorithm for implementing it.

1 INTRODUCTION

The heart of every simulation is a time control program
that advances simulation time and selects a subprogram to
be executed (Kiviat 1969). In the Next Event time advance
method, the clock is advanced to the time at which the next
event is due to occur. Using this approach, each event is
processed in a sequential manner. In parallel and distrib-
uted simulation environments this can lead to problems. If
conservative execution is used, and the simulation has zero
lookahead (which is often the case), a synchronization
computation is required before each time advance to ensure
no events arrive in an LP’s past. The synchronization over-
head and blocking imposed to ensure time stamp ordered
event processing may prevent a simulation from achieving
real-time performance in a distributed simulation environ-
ment. Exploiting temporal uncertainty provides a means of
addressing this problem.

A natural, convenient means must be defined to spec-
ify uncertainty in simulation programs. To address this
problem a time advance mechanism for process-oriented
simulations called Interval Hold is proposed. Interval Hold
uses Approximate Time clocks (Loper 2002) to increase
the concurrency of event processing and improve the effi-

ciency of the synchronization mechanism. The Interval
Hold algorithm is important because it reduces the number
of global synchronization computations required to caus-
ally order the events in a distributed simulation.

This paper starts by giving an overview of process-
oriented simulation and Approximate Time. Following
that, the interval time advance primitive is defined and an
algorithm for implementing the primitive is described.

2 BACKGROUND

2.1 Process-Oriented Simulation

A process-oriented simulation is one of the three widely ac-
cepted modeling perspectives under which a simulation is
developed (Lackner 1962, Kiviat 1967, Fishman 1973). A
process-oriented simulation uses an abstraction called a
process to model a specific object in the simulation with a
well-defined behavior. A process is a time-ordered se-
quence of events, separated by passages of time, that define
the life cycle of one entity as it moves through a system
(Banks, Carson, and Nelson 1996; Law and Kelton 1991).

Process-oriented simulations are typically imple-
mented on top of event-driven simulations, using the same
event list and time advance mechanisms. The lifetime of a
simulation process can be viewed as a miniature event-
driven simulation in that it consists of a sequence of
events; however, in process-oriented simulations, time only
advances between these events. Typically a process-
oriented simulation uses a “work” (CACI 1997), “wait”
(CACI 1997), or “hold” (Meyer and Bagrodia 1999) primi-
tive to advance time between the events. These primitives
are essentially the same - they suspend a process from exe-
cuting by placing an event into the event list with an event
time that indicates the future time at which execution of the
process should resume. When this event has the smallest
time stamp in the event list, the simulation will advance its
time and resume its execution.

The remainder of this paper uses the primitive Hold(T)
as a general time advance mechanism for process-oriented
simulations. The Hold primitive causes simulation time

Loper and Fujimoto

for the process to advance by T time units. The primitive
is invoked to signify that the simulation object is busy per-
forming some activity for T units of time.

2.2 Approximate Time

Approximate Time is based on temporal uncertainty and
uses time intervals rather than precise time values to repre-
sent time. An interval is a closed bounded set of “real”
numbers (Moore 1979) [ET, LT] = {t: ET ≤ t ≤ LT}, where
ET denotes the earliest time (or E-time) in the interval and
LT the latest time (or L-time). An overview of Approxi-
mate Clocks, the mechanism for time stamping events and
maintaining the simulation’s notion of approximate time
and Approximate Time Causal (ATC) order, the temporal
precedence order used in approximate time can be found in
(Loper 2002, Fujimoto 1999).

3 INTERVAL HOLD PRIMITIVE

This section describes a new time advance primitive that
provides a way for simulations to specify temporal uncer-
tainty in order to exploit the ATC ordering algorithm de-
scribed in (Loper 2002, Fujimoto 1999). The approach is
called Interval Hold (iHold). It allows the simulation to
specify an interval instead of a precise time stamp as the
parameter for time advances. The interval indicates the
uncertainty in how far into the future the simulation wishes
to advance. The set of concurrent events that overlap the
time advance interval can safely be delivered, thus increas-
ing the concurrency and improving performance of the
synchronization algorithm.

The Interval Hold primitive is an extension of the
Hold primitive, but uses a time interval rather than precise
timestamp for its time parameter. The primitive is speci-
fied as iHold(ET, LT), where [ET, LT] indicates uncer-
tainty in how long the entity will be busy performing its
activity. The leading edge of the interval ET is the earliest
time the LP should resume from the iHold, and the trailing
edge LT is the latest time it should resume. In other words,
the simulation would like to advance at least ET time units
but not more than LT. The size of the interval is based on
the specifics of the simulation; the larger the interval, the
more uncertainty associated with the amount of time re-
quired to perform the activity. There are two constraints
on the time advance interval. First, the leading edge of the
interval ET must be less than or equal to the trailing edge
LT, i.e. ET ≤ LT. Second, the leading edge of the interval
ET must be greater than or equal to the simulation’s cur-
rent time plus lookahead, if the process lookahead is not
zero (the remainder of this paper assumes that the looka-
head is zero). These constraints ensure that the simulation
does not send or receive events in the past.

There are two types of iHold that may be used in a
simulation: 1) Hold for a certain amount of time or 2) Hold
for a certain amount of time, unless something else hap-
pens. These two approaches to iHold can be thought of as
non-interruptible and interruptible, respectively. In the
non-interruptible iHold, the simulation will hold between
ET and LT time units. Any new messages received during
the iHold will be delivered after the iHold completes. The
interruptible iHold will hold for the requested amount of
time (i.e., [ET, LT]) unless a new message is received. In
this case, the iHold will be interrupted so that the message
can be delivered.

When iHold completes or is interrupted for event
delivery, the simulation’s time is advanced. This is
known as the resume time. The resume time indicates
that no events will later be delivered to the process with a
time stamp less than the time of the resume. Once the
process invokes iHold, it guarantees that it won’t generate
a new event with a time stamp less than or equal to LT
(or less than or equal to LT plus lookahead if the process
lookahead is not zero) until it has received a resume time
(this paper assumes that precise time clocks are used,
meaning that both events and the resume time are
assigned precise time values within the interval).

There are many existing event delivery mechanisms
that can be used for iHold, e.g. a specific call (Meyer and
Bagrodia 1999) where the process asks to receive events or
a call back (IEEE 2001) which notifies the process of
awaiting events.

3.1 Non-Interruptible iHold

In the non-interruptible iHold, the process blocks for the
requested amount of time (between [ET, LT]). Any new
events received by the process will be stored in a message
buffer. When the process resumes from the iHold, any
events in the buffer will be delivered. The process will ad-
vance its simulation time to a value T, where ET ≤ T ≤ LT.
When the process receives a resume time, it guarantees that
it won’t generate a new event with a time stamp less than
the resume time (or less than the resume time plus looka-
head if the process lookahead is not zero).

In the example below, the statement iHold(ET, LT,
msg_type) is used to initiate an interval hold. The
msg_type parameter indicates the type of message for
which iHold can be interrupted. If the parameter is NULL,
the iHold is non-interruptible; if the parameter is not
NULL, then iHold can be interrupted for the type of mes-
sage specified in the parameter. As described above, the
receive statement is used for event delivery.

/* non-interruptible iHold */
iHold (ET, LT, NULL)
receive (gateInfo)

In this example, the iHold primitive specified a NULL

message parameter indicating that it could not be inter-
rupted. Therefore, the process receives a resume time T,
where ET ≤ T ≤ LT. Upon the resume, the receive state-
ment is then used to receive a gateInfo message.

Loper and Fujimoto

3.2 Interruptible iHold

If the process is interruptible, an event with a timestamp less
than or equal to LT is eligible for delivery during the iHold.
The following events will be delivered to the process:

• Any event with a time stamp less than ET will be

delivered
• If the event has a time stamp TS such that ET ≤

TS ≤ LT, this event may be delivered before
simulation time is advanced, but it is not guaran-
teed to be delivered on this call to iHold

• No event with TS > LT will be delivered.

If a process receives an event before the iHold com-

pletes, the process will advance its simulation time to the
time stamp of the delivered event. When the process re-
ceives a resume time, it guarantees that it won’t generate a
new event with a time stamp less than the resume time (or
less than the resume time plus lookahead if the process
lookahead is not zero).

In the example below, the interruptible iHold is
shown. The iHold statement specifies a message type, in-
dicating that it should be interrupted if a departure-
Info message arrives. The receive statement follows the
iHold so the message can be received by the process.

/* interruptible iHold */
iHold(ET, LT, departureInfo)
receive (departureInfo)

3.3 Example

Consider an example to illustrate how Interval Hold works.
The simulation is of air traffic arriving and departing at an
airport, as described in (Fujimoto 2000). The simulation
models many planes; each one is a separate process. Upon
arrival, each aircraft must: (1) wait for the runway and
land, (2) travel to the gate and unload and load new pas-
sengers, and (3) depart and travel to another airport. In a
precise world, the times required for (1), (2) and (3) would
be fixed. However, there could be uncertainty associated
with each event. For example, the time required to wait for
the runway and land depends on such factors as weather
and time of day. Similarly, the time spent at the gate
unloading and loading depends on factors such as the
number of passengers and the duration of the flight. These
events will definitely happen, but there is uncertainty as to
exactly when. In the case where there is some minimum
and maximum time associated with each event, but uncer-
tainty as to precise instant, iHold is a useful modeling ap-
proach. The pseudo code for this simulation example is
shown in Figure 1.

The aircraft will first send a message to the controller
requesting the runway. The aircraft then waits to receive a
Runway_Free message from the controller indicating it is

Figure 1: Simulation Program for a Single Airport

safe to land. This type of hold is based only on message
type; there is no time parameter. In other words, the aircraft
must continue to hold (however long it takes) until it re-
ceives approval to land. This type of hold is accomplished
by invoking iHold(0, 0, Runway_Free). By setting the
iHold time parameter [ET, LT] to zero, the iHold will be
based on message type only. The receive message is then
used to deliver the Runway_Free message to the process.

Once the aircraft has approval to land, it will invoke
iHold (ETR, LTR, NULL) to indicate it is busy landing. In
other words, the plane will use the runway for at least ETR
and not more than LTR time units. This is a non-
interruptible iHold. When the iHold resumes, the process
advances its simulation time and invokes a receive primi-
tive to deliver any Gate_Info messages that arrived
while it was landing. The aircraft completes the landing
process by sending the controller a Runway_Free mes-
sage indicating it has cleared the runway.

The next step is to simulate the aircraft on the ground.
This is accomplished with an interruptible iHold, by invok-
ing iHold (ETG, LTG, Depart_Info). The time speci-
fied (ETG, LTG) indicates the time required at the gate to
unload and load passengers. The Depart_Info message
contains any last minute information for the aircraft before
it departs the airport. If a Depart_Info message arrives
while the aircraft is at the gate, then the message will be
delivered to the aircraft. If no Depart_Info message is

/* Message Types */
message Request_Runway { int id; }
message Runway_Free { int id; }
message Gate_Info { int number; }
message Depart_Info { real delay; }
message Departure { int id; }

/* Process Aircraft */
entity Aircraft ()
{

/* aircraft arrival, circling, and landing */
id = my_plane_id;
send Request_Runway{id} to controller /*arrival*/

iHold (0, 0, Runway_Free) /* circle */
receive (Runway_Free runwayfree)
iHold(ETR, LTR, NULL); /* land */
receive(Gate_Info gatenumber);
send runwayfree to controller;

/* simulate aircraft on the ground */
iHold (ETG, LTG, Depart_Info)
receive (Depart_Info delaytime)
send Departure {id} to controller; /* departure */

}

Loper and Fujimoto

received, the iHold will complete, and the plane sends a
Departure message to the controller indicating it is depart-
ing the airport.

4 THE INTERVAL HOLD ALGORITHM

In the previous section the iHold primitive was described
and the issues associated with using an interval as the
time parameter discussed. In this section an algorithm for
implementing iHold and selecting the resume time will be
presented.

4.1 Sequential iHold

The iHold primitive is implemented using a local event a
simulation schedules for itself containing an interval time
stamp. This event is placed in the simulations local event
list and ordered according to the LT of the events. When
the simulation starts its main loop, it must find the smallest
time stamped event among those scheduled in its local
event list. An algorithm for implementing Interval Hold is
shown in Figure 2.

Figure 2: Interval Hold Algorithm

There are two possible combinations of scheduled

events: events with interval time stamps and events with
both precise and interval time stamps. When only events
with interval time stamps are scheduled, the minimum time
interval among the scheduled events must be computed
which determines the time to advance the logical clock.
The other possibility is that there is a mixture of precise
and interval time stamps in the local events list. In this
case, the precise timestamps are converted to intervals
(Kaufmann and Gupta 1991) and the minimum time inter-
val is computed among the scheduled events.

By successively comparing the event intervals, the ear-
liest ET (EET) and earliest LT (ELT) can be computed as
the minimum time interval, as shown in Figure 3. The
ELT value defines the latest time to which the simulation
can advance its logical clock. If the simulation sets its
clock to a value greater than ELT, it may violate ordering
constraints. The EET value defines the earliest time the
simulation should set its local clock. If the simulation sets

Pi = set of scheduled events in Process i

for (each X ∈ Pi with a precise timestamp)
 E(X) = T(X)
 L(X) = T(X)
ELT = min (L(X)) for all X ∈ Pi
Si = {all events Y: E(Y) ≤ ELT ≤ L(Y)}
EET = min (E(X)) for all X ∈ Si
LET = max (E(X)) for all X ∈ Si
resume time = T, where EET ≤ T ≤ ELT
its clock to a time less than EET, no progress can be made
since there are no events to process.

Simulation TimeELT

(1)

(2)

(3)

(4)

LETEET

(5)

Simulation TimeELT

(1)

(2)

(3)

(4)

LETEET

(5)

Figure 3: Computing the Minimum Time Interval

It is important to note that if more than one event is

processed concurrently, they must both receive the same
time stamp. Otherwise the earliest event processed could
generate a new event with a timestamp less than the later
event. This would clearly violate the ordering constraint.
Also, the precise time stamp assigned to the event when it
is processed can be any value greater than the leading edge
of the event. For example, the value LET could be as-
signed to events (1), (3) and (4) or a value > LET. The im-
portant thing is that all the events processed receive the
same time stamp.

4.2 Distributed iHold

Synchronization assures the temporal ordering of events.
In a parallel or distributed simulation, the key to synchro-
nization is a quantity called the lower bound on time stamp
(LBTS) for each process. LBTS is the smallest timestamp
of any event a process will receive in the future; if simula-
tions have zero lookahead, it is equivalent to the minimum
time stamp of any unprocessed or partially processed event
in the system. The time stamp of any unprocessed event is
a lower bound on future events that may be produced after
processing that event. In other words, the event with the
smallest time stamp (T = TS) could affect every simulation
at time T. To compute LBTS, a snapshot of the computa-
tion (including messages in transit) is required so that the
global minimum time can be computed. Once LBTS has
been computed, all TSO messages containing a time stamp
less than LBTS can be delivered.

If simulations in a distributed computation use the
iHold primitive to advance time, their contribution to the
LBTS computation will be a minimum time interval [EET-
local, ELTlocal]. Therefore, the key to using iHold in a dis-
tributed simulation is the ability to compute an interval
LBTS value. Interval LBTS is the minimum time interval
[LETglobal, ELTglobal] from the set of pending local mini-
mum time values computed by each simulation. The
LBTS interval identifies the set of processes that are safe to
advance their clocks concurrently, and the range of time
values those processes can be granted to without causing

Loper and Fujimoto

messages to be delivered in the past. The interval LBTS
algorithm is described in (Loper 2002 and Fujimoto 1999).

There are several existing delivery mechanisms that
can be used with the iHold algorithm. To illustrate how
events could be delivered in a simulation using distributed
iHold, consider the algorithm shown in Figure 4.

Figure 4: Delivering Events and Resume Times

There are three evaluations that take place in this algo-

rithm. First, in order to release a message to the process,
the time stamp of the message (Tmsg) must be safe to exe-
cute and the process must be ready to receive messages for
this time. This means that Tmsg must be less than the LBTS
value and less than the minimum time interval [EETlocal,
ELTlocal] provided by the simulation. From the definition
of the LBTS interval [LETglobal, ELTglobal], LETglobal is the
minimum LBTS time value. And according to the iHold
definition, a message with a timestamp less than the speci-
fied ET is guaranteed delivery. Therefore, since LETglobal
is the largest of all ET values, a message with a timestamp
less than or equal to LETglobal will be delivered to a simula-

Tmsg = event in the simulations TSO queue with the mini-
mum time stamp

if ((Tmsg = LETglobal) && (Tmsg ≤ ELTlocal))

deliver message
resume time = Tmsg

else if ((EETlocal ≤ ELTglobal) && (ELTlocal ≥ ELTglobal))
resume time = T, where LETglobal ≤ T ≤ ELTlocal

else
EETlocal= min ET in local event list
ELTlocal= min LT in local event list
Start iLBTS with minimum time =(EETlocal, ELTlocal)
tion. The simulation will then advance its time to the time
stamp of the message delivered.

If there are no messages in the process’s queue that are
safe to execute, the second evaluation determines if a proc-
ess’s simulation time can be advanced to a time specified
in the iHold interval. In order to advance the simulation’s
logical clock, the minimum time interval provided by the
simulation must be less than LBTS. To make this evalua-
tion, we compare two intervals: iHold and LBTS. Accord-
ing to (Allen 1983) there are seven possible relationships
between two intervals, thirteen counting the inverses of the
relations, as shown in Figure 5.

Of the thirteen possible relations, the cases where [EET-
local, ELTlocal] ≤ LBTS must be identifed. If EETlocal > ELT-
global then there is no part of [EETlocal, ELTlocal] that precedes
the LBTS interval. Therefore, these cases can be eliminated.
This includes relation 2 from Figure 5. Also the ELTlocal
cannot be less than ELTglobal as proven in (Loper 2002).
This includes cases 1, 4, 6, 8 and 11. Further 7, the EETlocal
cannot be greater than LETglobal, which includes cases 7 and
13. The remaining five relations for [EETlocal, ELTlocal] and
[LETglobal, ELTglobal] are shown in Figure 6.

Simulation TimeLBTS (LET, E LT)

(12) LBTS “Finishes” iHold

(10) LBTS “Starts” iHold

(3) iHold “Equals” LBTS

Possible iHold
Intervals (9) LBTS “During” iHold

(5) LBTS “Meets” iHold

Simulation TimeLBTS (LET, E LT)

(12) LBTS “Finishes” iHold

(10) LBTS “Starts” iHold

(3) iHold “Equals” LBTS

Possible iHold
Intervals (9) LBTS “During” iHold

(5) LBTS “Meets” iHold

Figure 6: Interval Relationship Where ET Precedes ELT

Simulation TimeLBTS (LET, E LT)

(1) iHold “Before” LBTS

(4) iHold “Meets” LBTS

(12) LBTS “Finishes” iHold

(8) iHold “During” LBTS

(10) LBTS “Starts” iHold

(3) iHold “Equals” LBTS

(6) iHold “Overlaps” LBTS

Possible iHold
Intervals

(2) iHold “After” LBTS

(5) LBTS “Meets” iHold

(7) LBTS “Overlaps” iHold

(9) LBTS “During” iHold

(11) iHold “Starts” LBTS

(13) iHold “Finishes” LBTS

Simulation TimeLBTS (LET, E LT)

(1) iHold “Before” LBTS

(4) iHold “Meets” LBTS

(12) LBTS “Finishes” iHold

(8) iHold “During” LBTS

(10) LBTS “Starts” iHold

(3) iHold “Equals” LBTS

(6) iHold “Overlaps” LBTS

Possible iHold
Intervals

(2) iHold “After” LBTS

(5) LBTS “Meets” iHold

(7) LBTS “Overlaps” iHold

(9) LBTS “During” iHold

(11) iHold “Starts” LBTS

(13) iHold “Finishes” LBTS

Figure 5: Relationship of LBTS Interval and iHold Interval

Loper and Fujimoto

As proven in (Loper 2002), a simulation that has an in-
terval [EETlocal, ELTlocal] that intersects ELTlocal is consid-
ered a concurrent simulation and can be returned a resume
time in the LBTS interval, i.e. LETglobal ≤ T ≤ ELTglobal.

Finally, if no messages can be delivered and the proc-
ess’s simulation time cannot be advanced a new LBTS
computation must be started. In order to start or respond to
an LBTS computation, each process must compute its local
minimum time interval [EETlocal, ELTlocal].

5 CONCLUSIONS

The heart of every simulation is a time control program
(Kiviat 1969). In this paper, a new time advance primitive
for process-oriented simulations was developed, termed the
Interval Hold construct. Interval Hold uses Approximate
Time clocks to increase the concurrency of event process-
ing. In (Nance 1971) a continuum of algorithms for repre-
senting the passage of time was presented. It proposed that
fixed time increment defines one end of a continuum and
next event increment the other. Between the two extremes
are algorithms that possess characteristics of both which
may be better suited for specific discrete system simula-
tions. Nance went on to say that, in many cases, the effi-
ciency of a simulation program’s execution rests primarily
with the procedure for incrementing time. By varying the
size of the iHold interval, the interval time advance be-
comes a mechanism that spans the continuum of time ad-
vance algorithms discussed in (Nance 1971).

ACKNOWLEDGMENTS

Funding for this research was provided under the DARPA
Advanced Simulation Technology Thrust (ASTT) program,
the Link Foundation Fellowship in Advanced Simulation
and Training, the NASA Office of Space Science GSRP Fel-
lowship, and the GTRI graduate assistance program.

REFERENCES

Allen, J. 1983. Maintaining Knowledge about Temporal In-
tervals. Communications of the ACM, 26 (11): 832-843.

Banks, J., J.S. Carson II, and B.L. Nelson. 1996. Discrete-
Event System Simulation. N.J.: Prentice Hall.

CACI. 1997. Simscript II.5 Programming Language, 210-
211. CACI Products Company, La Jolla, CA. Avail-
able online via <http://www.caciasl.com/

cust_center/ ss3docs/simprog.pdf> [ac-
cessed August 20, 2004].

Fishman, G. 1973. Concepts and Methods in Discrete
Event Digital Simulation. New York: John Wiley.

Fujimoto, R.M. 1999. Exploiting Temporal Uncertainty in
Parallel and Distributed Simulations. In Proceedings
of the 13th Workshop on Parallel and Distributed
Simulation, ed. R. Fujimoto and S. Turner, 46-53. Pis-
cataway. New Jersey: Institute of Electrical and Elec-
tronics Engineers.
Fujimoto, R. 2000 Parallel and Distributed Simulation
Systems. Parallel and Distributed Computing, ed. A.Y.
Zomaya. New York: John Wiley & Sons, Inc.

IEEE. 2001. IEEE Standard for Modeling and Simulation
(M&S) High Level Architecture (HLA) - Federate In-
terface Specification. IEEE: New York, NY.

Kaufmann, A. and M.M. Gupta. 1991. Introduction to
Fuzzy Arithmetic Theory and Applications. London:
International Thomson Computer Press.

Kiviat, P. 1967. Digital Computer Simulation: Modeling
Concepts. RAND: Santa Monica, CA.

Kiviat, P. 1969. Digital Computer Simulation: Computer
Programming Languages: Santa Monica, CA.

Lackner, M.R. 1962. Toward a General Simulation Capa-
bility. In Proceedings of the AFIPS Spring Joint Com-
puter Conference, 1-14. San Francisco, CA.

Law, A.M. and W.D. Kelton. 1991. Simulation Modeling
& Analysis. McGraw-Hill, Inc.

Loper, M.L.. 2002. Approximate Time and Temporal Un-
certainty in Parallel and Distributed Simulation. Doc-
toral dissertation, College of Computing, Georgia In-
stitute of Technology, Atlanta, Georgia.

Meyer, R.A. and R. Bagrodia, 1999. PARSEC User Manual,
11. Parallel Computing Laboratory, Department of
Computer Science, UCLA: Los Angeles, CA. Available
online via <http://pcl.cs.ucla.edu/proj
ects/parsec/manual.pdf> [accessed August
20, 2004].

Moore, R.E.. 1979. Methods and Applications of Interval
Analysis. SIAM Studies in Applied Mathematics, ed.
W. Ames. Philadelphia, PA: Society for Industrial and
Applied Mathematics.

Nance, R. 1971. On Time Flow Mechanisms for Discrete
System Simulation. Management Science 18(1): 59-73.

AUTHOR BIOGRAPHIES

MARGARET LOPER is a Senior Research Scientist at
the Georgia Tech Research Institute (GTRI) at the Georgia
Institute of Technology. She earned a B.S. in Electrical
Engineering from Clemson University in 1985, an M.S. in
Computer Engineering from the University of Central Flor-
ida in 1991, and a Ph.D. in Computer Science from the
Georgia Institute of Technology in 2002. Her current re-
search interests include synchronization algorithms, tempo-
ral uncertainty, parallel and distributed systems, and theo-
retical aspects of modeling. Her research has been funded
by DARPA, the Defense Modeling and Simulation Office,
and the U.S. Army STRICOM. Her e-mail address is
<margaret@cc.gatech.edu> and her website is
<http://www.cc.gatech.edu/~margaret/>.

RICHARD FUJIMOTO has been working in the area of
parallel and distributed simulation systems and environ-
ments since 1985. He is the principal architect of the Geor-
gia Tech Time Warp (GTW) parallel/distributed simulation

Loper and Fujimoto

executive that has been used to model telecommunication
networks, aviation and military systems. He has also
worked on developing distributed simulation software to fa-
cilitate interoperability and reuse of simulations, and lead the
development of the RTI-Kit software for realizing high-
speed distributed simulation systems. Fujimoto chaired the
working group responsible for defining the time manage-
ment services for the High Level Architecture (HLA) that
has been designated as the standard architecture for model-
ing and simulation in the U.S. Department of Defense. He is
an area editor for ACM Transactions on Modeling and
Computer Simulation and Co-Editor-in-Chief of SCS Trans-
actions His e-mail address is <fujimoto@cc.gatech.
edu> and his website is <http://www.cc.gatech.
edu/~fujimoto/>.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 395
	02: 396
	03: 397
	04: 398
	05: 399
	06: 400
	07: 401

