
Proceedings of the 2004 Winter Simulation Conference
R .G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, eds.

AN AUTOMATIC DISTRIBUTED SIMULATION ENVIRONMENT

Sarita Mazzini Bruschi
Regina Helena Carlucci Santana

Marcos José Santana
Thais Souza Aiza

Av. Trabalhador São-Carlense, 400, Centro

Caixa Postal 668
Instituto de Ciências Matemáticas e de Computação (ICMC), Universidade de São Paulo (USP)

São Carlos, SP 13560-970, BRAZIL

ABSTRACT

Developing a sequential simulation program is not an easy
task. Developing a distributed simulation program is harder
than a sequential one because it is necessary to deal with
mapping physical processes into logical processes, com-
munication and synchronization problems and learn an-
other simulation language/library. In literature, several
simulation environments can be found but the great num-
ber are for sequential simulation, not using all the advan-
tages of a distributed/parallel platform. This paper presents
ASDA, an automatic distributed simulation environment
that aims at providing several possibilities to users devel-
oping a distributed simulation. The automatic word can be
understood in three diferent ways: the environment auto-
matically generates a distributed simulation program code;
the environment can automatically choose one distributed
simulation approach; and the environment can automati-
cally convert a sequential simulation program into a dis-
tributed simulation program using the MRIP (Multiple
Replication in Parallel) approach.

1 INTRODUCTION

Simulation has been used as a tool that aims at helping us-
ers to foresee system behaviour. In this sense, two catego-
ries of simulation are constantly being developed: analyti-
cal simulation and virtual environment (Fujimoto 2000).
Analytical simulations aims at performance system evalua-
tion using metrics such as response time, number of clients
that are queued, average client time in queue, etc. In this
category, the user interaction is identified only at model
definition moment. Conversely, virtual environment has
total user interaction and aims at analysing system behav-
iour by means of system action/reaction.

Considering analytical simulations, the model parame-
ters can be defined in a deterministic way (trace driven
simulation) or in a random way using distributed probabil-
ity functions (stochastic simulation). There is a problem in
stochastic simulation: it is necessary either to run the simu-
lation program several times or for a long time to obtain a
statistically final result valid. When it is necessary to simu-
late a small system, this could not be a problem but, as sys-
tem increases, simulation execution time becomes high.

Distributed Simulation has been developed aiming at
decreasing the simulation execution time of a sequential
simulation. Two approaches have been proposed in the lit-
erature: SRIP (Single Replication in Parallel) and MRIP
(Multiple Replication in Parallel). These solutions basi-
cally differ in the way the system is modelled. In SRIP the
model is decomposed into logical processes, each one run-
ning on different processors; on the other hand, in MRIP
independent instances of the same sequential simulation
program are replicated in parallel (Ewing, McNickle and
Pawlikowski 1997).

Some factors can limit the usage of distributed simula-
tion once they require advanced knowledge on paral-
lel/distributed computing and on simulation from the user.
In other words, the user needs (Bruschi 2002):

• to know the system deeply to be simulated and its

model in order to exploit all the inherent parallelism;
• to analyze the best way to split the model with the

aim at maximizing the load-balancing and mini-
mizing the communication;

• depending on the model, to know which synchro-
nisation protocol gives the best performance;

• to know the architectural features of the used plat-
form, making it possible to evaluate the compro-
mise between load-balancing and communication,
i.e., to define when it is worth to spoil the load-
balancing in favor of minimizing the communica-
tion and vice-versa.

This paper presents a general overview of the design

of a novel distributed simulation environment called

Bruschi, Santana, Santana, and Aiza

ASDA. This environment removes the limit imposed by
the need of knowledge on parallel/distributed computing
and simulation, helping the users to develop simulation
programs. The users will be able to choose between tradi-
tional sequential simulation programs and distributed simu-
lation programs and can leave some difficult decisions to
be taken by the environment.

The rest of the paper is divided into six sections. Sec-
tion 2 presents an overview of two distributed simulation
approaches (SRIP and MRIP) while section 3 shows an
overview about automatic simulation environments. Section
4 explains the ASDA environment and section 5 the ASDA
prototype. Section 6 contains our concluding remarks.

2 BACKGROUND

When user decides to use analytical distributed simulation,
two approaches can be used: SRIP and MRIP.

The SRIP approach is based on the decomposition of
the simulation model into logical processes, running on dif-
ferent processors and communicating with each other by
means of message passing protocols. However, a critical
SRIP problem is the warranty of synchronism for the several
processes composing the simulation program. Several proto-
cols have been developed and grouped into two wide catego-
ries: conservative and optimistic protocols (Fujimoto 2000).

The main feature of the conservative protocols is the
execution of an event only when it is safe, i.e., when there
is no possibility of a causality error occurrence. While this
cannot be guaranteed, the process stays blocked, making it
possible to have both loss of performance and deadlocks
(Fujimoto 2000). The many conservative mechanisms
available differ in the way the deadlock is handled. Some
of them prevent the deadlock occurrence and other ones
recover the system from deadlocks. The CMB protocol
(Chandy and Misra 1979) prevents deadlock by means of
the adoption of null messages.

The optimistic protocols do not avoid the causality er-
rors, allowing all events to be processed. A detection and
recover mechanism is adopted to recover the simulation
from possible errors, leading to a consistent state. This pro-
tocol has the advantage of exploiting all the implicit paral-
lelism where the conservative protocols could not proceed
(Fujimoto 2000). The Time Warp mechanism is the most
known optimistic protocol and it is based on the Virtual
Time paradigm (Jefferson 1985).

Both classes of protocols have their own set of advan-
tages and disadvantages. The choice between them is not
an easy task and depends on the application features and on
the computer architecture considered.

In MRIP approach the model is not decomposed. In-
dependent instances of the same sequential simulation pro-
gram are replicated in parallel and are executed based on
different random seeds. Each replication sends its partial
results at the end of the run to a global analyser, where the
final results are evaluated. When the accuracy defined by
the user is reached the simulation stops (Ewing, McNickle
and Pawlikowski 1997).

In contrast to SRIP, MRIP can be easly applicable to
any system, independent of the inherent system parallel-
ism. However, there are some situations where the MRIP
technique is inappropriate (Glynn and Heidelberger 1992):

• A single replication can not be executed on a

unique processor;
• The output is almost deterministic.

Although this method seems very simple, some care

has to be taken regarding to the number of processors
(number of replications), the length of each replication
and the length of the deletion period to generate a valid
confidence interval (Glynn and Heidelberger 1992).

The SRIP and MRIP approaches are not exclusive,
i.e., it is possible to use SRIP and MRIP in the same simu-
lation program.

3 SIMULATION ENVIRONMENTS

The concept of simulation environment became very impor-
tant mainly because of the difficulty found when the user
decides to develop a distributed simulation. It is necessary
to know about simulation (approaches and characteristic of
each one), distributed/parallel concepts (communication,
synchronization, process scheduling) and statistic concepts
to analyse the simulation output.

Several simulation environments can be found in the
scientific literature and in specific companies, but the great
number are designed for a specific purpose and/or with a
comercial aim. These environments offer to users a number
of facilities that help simulation development, such as:

• a graphical editor, where the simulation can be
built graphically;

• a simulation kernel, where the simulation will run;
• an output analyser, that allows to analyse the out-

put and construct confidence intervals to analysed
parametres.

Examples of these environments are: Arena (Swet and

Drake 2001), VSE (Visual Simulation Environment) (Orca
Computer 2004), UCLA Simulation Environment (Bagrodia
1998) and OMNet++ (Varga 2001; OMNeTpp 2004).

3.1 Arena

Arena is a general purpose environment with a comercial
aim and it is based on the SIMAN V language simulation.
Arena started the use of simulation templates and the soft-
ware could easily be adapted to any industry, company or
project (Swain 1995).

Nowadays, Arena is a suite with several tools for many
business needs in modeling, simulation and optimization. It

Bruschi, Santana, Santana, and Aiza

can be used for strategic business decisions and operational
planning improvements (Swet and Drake 2001).

The Arena software is avaliable in three versions: the
Basic Version (Arena Basic Version), where the user can
simulate business processes and other systems to support
high-level analysis; the Standart Edition (Arena SE), where
all facilities of Arena Basic Version are provided plus
complete modeling flexibility; and the Arena Professional
Edition (Arena PE) which add to Arena SE the capability
to craft custom simulations that mirror components of the
real system, including animation (Swet and Drake 2001).

3.2 VSE

The Visual Simulation Environment (VSE) is a comer-
cial software and its development was conducted at Vir-
ginia Tech. In 1995, a technology transfer enabled the
development of the VSE comercial version 1.0 at Orca
Computer, Inc.

VSE is an integrated set of software tools, including
(Orca Computer 2004):

• VSE Editor: allows the user to construct graphi-
cally the model using an object-oriented paradigm;

• VSE Simulator: provides animation and allows
running experiments with the model;

• VSE Output Analyser: allows the user to con-
struct confidence intervals and compute general
statistic for simulation output data;

• VSE Teacher: lets the user lean how to use VSE
by watching video clips.

3.3 The UCLA Simulation Environment

The UCLA Simulation Environment is an environment
that adopts the process-interaction approach to discrete-
event simulation. It was developed at UCLA University
and attempts to provide the following features (Bagrodia
et. al 1998):

• Implementation of both distributed and shared
memory platforms and support for a diverse set of
distributed simulation protocols;

• Support to visual and hierarchical model design.

The environment is composed of: a parallel simulation
language, called Parsec; a GUI, called Pave; and a portable
runtime system that implements the simulation algorithms.

3.4 OMNeT++

OMNeT++ (Objective Modular Network Testbed in C++),
is a discret simulation environment, designed to simulate
communication networks. However, due to its generic and
flexible architecture, it can be used in other areas, like
queuing networks or hardware architectures.

OMNeT++ provides a component architecture for
models. The components (modules) are programmed in
C++, and assembled into larger components and models
using a high-level language (NED). OMNeT++ has exten-
sive GUI support, and due to its modular architecture, the
simulation kernel (and models) can be embedded easily
into user applications (OMNeTpp 2004).

The OMNeT++ components are (OMNeTpp 2004):

• simulation kernel library;
• compiler for the NED topology description lan-

guage (nedc);
• graphical network editor for NED files (GNED);
• GUI for simulation execution, links into simula-

tion executable (Tkenv);
• command-line user interface for simulation exe-

cution (Cmdenv);
• graphical output vector plotting tool (Plove);
• utilities (random number seed generation tool,

makefile creation tool, etc.);
• documentation, sample simulations, contributed

material, etc.

Comparing the simulation environments described
above, it can be seen that there are a lot of options to help
users when needing to develop a simulation. Nevertheless,
only one of these environments provides support to dis-
tributed simulation (Parsec), supporting parallel conserva-
tive algorithms (based on null messages, conditional events
and a conservative protocol that combines null messages
with conditional events), and a parallel optimistic algo-
rithm. Although these environments provide all the fea-
tures of a good simulation environment (visual graphical
interface, simulation kernel, output analysis), no one offers
the possibility of making use of all parallel/distributed ad-
vantages, and even if it is possible, it is difficult to know
which protocol will give the best performance for a spe-
cific model and platform.

The ideal environment to distributed/parallel simula-
tion must allow the user to choose which approach is best
suitable for both a parallel or a distributed platform and
the model and the simulation approach. Thus, aming at
the ideal environment, an automatic distributed simula-
tion environment called ASDA, was specified and it is
described as follows.

4 ASDA

The ASDA (Ambiente de Simulação Distribuída
Automático – in Portuguese) aims at taking the user away
from the task of translating the model into a simulation

Bruschi, Santana, Santana, and Aiza

program and it goes further: the simulation program gen-
erated in this case is a distributed simulation program.
Moreover, the user is taken away from the details of
communication and synchronisation and the distributed
simulation features (Bruschi 2002).

The ASDA purpose is to make an automatic environ-
ment available to the users, where distributed simulation can
be developed in an easy and fast way. Users that deal with
this environment can have different levels of knowledge, in-
cluding both extremes: users with advanced simulation
knowledge and users that have only superficial knowledge in
both simulation and parallel computing.

Thus, ASDA also offers the necessary flexibility to help
different user profiles, meeting to the following requirements
(Bruschi 2002):

1. If offers an easy learning and using environment;
2. It allows the complete generation of a distributed

simulation program by an inexperienced user;
3. It offers flexibility to more experienced users as

they are allowed to modify the generated programs;
4. It allows the utilisation of previously developed

sequential simulation programs;

5. If offers guidelines in a way users can choose be-
tween different distributed simulation approaches;

6. It makes it easy to obtain trust data;
7. It minimizes the final simulation program time,

offering an efficient process scheduling.

 ASDA is basically composed of 7 modules: User Inter-
face, Code Generator, Software Interface, Evaluation, Repli-
cation, Execution and Schedule Modules as can be seen in
Figure 1 (modular structure diagram).

 In order to keep the flexibility eligible by the experi-
enced users and still offering the facilities required by the
inexperienced ones, ASDA has a friendly User Interface
Module. From this interface, the user can choose among
specifying a new simulation model, using a developed
simulation program or defining the environment variables.

 If the user’s choice is to define a new simulation model,
it is necessary to specify the model by means of the Graphic
Interface sub module. When the graphic specification is
ready, the program code is generated by the Code Generator
Module and the replications are directed to the Replication
Module. These possibilities attend 1, 2 and 3 requirements.

If the user chooses to use a previously developed
simulation program, the Software Interface Module is

Developing a new
simulation program

Using a developed
simulation program

Graphic
Specification

MRIP

Replication
management

Schedule

User
Interface

Code
Generation

SRIP

Code
Generator

Module

User Interface
Module

Software
Interface

Software
Interface
Module

Scheduling
Module

Replication
Module

Level 1

Level 2

Level 3

Evaluation
Module

Defining the
environment

variables

TW CMB
1
2

Execution
management

Execution
Module

CMB ⇒TW

Decision

Figure 1: The ASDA Modular Interface

Bruschi, Santana, Santana, and Aiza

activated and the program is sent to the Replication
Module. All simulation programs are started by the Exe-
cution Module that is responsible to communicate with
the Scheduling Module in order to activate the schedule.
This feature attends requirements 4 and 7.

The Evaluation Module has an important function:
to help users in the whole process of constructing the
simulation and it is divided in three levels: level 1, level
2 and level 3. This feature attends requirement 5.

In the next subsections, each ASDA module is detailed.

4.1 User Interface Module

The User Interface Module is responsible for allowing
the user to use the facilities available to model the sys-
tem. At the same time, it offers facilities to experienced
users to take their own decisions. This module is respon-
sible for offering a graphical editor to the user, where the
model can be specified using a modelling approach.

Three system modelling approaches are widely used:
queuing nets, petri nets and statecharts. Whereas petri
nets and statecharts are able to represent parallelism,
queue nets are able to represent the most important fea-
ture in computing systems: the queues. Petri nets and
statecharts can not straightly represent this feature; on
the other hand queuing nets can not represent system
parallelism. Another possibility is Queuing Statecharts
(Frances 2001), where the most relevant features from
queue nets and statcharts are joined. ASDA is specified
to allow two modelling approaches: extended queue nets
(Soares 1992) and queuing statecharts (Frances 2001).

ASDA was specified to save all the model informa-
tion by means of graphs. This characteristic will help
Evaluation and Generator Modules, as will be seen. An
example can be seen in Figure 2, where there is a model
that was specified using queue nets and the correspon-
dentgraph transcription (NE means entrance vertex, CS
means service center vertex and NS means output ver-
tex). The probabilities defined in model are the weights
in the graphs.

Figure 2: A Queue Net Model and its Graph Repre-
sentation

CS1 CS2 CS4

CS3

CS1

CS2 CS3

CS4

NE

p

1-q

p q

1-q

1-p

NS

q

NS

1-p
4.2 Evaluation Module

This module is responsible for advising users in two ways:
model specification and distributed simulation approach.

The module was divided in three levels to carry out
this task:

• Level 1: verifies if the user model specification is

correct;
• Level 2: helps the user to decide among SRIP,

MRIP or SRIP and MRIP approaches;
• Level 3: if level 2 chooses SRIP, this level gives

advices about the best SRIP protocol. The possi-
bilities are CMB (conservative protocol), Time
Warp (optimistic protocol) and CMB → Time
Warp (adaptive protocol).

In order to accomplish the task, this module will use

several parameters to decide an approach that will take to
better performance, i.e, an approach that can result in a
shorter program simulation time. For level 2, these parame-
ters can be:

• parallel/distributed platform;
• number of processors;
• warm-up simulation length;
• model granularity;
• accuracy required by the user;

At level 3, the two most important characteristics ana-

lysed are: lookahead and possible number of rollbacks.
Before this analysis, it is important to decide how the
model will be decomposed into logical processes. At this
point, the model representation using graphs is very useful.

A current research is implementing this module using
Neural Networks (Silva 2004). Using this technique, the
module will not be limited by the distributed simulations
approaches defined at the implementation time. The neural
network could learn about other approaches and use the
knowledge to take the decisions.

4.3 Code Generator Module

This module is responsible for generating the simulation pro-
gram based on the information given by the user (by means
of the model). In this module the user must choose among the
SRIP (stand-alone execution), MRIP (a sequential simu-
lation program replicated) or SRIP + MRIP techniques.

After having the model fully specified, the simulation
program code is automatically generated, which will de-
pend on the simulation technique adopted. With SRIP, the
code uses one of the synchronisation protocols (optimis-
tic, conservative or adaptive), taking the model and the

Bruschi, Santana, Santana, and Aiza

architecture of the system where the simulation will be
executed into consideration. With MRIP, a sequential
simulation program is generated. The user can either de-
fine which is the technique appropriate to its application
or follow the Evaluation Module suggestion.

In this module, a database with simulation librar-
ies/languages allows the user to choose the target lan-
guage used and, for each library/language considered,
there is a pattern file with the program sequence to be
generated (a template).

The MRIP code generation is simpler than the SRIP one
because it is actually a sequential simulation program. In the
SRIP technique the model division into logical processes
and also the synchronisation protocol has to be considered.

4.4 Software Interface Module

This module is made active when the option to use a devel-
oped sequential simulation program is selected. The inclu-
sion of this module in the environment was motivated by the
large number of existing sequential simulation programs.
Using the idea of replication (MRIP), it is possible to use
these programs and decrease the simulation time required to
obtain the results within the required accuracy.

The main idea of the interface module software is to
have interfaces to functional-extensions of programming
languages, such as SMPL (MacDougall 1987), ParSMPL
(CMB protocol) (Ulson 1999) or SimPack (Fishwick 1992).
The interfaces provide a way to modify the program in order
to construct a new program, following the MRIP technique.
The new program is then sent to the Replication Module.

4.5 Replication Module

The Replication Module starts the replications and controls
the execution, making all the calculations to decide when the
simulation must stop. Two basic components are part of this
module: the MRIP master and the MRIP slave.

The main function of MRIP master is to activate the
MRIP slaves, receive and process the information sent by
the slaves. The MRIP slave starts the replication (the
sequential simulation program), collects the data and sends
them to the MRIP master.

4.6 Scheduling Module

The main purpose of the schedule is to distribute the services
(processes, tasks, threads, etc.) to the process resources
(processors, memory, disk, etc.) available. This task can be
performed in many different ways, depending on the sched-
uling policies. The scheduling performance will depend on
(Souza et al. 1999):

• The objective of the platform used;
• The available hardware;
• Multitask environments;
• Different application classes;
• Different workloads.

The Scheduling Module will join two research areas at

the Distributed System and Concurrent Programming
Group – ICMC - USP: parallel computing and performance
evaluation. A novell process scheduling environment
called AMIGO (DynAMical FlexIble SchedulinG Envi-
ronment) has been developed (Souza et al. 1999) and will
be also included in ASDA.

5 ASDA PROTOTYPE

In order to prove that ASDA is a viable environment, four
modules were implemented: the User Interface, the Code
Generator, the Replication and the Software Interface Mod-
ules. The User Interface module has been implemented us-
ing Java language and makes the interaction between the
user and the whole environment possible. A ASDA screen
can be seen in Figure 3.

The Replication module implements two basic com-
ponents: the MRIP master and the MRIP slave. The master
MRIP is responsible for collecting all the observations sent
by the MRIP slaves, calculating the global mean and if the
user’s required precision was reached, the simulation stops.
The slave MRIP is the simulation program added by some
communication and analysis functions.

The Software Interface Module defines an interface
between the developed simulation program and the Repli-
cation module. For each simulation language/library that
can be used, one interface must be defined. The developed
simulation program will be transformed in the MRIP slave
and the function of the interface is to insert the communi-
cation and analysis functions at the correct place. At this
moment, programs written in three simulation libraries can
be replicated: SMPL (MacDougall 1987), ParSMPL (CMB
protocol) (Ulson 1999) or SimPack (Fishwick 1992).

6 CONCLUSIONS

Many factors must be taken into consideration to de-
velop a distributed simulation such as the model to be
simulated, the available hardware and the technique used
for synchronization.

ASDA was proposed aiming at helping both expert and
inexperienced users with the task of developing a distributed
simulation.

This new distributed simulation environment has poten-
tial to clarify the development and use of distributed simu-
lation, offering an easy and straight automatic approach It is
important to highlight four important characteristics of
ASDA: it gives the possibility of using several distrib-
uted/parallel simulation approaches (SRIP, MRIP and
SRIP+MRIP); the environment provides knowledege.

Bruschi, Santana, Santana, and Aiza

Figure 3: The Main Screen of ASDA Prototype

to help users to decide on the approach that can result in
the better performace; the environment automatically gen-
erates the simulation program code, using different simula-
tion languages/libraries; and it is possible to replicate an
existing sequencial simulation program, using the MRIP
approach.

ACKNOWLEDGMENTS

The authors would like to thank the financial support
given to the Distributed System and Concurrent Pro-
gramming Group – ICMC – USP by the Brazilian Foun-
dation FAPESP.

REFERENCES

Bagrodia, R., R. Meyer, M. Takai, Y. Chen, Y., X. Zeng, J.
Martin and H. Song. 1998. PARSEC: A Parallel
Simulation Environment for Complex Systems. IEEE
Computer, 3(10): 77-85.

Bruschi, S. M. 2002. ASDA – Um Ambiente de Simulação
Distribuída Automático, Ph.D. Thesis, Department of
Computer and Statistic, University of São Paulo, Brazil.

Chandy, K. M., and J. Misra. 1979. Distributed Simulation:
A Case Study in Design and Verification of Distrib-
uted Programs. IEEE Transactions on Software Engi-
neering, SE-5(5): 440-452.

Ewing, G. C., D. McNickle and L. Pawlikowski. 1997.
Multiple Replications in Parallel: Distributed Genera-
tion of Data for Speeding up Quantitative Stochastic
Simulation, In Proc. of the 15th Congress of Int. Asso-
ciation for Matemathics and Computer in Simulation,
397-402, Wissenschaft und Technik Verlag, Berlin.

Fishwick, P. 1992. SimPack: Getting Started with Simula-
tion Programming in C and C++. In Proceedings of
the 1992 Winter Simulation Conference, ed. R.C.
Crain, J. R. Wilson, J. J. Swain, and D. Goldsman,
154–162. Arlington, Virginia.

Francês, C. R. L. 2001. Statecharts estocásticos e queuing
statecharts: novas abordagens para avaliação de de-
sempenho baseadas em especificação statecharts.
Ph.D. Thesis, Department of Computer and Statistic,
University of São Paulo, Brazil.

Fujimoto, R. M. 2000. Parallel and Distributed Simulation
Systems, (New York, EUA)

Glynn, P. W. and P. Heidelberger. 1992. Analysis of initial
Transient Deletion for parallel Steady-State Simula-
tions. SIAM J. Sci. Stat. Comput, 13(4): 904-922.

Jefferson, D. R. 1985. Virtual Time. ACM Transactions on
Programming Languages and Systems, 7(3): 404-425.

Macdougall, M.H. 1987. Simulating Computer Systems
Techniques and Tools. The MIT Press.

OMNeTpp. 2004. Available online via <http://www.
omnetpp.org/> [accessed July 15, 2004]

Orca Computer. 2004. Available online via <http://
www.orcacomputer.com/vse/VSESet.htm>
[accessed July 15, 2004]

Silva, M. P. 2004. Método para escolha de abordagem para
simulação distribuída utilizando inteligência artificial.

Bruschi, Santana, Santana, and Aiza

MSc. Exam Qualification, Department of Computer
and Statistic, University of São Paulo, Brazil.

Soares, L.F.G. 1992. Modelagem e Simulação Discreta de
Sistemas, Editora Campus Ltda.

Souza, P. S. L., M. J. Santana, R. H. C. Santana, A. P. F.
Araújo. 1999. PVM and a Viable and Flexible Sched-
uling. In Proceeding of the 11th IASTED Interna-
tional Conference on Parallel and Distributed Com-
puting and Systems (PDCS'99), Massachusetts - USA.

Swain, J.J. 1995. Tools for process understanding and im-
provement: Simulation on Survey. OR/MS Today,
22(4): 64-79.

Swet, R. J.; and G. R. Drake. 2001. The Arena Product
Family: Enterprise Modeling Solutions. In Proceed-
ings of the 2001 Winter Simulation Conference, ed. M.
Rohrer, D. Medeiros, B. A. Peters and J. Smith, 201–
208. Arlington, Virginia.

Ulson, R. S. 1999. Simulação Distribuída em Plataformas
de Portabilidade: Viabilidade de uso e comportamento
do Protocolo CMB. Ph.D. Thesis, Department of
Physics, University of São Paulo, Brazil.

Varga, A. 2001. The OMNeT++ Discrete Event Simula-
tion System, In Proceedings of the European Simula-
tion Multiconference – ESM’2001, Prague, Czech Re-
public, June 6-9.

AUTHOR BIOGRAPHIES

SARITA M. BRUSCHI is a lecturer in the Computer Sci-
ence Department at the University of São Paulo (USP). She
has a B.Sc. in Computer Science from UNESP (1994), and
a M.Sc. and Ph.D. in Computer Science from USP, in 1997
and 2002, respectively. Since 2003 she has been working
at the Distributed System and Concurrrent Programming
Laboratory in the Institute of Mathematical and Computa-
tional Sciences. Her special fields of interest include dis-
tributed simulation, performance evaluation and paral-
lel/distributed computing. She is a member of the Brazilian
Computer Society (SBC). Her e-mail address is <sa-
rita@icmc.usp.br>

REGINA H. C. SANTANA is an Associate Professor in
the Computer Science Department at the University of São
Paulo (USP) and co-ordinator of the B.Sc Computer Sci-
ence course. She has a B.Sc. in Eletrical Engeneering from
USP (1980), a M.Sc. in Computer Science from USP
(1985) and a Ph.D. in Eletronics and Computer Science
from University of Southampton, UK (1990). Her research
interests include distributed simulation, modeling tech-
niques and performance evaluation. She is a member of the
Brazilian Computer Society (SBC). Her e-mail address is
rcs@icmc.usp.br

MARCOS J. SANTANA is an Associate Professor in the
Computer Science Department at the University of São
Paulo (USP), Director of the Informatic Center of São Car-
los (USP) and Education Director of the Brazilian Com-
puter Society (SBC). He has a B.Sc. in Eletrical Engeneer-
ing from USP (1980), a M.Sc. in Computer Science from
USP (1985) and a Ph.D. in Eletronics and Computer Sci-
ence from University of Southampton, UK (1990). His re-
search interests include modelling techniques, performance
evaluation and parallel/distributed computing. He is a
member of the SBC. His e-mail address is <mjs@
icmc.usp.br>

THAIS S. AIZA is a postgraduate student in the
Computer Science Department at the University of São
Paulo (USP). She has a B.Sc. in Computer Science from
Mato Grosso Federal University (1999) and a specializa-
tion course. in Information System from UNIVAG (2001).
Her research interests include distributed simulation and
performance evaluation. Her e-mail address is <thais@
icmc.usp.br>

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 378
	02: 379
	03: 380
	04: 381
	05: 382
	06: 383
	07: 384
	08: 385

