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ABSTRACT 

Increased complexity of simulation models and the related 
modeling needs for global supply chains have necessitated 
the execution of simulations on multiple processors. While 
distributed simulation promises reduced complexity (as the 
result of decomposition), increased parallelism and con-
venient analysis of geographically distributed systems, it 
poses a challenging problem: synchronizing the distributed 
simulation federates. This paper discusses a new discrete 
event distributed simulation framework, which is designed 
with two goals in mind: (1) easy and fast development of 
distributed simulations and (2) efficient adaptive synchro-
nization of simulation processes. This research uses state 
machine models for the automated synthesis of so called 
‘local synchronization agents’ and an adaptive synchroni-
zation algorithm has been developed based on pacing of 
simulation processes using real-time. Upon completion, 
this scalable framework is expected to shorten the lead-
time to develop distributed simulation systems with rea-
sonable performance characteristics. 

1 INTRODUCTION 

Synchronization of simulation processes has been one of the 
main problems researched in the area of parallel and distrib-
uted simulation (PADS). Lack of proper synchronization 
among simulation federates can create ambiguities during 
runtime which result in incorrect ordering of events eventu-
ally yielding useless simulation output. The research has 
been shaped around two main streams: conservative and op-
timistic techniques. General information on PADS and syn-
chronization techniques can be found in Fujimoto (2000). 

Synchronization is a key issue in PADS research and 
has direct effect on the efficiency/performance of distrib-
uted simulations. Another key issue as important as syn-
chronization is the ease of development of distributed 
simulation systems (DSS).  
Development usually requires extensive amount of 
programming by experts in the area and therefore distrib-
uted simulation is not an “available” tool for commercial 
applications yet. There are a few software libraries and 
tools available through academic research labs, however 
currently there is no commercial quality software that can 
be used to easily create distributed simulations.  

Prominent researchers in the area have stated the im-
portance of creating user friendly and transparent DSS de-
velopment environments that would enable simulation de-
velopers widely adopt distributed simulation for 
commercial and research purposes. A  nice discussion on 
this issue can be found in Page et al. (1999). 

This paper introduces preliminary developments for 
ongoing research at The Pennsylvania State University’s 
Computer Integrated Manufacturing Laboratory 
(CIMLAB) that aims to eventually develop a scalable dis-
tributed simulation framework addressing the two prob-
lems introduced above: (1) efficient synchronization and 
(2) easy and fast development of DSS. 

The remainder of the paper is organized as follows. In 
Section 2, the synchronization methodology is introduced 
and the main idea of time-scaled synchronization is dis-
cussed. Section 3 introduces the structural models that 
form the heart of the synchronization mechanism and dis-
cusses how they are used to predict interactions. In Section 
4, we discuss the structure of the synchronization agents 
and how they can be automatically generated. Finally, the 
paper concludes with the remarks in Section 5. 

2 SYNCHRONIZATION METHODOLOGY 

Research in CIMLAB has been focused on simulation 
based shop-floor control for more than a decade and a hier-
archical control framework called “Rapid-CIM” has been 
developed. This framework includes software tools for 
automatically generating controller software at the manu-
facturing execution level and utilizes real-time discrete 
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event simulation processes at the decision making level. In-
formation on Rapid-CIM can be found in Joshi et al. (1995). 

Research on real-time simulation has led us to develop 
a distributed simulation framework based on the idea of 
pacing simulation models using scaled real-time. In a real-
time simulation process, the simulation clock advances at 
the same rate with the wallclock (wallclock time = real-
time). Scaling real-time is a way of consistently speeding 
up (or slowing down) the simulation execution (the rate of 
advance of the simulation/virtual clock). 

Our experience in the manufacturing domain has 
showed that if we create a distributed simulation system 
using real-time simulation processes and if we use com-
monly available networking technology (100 Mbit/s fast-
Ethernet), under normal circumstances (reliable communi-
cation and nominal network load) we do not see any syn-
chronization problems. This is due to the simple fact that 
communication is not a bottleneck in such a system and all 
simulation processes execute at the same speed (real-time). 
Durations of manufacturing processes (seconds/minutes) 
are several magnitudes of order longer compared to mes-
sage transmission periods (milliseconds). Therefore, it is 
possible to avoid any synchronization problem in the sys-
tem by using proper communication protocols. 

This observation actually corresponds to two well-
known issues in the synchronization research: (1) time am-
biguities occur because simulation processes do not exe-
cute in a coordinated manner and (2) communication be-
comes the bottleneck in a distributed simulation system 
which is intended for as-fast-as-possible execution. In fact, 
safe-event mechanisms in conservative synchronization 
and roll-backs in optimistic synchronization both address 
the first issue, coordinated advance of simulation clocks. 

Although it might look like optimistic synchronization 
methods do not employ a direct control on the advance of 
simulation clocks, the inherent coupling of simulation 
processes and event dynamics force optimistic execution to 
perform roll-backs when simulation clocks dangerously 
outrun each other. This is the reason that optimistic syn-
chronization suffers from performance loss and extensive 
memory requirements when a tightly coupled set of physi-
cal processes is simulated. 

This clearly indicates that dynamics of physical proc-
esses being simulated determine how corresponding logical 
processes should be synchronized. This observation gave 
rise to a new stream in synchronization research: adaptive 
synchronization. Adaptive synchronization targets exploit-
ing parallelism when it is possible by changing its behavior 
during runtime. A survey of adaptive synchronization 
techniques can be found in Das (2000). 

We developed an adaptive synchronization algorithm 
that is based on coordinating the advance of simulation 
processes using real-time. High resolution hardware clocks 
are used to pace the virtual clock of simulation processes. 
In stead of event driven, we utilize time-stepped simulation 
execution to be able to continuously control the advance of 
the simulation clocks with high precision. Hardware clocks 
are synchronized so that they run at approximately the 
same rate. Therefore, if all simulation processes start at the 
same wallclock time and all hardware clocks are synchro-
nized, we expect the simulation clocks to advance at the 
same rate. This mechanism solves the first problem, the 
problem of coordinated advance of simulation clocks. 

The solution mechanism we developed for the second 
problem is what makes this technique adaptive. Even if the 
advance rates of virtual clocks are synchronized, it is pos-
sible to observe a time ambiguity when speed of communi-
cation is close to (or less than) the rate of advance of simu-
lation clocks. Consider the following example: 

Example 1. Let 1LP  and 2LP  be two logical processes 
simulating the physical processes 1PP  and 2PP . Assume 
that their virtual clocks are running in perfect synchrony 
(i.e. virtual clock values are always the same). Assume that 

1LP  sends a message to 2LP  at virtual time 1T  with a time-
stamp 1T T+ ∆ . Here, T∆  represents the minimum amount 
of time it takes 1PP  to interact with 2PP . We know that 
when the message is sent out from 1LP ,  2LP ’s virtual 
clock is also 1T . Assume that it takes C∆  wall-clock time 
units for the message to reach 2LP . In this case, for 2LP  to 
be able to execute the message at virtual time 1T T+ ∆ , it 
should receive the message before its virtual clock reaches 
the value 1T T+ ∆ . Thus, the amount of wallclock time it 
takes 2LP  to execute from virtual clock values 1T  to 

1T T+ ∆  should be less than C∆ , i.e. T K C∆ ⋅ > ∆ . Here, 
K  is the time-scaling factor ( K  wallclock time units = 1 
virtual time unit), 1K =  means the simulation is advancing 
at real-time pace. One can easily see that for this system to 
work, we should have:  

 

                                   CK
T

∆>
∆

                               (1) 

 
Notice that 1K − is the speed of execution of the simu-

lation process with respect to the real-time. Equation (1) 
simply shows us that the speed of execution has an upper 
bound (or the scaling factor has a lower bound) imposed by 
the speed of communication (or message transmission 
time) and the “physical interaction lag” (PIL) between 
physical processes. 

Intuitively, one can say that, the ratio of the interaction 
lag in the physical process (by passing real entities) to the 
interaction lag in the logical process (by passing virtual en-
tities such as messages) defines the upper bound on the ra-
tio of the physical time to virtual time. One cannot speed 
up a simulation system beyond this limit without facing the 
possibility of creating time ambiguities. 
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The synchronization algorithm introduced in this pa-
per, controls the speed factor K , by predicting potential 
messages and their PILs.  

All logical processes are coupled with a Local Syn-
chronization Agent (LSA), which is automatically gener-
ated from the simulation model. Each LSA has direct con-
trol over the speed of its coupled logical process. LSAs 
predict output messages of logical processes using state 
automata based structural models and broadcast this infor-
mation among themselves. Thus, every LSA has a global 
picture of all potential messages. LSAs use this informa-
tion to calculate the necessary speed limit for each poten-
tial message and change the speed accordingly at the earli-
est possible time of message transmission. 

The system has a default speed defined by statically 
analyzing the simulation models and this is the fastest 
speed the system can run when there are no interactions. 
Once an interaction is over, LSAs switch back to the 
nominal speed. Speed changes are executed at agreed upon 
checkpoints in wallclock time so that synchronization is 
not lost during speed changes.  

In short, the whole distributed simulation process dy-
namically changes its speed (through distributed consensus 
among LSAs) to accommodate interactions among logical 
processes. 

Obviously, for this algorithm to work, we should have 
a well-defined networking environment such that we can 
calculate an upper bound on the communication delays.  
Therefore, we assume that the communication network is 
reliable and the maximum communication delay is known.  

Although it is hard to know the maximum communi-
cation delay in advance in a general wide area network (it 
is a factor of network load), we consider a dedicated local 
area network with abundant bandwidth to solve this prob-
lem. Therefore, in cases where the network behavior can-
not be estimated with reasonable tolerance (such as the 
Internet), this algorithm cannot guarantee synchronization. 

3 STRUCTURAL MODELS AND PREDICTION 
OF OUTBOUND MESSAGES 

Local synchronization agents has a key role in the distrib-
uted simulation framework developed in this research. In 
the heart of an LSA is a set of state automata that repre-
sents the flow structure of the coupled logical process. The 
structural model is a reduced replica of the simulation 
model. It does not include information regarding the details 
of the resources, schedules and most importantly the deci-
sion logic.  

Generally, decision logic is the most complicated part 
of a simulation model from both development and repre-
sentation sides. Therefore, leaving the decision logic be-
hind provides us with a reduced version of the simulation 
model which only contains flow information (i.e. all possi-
ble routes entities can take through the system resources). 
Flow information or structural models (as referred to in this 
study), can be unambiguously represented using state auto-
mata based models. A detailed description of state automata 
can be found in Hopcroft, Motwani, and Ullman (2001). 

LSAs use structural models to keep track of entity 
states in the logical processes. More importantly, the struc-
tural model contains crucial information about which 
events send messages to other processes and which events 
receive incoming messages. 

Let M be a simulation model defined by the partition 
( , , , )S P R Ε where S  is a state automaton representing the 
structural model (entity states, events/transitions and messag-
ing), P  is a decision function representing the decision logic 
(and data embedded within), R  is the resource set defining 
resources, their states and their attributes, and Ε is the entity 
set representing the types of entities and their attributes. 

The structural model S  is defined by the 6-tuple 
( , , , , , )S B= Χ Σ Γ Ψ Χ  where the components are defined 

as follows: 
 
• Χ  is a countable state space, such that Χ ≠ ∅  
• Σ  is a countable event set, such that Σ ≠ ∅   
• ( ) :εΓ Χ → Σ  is the set of enabled events for en-

tity type ε  at a state, defined for all entity types 
ε ∈ Ε  and all states χ ∈ Χ . 

• :Ψ Χ × Σ → Χ  is the transition mapping defined 
for all states in Χ  and all enabled events in Σ . 

• Χ ⊆ Χ  is the set of initial states where an entity 
starts its flow. 

• :B Z Z+ +Χ → ×  is a bound-map that simply as-
sociates two virtual time values, a lower bound 
lχ and an upper bound uχ  with each state χ ∈ Χ , 
where 0 l uχ χ≤ ≤ < ∞ .  

 
The decision function is the mapping 

:P RΕ× × Χ × Γ → Σ  based on the status of resources, 
from the set of enabled events at a specified state of an en-
tity to a single selected event (selected transition). This 
function basically decides among alternative transitions of 
an entity. For example, if the simulation model is a high-
way system, the decision function would be all the traffic 
regulations and the structural model would be the map of 
the system with limited information about accessibility of 
roads by different vehicle types. So, the structural model is 
a template of flow of entities in the simulation process with 
some information about the accessibility of entities (acces-
sibility is defined by Γ  and Ψ ).  

Figure 1 shows a graphical depiction of an example 
structural model. Vertices correspond to states which 
represents locations of entities (resources) in the physical 
process and arcs correspond to events which define the 
transition function. This graph is for a two server queu-
ing system. 
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  Figure 1: Directed Graph Representation of the  
  Structural Model 
 
The general structural model S  can be cloned to cre-

ate  “entity-specific structural models”, that are defined for 
each entity type. An entity-specific structural model is a 
reduced form of the general structural model that only has 
necessary states and transitions for a particular entity type. 
This information is provided by the mapping Γ  that de-
fines enabled events for all types of entities.  

Let ( , , , , )S Bεε ε ε ε ε= Χ Σ Ψ Χ  represent an entity-
specific structural model of M  defined for all entity types 
ε ∈ Ε , where the components are defined as follows: 

 
• ε

ε∀ ∈Ε

Χ = Χ∪  

• ε
ε∀ ∈Ε

Σ = Σ∪  

• ( , ) ( , ) , ,  ( )ε
ε

χ σ χ σ χ σ χ
∀ ∈Ε

Ψ = Ψ ∀ ∈ Χ ∀ ∈ Γ∪  

• ε
ε∀ ∈Ε

Χ = Χ∪  

•  such that  is defined for all B B Bε ε εχ⊆ ∈ Χ ⊆ Χ
 

From the above definition, we can say that an entity-
specific structural model is a specialized version of the 
general structural model, which only contains flow infor-
mation relevant to a particular entity. 

Entity-specific structural models play a central role in 
the synchronization mechanism, especially in the predic-
tion of potential messages. Local synchronization agents 
use entity-specific structural models to track the entity 
states and periodically calculate minimum time to start of 
transmission of outbound messages.  

Events are partitioned into two main types: internal 
events and external events. External events are also of two 
types: input events and output events. Input events are the 
ones that receive a message from another simulation proc-
ess and external events are the ones that send a message to 
another simulation process. Internal events are not associ-

State Set 
A – Arrival (initial state) 
Q – Queue 
S1 – Server 1 
S2 – Server 2 
D – Departure
ated with any interactions and therefore they are only in-
cluded for the completeness of the models. 

External events in simulation processes model interac-
tions between physical processes. Each output event has a 
matching input event that represents an entity leaving a 
source process and arriving at a destination process. This 
implies that each instance of an entity-specific structural 
model can generate at most one output message, although 
the model itself might have several alternative output events. 

In this respect, outbound messages can be predicted by 
keeping a list of accessible output events and updating this 
list as the entity moves to new states. It is possible to gen-
erate a list of accessible output events for each state in the 
entity-specific structural model along with minimum time 
to reach each of these events from the current state. This 
information can be generated before run-time and can be 
saved along with the entity-specific model.  

During run-time, when an entity moves to a new state, 
the LSA will perform simple table look-up operations to  
update the list of potential output events. We call these lists 
“entity-specific predicted outbound message” (ePOM) 
lists. In the next section, we explain how LSAs use infor-
mation from ePOM lists to manage potential messages. 

The look-up tables for each entity-specific model can 
be generated automatically by calculating the shortest path 
(using the lower bounds lχ  as the cost of visiting states) to 
all output events from each state in the model. Since this 
process is done prior to the run-time, it does not have any 
negative affect on the performance of the synchronization 
mechanism and can be considered as a setup process. 

It is obvious that the performance of the prediction 
mechanism is the key factor that would affect overall per-
formance of this synchronization mechanism. The predic-
tion mechanism relies on the lower-bounds of state delays 
and quality of these lower-bound values will determine the 
performance of the prediction mechanism. In a stochastic 
simulation process where the probability distributions from 
which the delay values are sampled do not have bounds, 
this system cannot be used. Therefore, this sort of simula-
tion models must be modified so that unbounded probabil-
ity distribution are replaced with their truncated versions. 
On the other side, we believe that this system will perform 
good when deterministic simulation models (or stochastic 
models with low variability) are used. 

4 SYNCHRONIZATION AGENTS 

Local synchronization agents are composed of two main 
parts: 

 
• Speed control engine (SCE) 
• Message prediction and management engine 

(MPME). 
 



Altuntas and Wysk 

 

Speed control engine calculates the speed-limit for 
the upcoming interaction in the distributed simulation 
system and re-adjusts the real-time scaling factor of the 
coupled simulation process until the interaction success-
fully takes place. Once the interaction is over, SCE goes 
back to the nominal simulation speed agreed in the DSS. 
SCE takes direct input from the message prediction and 
management engine. 

Message prediction and management engine interacts 
with the coupled simulation process by reading the state of 
simulation entities periodically and updating the state of 
embedded entity-specific structural model instances. 
MPME creates an instance of the entity-specific structural 
models for each live entity in the simulation process and 
terminates instances when entities are disposed from the 
simulation process.  

MPMEs of LSAs communicate among each other via 
special messages called “s-messages” (short for synchroni-
zation messages - to distinguish them from regular mes-
sages sent/received by simulation processes). These s-
messages inform other LSAs about the potential messages 
and their timing. Each MPME use two lists to manage in-
formation about local and system-wide potential messages. 
These are: 

 
1. Predicted Outbound Messages (POM) list 
2. Predicted Inbound Messages (PIM) list. 

 
POM is a locally-populated list which contains the po-

tential outbound messages of the local simulation process. 
MPME samples potential messages from all local ePOM 
lists and populate the POM list. An LSA periodically 
broadcasts new information on the POM list to other LSAs 
using s-messages. 

PIM is a remotely and locally populated list which 
contains potential inbound messages for all LPs in the 
DSS. SCE directly accesses the PIM list for timely adjust-
ment of the simulation process speed. When MPME sends 
or receives an s-message, it copies the related information 
(unique entity id and predicted minimum time to transmis-
sion) to the PIM. Therefore, every PIM in the DSS con-
tains the same information which tells what messages are 
potentially going to be transmitted and the earliest virtual 
time these transmissions can begin. 

Broadcast of s-messages and use of the PIM lists en-
able distributed synchronous control of the simulation 
speeds for all logical processes. Figure 2 depicts the struc-
ture of LSAs and the DSS architecture. 

Local synchronization agents can be automatically 
customized by using an interpreter that analyzes simulation 
models and generates all of the necessary structural models 
along with the look-up tables. Figure 3 depicts the process 
of creation of the structural models from simulation mod-
els. Obviously, the interpreter should be developed for the 
specific simulation package/language used to create simu-
lation models. However, once an interpreter is developed it 
will reduce the development time of DSS significantly with 
this framework. 

 

 
Figure 2: LSA Structure and DSS Architecture 

 

 
Figure 3: Synthesis of Structural Models 

 
Use of synchronization agents is a modular approach 

that eliminates the need to create custom simulation mod-
els for synchronization purposes. Simulation processes still 
need the functionality to communicate and interact in a dis-
tributed setting (such as compliance with HLA or some 
sort of  client/server type communication capability). 
However, synchronization is totally isolated from the simu-
lation process and it is the job of the synchronization agent, 
which runs as a separate process on the same computer 
with the simulation process.  

One other functionality required of the simulation 
process is that it should be capable of paced execution syn-
chronized with a hardware clock (i.e. system clock). This 
would require some sort of customization or outside con-
trol of the simulation kernel, unless the specific simulation 
kernel has built-in time scaled execution capability. 
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5 CONCLUSIONS 

In this paper, we provided an overview of the adaptive syn-
chronization framework being developed at the Penn State 
CIMLAB. This framework aims easy and rapid develop-
ment of distributed simulation systems by automatically syn-
thesizing synchronization agents from simulation models.  

Synchronization agents control the pace of execution 
of simulation processes while processing run-time informa-
tion to predict interactions between them. Interactions are 
predicted before they happen and this information is con-
tinuously shared among all synchronization agents. Using 
the information on predicted interactions, agents calculate 
safe interaction speeds  (slower than an agreed upon no-
interaction speed) and they synchronously (through the use 
of synchronized hardware clocks) regulate speed of all 
simulation processes dynamically. 

Although this algorithm looks quite simple in theory, 
there are several issues that can affect the performance of 
this system when implemented. First, the communication 
system used for messaging must have adequate bandwidth 
matching the degree of coupling between simulation proc-
esses. The degree of coupling can be calculated by examin-
ing the number of input/output events in structural models.  

Second, variability in certain key measures such as 
message transmission delays (difference between actual 
delays and the maximum delay) and entity-state delays (ac-
tual delays versus the minimum delay) will certainly affect 
the performance of the algorithm.  

Third, synchronization of the hardware clocks must be 
done with reasonable accuracy so that synchronization 
agents can switch to different execution speeds with mini-
mal time discrepancy. Although one can use barrier syn-
chronization methods to correct errors rooted by this prob-
lem, this would result in extra overhead.  

Our initial studies on the hardware clocks also re-
vealed another important problem regarding the accuracy 
of the algorithm. The resolution of the hardware clock used 
for pacing the simulation process is extremely important. 
In theory, we cannot speed-up a simulation process more 
than the resolution of the real-time clock that we use to 
time the unit-delays between successive virtual clock ticks. 

We realized that although hardware clocks inside per-
sonal computers have very high resolution (limited by the 
CPU clock frequency), it is not possible to sample these 
clocks with an accuracy better than 0.001 seconds under 
ordinary multi-tasking operating systems (this is due to the 
fact that the programmer does not have direct control over 
the scheduling of program threads run by the  operating 
system). This creates a problem in implementing reasona-
bly fast distributed simulators. However, one can use ex-
ternal clock frequency providers such as GPS satellite re-
ceivers (synchronized within 1 microsecond of the 
universal coordinated time) along with third party real-time 
operating system add-on components to solve this problem. 
Above mentioned issues related to the implementation 
of the framework may look like divergence from regular 
hardware and software to implement the system. However, 
we believe that this framework is very versatile and the 
benefits from rapid development and ease of deployment 
can easily justify the additional cost of the hard-
ware/software required for clock synchronization. 
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