
Proceedings of the 2004 Winter Simulation Conference
R .G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, eds.

A FRAMEWORK FOR ADAPTIVE SYNCHRONIZATION OF DISTRIBUTED SIMULATIONS

Bertan Altuntas
Richard A. Wysk

Department of Industrial and Manufacturing Engineering

The Pennsylvania State University
310 Leonhard Building

University Park, PA 16802, U.S.A.

ABSTRACT

Increased complexity of simulation models and the related
modeling needs for global supply chains have necessitated
the execution of simulations on multiple processors. While
distributed simulation promises reduced complexity (as the
result of decomposition), increased parallelism and con-
venient analysis of geographically distributed systems, it
poses a challenging problem: synchronizing the distributed
simulation federates. This paper discusses a new discrete
event distributed simulation framework, which is designed
with two goals in mind: (1) easy and fast development of
distributed simulations and (2) efficient adaptive synchro-
nization of simulation processes. This research uses state
machine models for the automated synthesis of so called
‘local synchronization agents’ and an adaptive synchroni-
zation algorithm has been developed based on pacing of
simulation processes using real-time. Upon completion,
this scalable framework is expected to shorten the lead-
time to develop distributed simulation systems with rea-
sonable performance characteristics.

1 INTRODUCTION

Synchronization of simulation processes has been one of the
main problems researched in the area of parallel and distrib-
uted simulation (PADS). Lack of proper synchronization
among simulation federates can create ambiguities during
runtime which result in incorrect ordering of events eventu-
ally yielding useless simulation output. The research has
been shaped around two main streams: conservative and op-
timistic techniques. General information on PADS and syn-
chronization techniques can be found in Fujimoto (2000).

Synchronization is a key issue in PADS research and
has direct effect on the efficiency/performance of distrib-
uted simulations. Another key issue as important as syn-
chronization is the ease of development of distributed
simulation systems (DSS).
Development usually requires extensive amount of
programming by experts in the area and therefore distrib-
uted simulation is not an “available” tool for commercial
applications yet. There are a few software libraries and
tools available through academic research labs, however
currently there is no commercial quality software that can
be used to easily create distributed simulations.

Prominent researchers in the area have stated the im-
portance of creating user friendly and transparent DSS de-
velopment environments that would enable simulation de-
velopers widely adopt distributed simulation for
commercial and research purposes. A nice discussion on
this issue can be found in Page et al. (1999).

This paper introduces preliminary developments for
ongoing research at The Pennsylvania State University’s
Computer Integrated Manufacturing Laboratory
(CIMLAB) that aims to eventually develop a scalable dis-
tributed simulation framework addressing the two prob-
lems introduced above: (1) efficient synchronization and
(2) easy and fast development of DSS.

The remainder of the paper is organized as follows. In
Section 2, the synchronization methodology is introduced
and the main idea of time-scaled synchronization is dis-
cussed. Section 3 introduces the structural models that
form the heart of the synchronization mechanism and dis-
cusses how they are used to predict interactions. In Section
4, we discuss the structure of the synchronization agents
and how they can be automatically generated. Finally, the
paper concludes with the remarks in Section 5.

2 SYNCHRONIZATION METHODOLOGY

Research in CIMLAB has been focused on simulation
based shop-floor control for more than a decade and a hier-
archical control framework called “Rapid-CIM” has been
developed. This framework includes software tools for
automatically generating controller software at the manu-
facturing execution level and utilizes real-time discrete

Altuntas and Wysk

event simulation processes at the decision making level. In-
formation on Rapid-CIM can be found in Joshi et al. (1995).

Research on real-time simulation has led us to develop
a distributed simulation framework based on the idea of
pacing simulation models using scaled real-time. In a real-
time simulation process, the simulation clock advances at
the same rate with the wallclock (wallclock time = real-
time). Scaling real-time is a way of consistently speeding
up (or slowing down) the simulation execution (the rate of
advance of the simulation/virtual clock).

Our experience in the manufacturing domain has
showed that if we create a distributed simulation system
using real-time simulation processes and if we use com-
monly available networking technology (100 Mbit/s fast-
Ethernet), under normal circumstances (reliable communi-
cation and nominal network load) we do not see any syn-
chronization problems. This is due to the simple fact that
communication is not a bottleneck in such a system and all
simulation processes execute at the same speed (real-time).
Durations of manufacturing processes (seconds/minutes)
are several magnitudes of order longer compared to mes-
sage transmission periods (milliseconds). Therefore, it is
possible to avoid any synchronization problem in the sys-
tem by using proper communication protocols.

This observation actually corresponds to two well-
known issues in the synchronization research: (1) time am-
biguities occur because simulation processes do not exe-
cute in a coordinated manner and (2) communication be-
comes the bottleneck in a distributed simulation system
which is intended for as-fast-as-possible execution. In fact,
safe-event mechanisms in conservative synchronization
and roll-backs in optimistic synchronization both address
the first issue, coordinated advance of simulation clocks.

Although it might look like optimistic synchronization
methods do not employ a direct control on the advance of
simulation clocks, the inherent coupling of simulation
processes and event dynamics force optimistic execution to
perform roll-backs when simulation clocks dangerously
outrun each other. This is the reason that optimistic syn-
chronization suffers from performance loss and extensive
memory requirements when a tightly coupled set of physi-
cal processes is simulated.

This clearly indicates that dynamics of physical proc-
esses being simulated determine how corresponding logical
processes should be synchronized. This observation gave
rise to a new stream in synchronization research: adaptive
synchronization. Adaptive synchronization targets exploit-
ing parallelism when it is possible by changing its behavior
during runtime. A survey of adaptive synchronization
techniques can be found in Das (2000).

We developed an adaptive synchronization algorithm
that is based on coordinating the advance of simulation
processes using real-time. High resolution hardware clocks
are used to pace the virtual clock of simulation processes.
In stead of event driven, we utilize time-stepped simulation
execution to be able to continuously control the advance of
the simulation clocks with high precision. Hardware clocks
are synchronized so that they run at approximately the
same rate. Therefore, if all simulation processes start at the
same wallclock time and all hardware clocks are synchro-
nized, we expect the simulation clocks to advance at the
same rate. This mechanism solves the first problem, the
problem of coordinated advance of simulation clocks.

The solution mechanism we developed for the second
problem is what makes this technique adaptive. Even if the
advance rates of virtual clocks are synchronized, it is pos-
sible to observe a time ambiguity when speed of communi-
cation is close to (or less than) the rate of advance of simu-
lation clocks. Consider the following example:

Example 1. Let 1LP and 2LP be two logical processes
simulating the physical processes 1PP and 2PP . Assume
that their virtual clocks are running in perfect synchrony
(i.e. virtual clock values are always the same). Assume that

1LP sends a message to 2LP at virtual time 1T with a time-
stamp 1T T+ ∆ . Here, T∆ represents the minimum amount
of time it takes 1PP to interact with 2PP . We know that
when the message is sent out from 1LP , 2LP ’s virtual
clock is also 1T . Assume that it takes C∆ wall-clock time
units for the message to reach 2LP . In this case, for 2LP to
be able to execute the message at virtual time 1T T+ ∆ , it
should receive the message before its virtual clock reaches
the value 1T T+ ∆ . Thus, the amount of wallclock time it
takes 2LP to execute from virtual clock values 1T to

1T T+ ∆ should be less than C∆ , i.e. T K C∆ ⋅ > ∆ . Here,
K is the time-scaling factor (K wallclock time units = 1
virtual time unit), 1K = means the simulation is advancing
at real-time pace. One can easily see that for this system to
work, we should have:

 CK
T

∆>
∆

 (1)

Notice that 1K − is the speed of execution of the simu-

lation process with respect to the real-time. Equation (1)
simply shows us that the speed of execution has an upper
bound (or the scaling factor has a lower bound) imposed by
the speed of communication (or message transmission
time) and the “physical interaction lag” (PIL) between
physical processes.

Intuitively, one can say that, the ratio of the interaction
lag in the physical process (by passing real entities) to the
interaction lag in the logical process (by passing virtual en-
tities such as messages) defines the upper bound on the ra-
tio of the physical time to virtual time. One cannot speed
up a simulation system beyond this limit without facing the
possibility of creating time ambiguities.

Altuntas and Wysk

The synchronization algorithm introduced in this pa-
per, controls the speed factor K , by predicting potential
messages and their PILs.

All logical processes are coupled with a Local Syn-
chronization Agent (LSA), which is automatically gener-
ated from the simulation model. Each LSA has direct con-
trol over the speed of its coupled logical process. LSAs
predict output messages of logical processes using state
automata based structural models and broadcast this infor-
mation among themselves. Thus, every LSA has a global
picture of all potential messages. LSAs use this informa-
tion to calculate the necessary speed limit for each poten-
tial message and change the speed accordingly at the earli-
est possible time of message transmission.

The system has a default speed defined by statically
analyzing the simulation models and this is the fastest
speed the system can run when there are no interactions.
Once an interaction is over, LSAs switch back to the
nominal speed. Speed changes are executed at agreed upon
checkpoints in wallclock time so that synchronization is
not lost during speed changes.

In short, the whole distributed simulation process dy-
namically changes its speed (through distributed consensus
among LSAs) to accommodate interactions among logical
processes.

Obviously, for this algorithm to work, we should have
a well-defined networking environment such that we can
calculate an upper bound on the communication delays.
Therefore, we assume that the communication network is
reliable and the maximum communication delay is known.

Although it is hard to know the maximum communi-
cation delay in advance in a general wide area network (it
is a factor of network load), we consider a dedicated local
area network with abundant bandwidth to solve this prob-
lem. Therefore, in cases where the network behavior can-
not be estimated with reasonable tolerance (such as the
Internet), this algorithm cannot guarantee synchronization.

3 STRUCTURAL MODELS AND PREDICTION
OF OUTBOUND MESSAGES

Local synchronization agents has a key role in the distrib-
uted simulation framework developed in this research. In
the heart of an LSA is a set of state automata that repre-
sents the flow structure of the coupled logical process. The
structural model is a reduced replica of the simulation
model. It does not include information regarding the details
of the resources, schedules and most importantly the deci-
sion logic.

Generally, decision logic is the most complicated part
of a simulation model from both development and repre-
sentation sides. Therefore, leaving the decision logic be-
hind provides us with a reduced version of the simulation
model which only contains flow information (i.e. all possi-
ble routes entities can take through the system resources).
Flow information or structural models (as referred to in this
study), can be unambiguously represented using state auto-
mata based models. A detailed description of state automata
can be found in Hopcroft, Motwani, and Ullman (2001).

LSAs use structural models to keep track of entity
states in the logical processes. More importantly, the struc-
tural model contains crucial information about which
events send messages to other processes and which events
receive incoming messages.

Let M be a simulation model defined by the partition
(, , ,)S P R Ε where S is a state automaton representing the
structural model (entity states, events/transitions and messag-
ing), P is a decision function representing the decision logic
(and data embedded within), R is the resource set defining
resources, their states and their attributes, and Ε is the entity
set representing the types of entities and their attributes.

The structural model S is defined by the 6-tuple
(, , , , ,)S B= Χ Σ Γ Ψ Χ where the components are defined

as follows:

• Χ is a countable state space, such that Χ ≠ ∅
• Σ is a countable event set, such that Σ ≠ ∅
• () :εΓ Χ → Σ is the set of enabled events for en-

tity type ε at a state, defined for all entity types
ε ∈ Ε and all states χ ∈ Χ .

• :Ψ Χ × Σ → Χ is the transition mapping defined
for all states in Χ and all enabled events in Σ .

• Χ ⊆ Χ is the set of initial states where an entity
starts its flow.

• :B Z Z+ +Χ → × is a bound-map that simply as-
sociates two virtual time values, a lower bound
lχ and an upper bound uχ with each state χ ∈ Χ ,
where 0 l uχ χ≤ ≤ < ∞ .

The decision function is the mapping

:P RΕ× × Χ × Γ → Σ based on the status of resources,
from the set of enabled events at a specified state of an en-
tity to a single selected event (selected transition). This
function basically decides among alternative transitions of
an entity. For example, if the simulation model is a high-
way system, the decision function would be all the traffic
regulations and the structural model would be the map of
the system with limited information about accessibility of
roads by different vehicle types. So, the structural model is
a template of flow of entities in the simulation process with
some information about the accessibility of entities (acces-
sibility is defined by Γ and Ψ).

Figure 1 shows a graphical depiction of an example
structural model. Vertices correspond to states which
represents locations of entities (resources) in the physical
process and arcs correspond to events which define the
transition function. This graph is for a two server queu-
ing system.

Altuntas and Wysk

 Figure 1: Directed Graph Representation of the
 Structural Model

The general structural model S can be cloned to cre-

ate “entity-specific structural models”, that are defined for
each entity type. An entity-specific structural model is a
reduced form of the general structural model that only has
necessary states and transitions for a particular entity type.
This information is provided by the mapping Γ that de-
fines enabled events for all types of entities.

Let (, , , ,)S Bεε ε ε ε ε= Χ Σ Ψ Χ represent an entity-
specific structural model of M defined for all entity types
ε ∈ Ε , where the components are defined as follows:

• ε

ε∀ ∈Ε

Χ = Χ∪

• ε
ε∀ ∈Ε

Σ = Σ∪

• (,) (,) , , ()ε
ε

χ σ χ σ χ σ χ
∀ ∈Ε

Ψ = Ψ ∀ ∈ Χ ∀ ∈ Γ∪

• ε
ε∀ ∈Ε

Χ = Χ∪

• such that is defined for all B B Bε ε εχ⊆ ∈ Χ ⊆ Χ

From the above definition, we can say that an entity-
specific structural model is a specialized version of the
general structural model, which only contains flow infor-
mation relevant to a particular entity.

Entity-specific structural models play a central role in
the synchronization mechanism, especially in the predic-
tion of potential messages. Local synchronization agents
use entity-specific structural models to track the entity
states and periodically calculate minimum time to start of
transmission of outbound messages.

Events are partitioned into two main types: internal
events and external events. External events are also of two
types: input events and output events. Input events are the
ones that receive a message from another simulation proc-
ess and external events are the ones that send a message to
another simulation process. Internal events are not associ-

State Set
A – Arrival (initial state)
Q – Queue
S1 – Server 1
S2 – Server 2
D – Departure
ated with any interactions and therefore they are only in-
cluded for the completeness of the models.

External events in simulation processes model interac-
tions between physical processes. Each output event has a
matching input event that represents an entity leaving a
source process and arriving at a destination process. This
implies that each instance of an entity-specific structural
model can generate at most one output message, although
the model itself might have several alternative output events.

In this respect, outbound messages can be predicted by
keeping a list of accessible output events and updating this
list as the entity moves to new states. It is possible to gen-
erate a list of accessible output events for each state in the
entity-specific structural model along with minimum time
to reach each of these events from the current state. This
information can be generated before run-time and can be
saved along with the entity-specific model.

During run-time, when an entity moves to a new state,
the LSA will perform simple table look-up operations to
update the list of potential output events. We call these lists
“entity-specific predicted outbound message” (ePOM)
lists. In the next section, we explain how LSAs use infor-
mation from ePOM lists to manage potential messages.

The look-up tables for each entity-specific model can
be generated automatically by calculating the shortest path
(using the lower bounds lχ as the cost of visiting states) to
all output events from each state in the model. Since this
process is done prior to the run-time, it does not have any
negative affect on the performance of the synchronization
mechanism and can be considered as a setup process.

It is obvious that the performance of the prediction
mechanism is the key factor that would affect overall per-
formance of this synchronization mechanism. The predic-
tion mechanism relies on the lower-bounds of state delays
and quality of these lower-bound values will determine the
performance of the prediction mechanism. In a stochastic
simulation process where the probability distributions from
which the delay values are sampled do not have bounds,
this system cannot be used. Therefore, this sort of simula-
tion models must be modified so that unbounded probabil-
ity distribution are replaced with their truncated versions.
On the other side, we believe that this system will perform
good when deterministic simulation models (or stochastic
models with low variability) are used.

4 SYNCHRONIZATION AGENTS

Local synchronization agents are composed of two main
parts:

• Speed control engine (SCE)
• Message prediction and management engine

(MPME).

Altuntas and Wysk

Speed control engine calculates the speed-limit for
the upcoming interaction in the distributed simulation
system and re-adjusts the real-time scaling factor of the
coupled simulation process until the interaction success-
fully takes place. Once the interaction is over, SCE goes
back to the nominal simulation speed agreed in the DSS.
SCE takes direct input from the message prediction and
management engine.

Message prediction and management engine interacts
with the coupled simulation process by reading the state of
simulation entities periodically and updating the state of
embedded entity-specific structural model instances.
MPME creates an instance of the entity-specific structural
models for each live entity in the simulation process and
terminates instances when entities are disposed from the
simulation process.

MPMEs of LSAs communicate among each other via
special messages called “s-messages” (short for synchroni-
zation messages - to distinguish them from regular mes-
sages sent/received by simulation processes). These s-
messages inform other LSAs about the potential messages
and their timing. Each MPME use two lists to manage in-
formation about local and system-wide potential messages.
These are:

1. Predicted Outbound Messages (POM) list
2. Predicted Inbound Messages (PIM) list.

POM is a locally-populated list which contains the po-

tential outbound messages of the local simulation process.
MPME samples potential messages from all local ePOM
lists and populate the POM list. An LSA periodically
broadcasts new information on the POM list to other LSAs
using s-messages.

PIM is a remotely and locally populated list which
contains potential inbound messages for all LPs in the
DSS. SCE directly accesses the PIM list for timely adjust-
ment of the simulation process speed. When MPME sends
or receives an s-message, it copies the related information
(unique entity id and predicted minimum time to transmis-
sion) to the PIM. Therefore, every PIM in the DSS con-
tains the same information which tells what messages are
potentially going to be transmitted and the earliest virtual
time these transmissions can begin.

Broadcast of s-messages and use of the PIM lists en-
able distributed synchronous control of the simulation
speeds for all logical processes. Figure 2 depicts the struc-
ture of LSAs and the DSS architecture.

Local synchronization agents can be automatically
customized by using an interpreter that analyzes simulation
models and generates all of the necessary structural models
along with the look-up tables. Figure 3 depicts the process
of creation of the structural models from simulation mod-
els. Obviously, the interpreter should be developed for the
specific simulation package/language used to create simu-
lation models. However, once an interpreter is developed it
will reduce the development time of DSS significantly with
this framework.

Figure 2: LSA Structure and DSS Architecture

Figure 3: Synthesis of Structural Models

Use of synchronization agents is a modular approach

that eliminates the need to create custom simulation mod-
els for synchronization purposes. Simulation processes still
need the functionality to communicate and interact in a dis-
tributed setting (such as compliance with HLA or some
sort of client/server type communication capability).
However, synchronization is totally isolated from the simu-
lation process and it is the job of the synchronization agent,
which runs as a separate process on the same computer
with the simulation process.

One other functionality required of the simulation
process is that it should be capable of paced execution syn-
chronized with a hardware clock (i.e. system clock). This
would require some sort of customization or outside con-
trol of the simulation kernel, unless the specific simulation
kernel has built-in time scaled execution capability.

Altuntas and Wysk

5 CONCLUSIONS

In this paper, we provided an overview of the adaptive syn-
chronization framework being developed at the Penn State
CIMLAB. This framework aims easy and rapid develop-
ment of distributed simulation systems by automatically syn-
thesizing synchronization agents from simulation models.

Synchronization agents control the pace of execution
of simulation processes while processing run-time informa-
tion to predict interactions between them. Interactions are
predicted before they happen and this information is con-
tinuously shared among all synchronization agents. Using
the information on predicted interactions, agents calculate
safe interaction speeds (slower than an agreed upon no-
interaction speed) and they synchronously (through the use
of synchronized hardware clocks) regulate speed of all
simulation processes dynamically.

Although this algorithm looks quite simple in theory,
there are several issues that can affect the performance of
this system when implemented. First, the communication
system used for messaging must have adequate bandwidth
matching the degree of coupling between simulation proc-
esses. The degree of coupling can be calculated by examin-
ing the number of input/output events in structural models.

Second, variability in certain key measures such as
message transmission delays (difference between actual
delays and the maximum delay) and entity-state delays (ac-
tual delays versus the minimum delay) will certainly affect
the performance of the algorithm.

Third, synchronization of the hardware clocks must be
done with reasonable accuracy so that synchronization
agents can switch to different execution speeds with mini-
mal time discrepancy. Although one can use barrier syn-
chronization methods to correct errors rooted by this prob-
lem, this would result in extra overhead.

Our initial studies on the hardware clocks also re-
vealed another important problem regarding the accuracy
of the algorithm. The resolution of the hardware clock used
for pacing the simulation process is extremely important.
In theory, we cannot speed-up a simulation process more
than the resolution of the real-time clock that we use to
time the unit-delays between successive virtual clock ticks.

We realized that although hardware clocks inside per-
sonal computers have very high resolution (limited by the
CPU clock frequency), it is not possible to sample these
clocks with an accuracy better than 0.001 seconds under
ordinary multi-tasking operating systems (this is due to the
fact that the programmer does not have direct control over
the scheduling of program threads run by the operating
system). This creates a problem in implementing reasona-
bly fast distributed simulators. However, one can use ex-
ternal clock frequency providers such as GPS satellite re-
ceivers (synchronized within 1 microsecond of the
universal coordinated time) along with third party real-time
operating system add-on components to solve this problem.
Above mentioned issues related to the implementation
of the framework may look like divergence from regular
hardware and software to implement the system. However,
we believe that this framework is very versatile and the
benefits from rapid development and ease of deployment
can easily justify the additional cost of the hard-
ware/software required for clock synchronization.

REFERENCES

Das, S. R. 2000. Adaptive protocols for parallel discrete
event simulation. Journal of the Operational Research
Society. 51: 385-394.

Fujimoto, R. M. 2000. Parallel and distributed simulation
systems. New York: Wiley.

Hopcroft, J. E., R. Motwani, and J. D. Ullman. 2001. In-
troduction to automata theory, languages, and compu-
tation. 2nd ed. Boston: Addison-Wesley.

Joshi, S. B., J. S. Smith, R. A. Wysk, B. Peters, and C.
Pegden. 1995. Rapid-CIM: An approach to rapid de-
velopment of control software for FMS control. 27th
CIRP International Seminar on Manufacturing Sys-
tems, Ann Arbor, MI.

Page, E. H., D. M. Nicol, O. Balci, R. M. Fujimoto, P. A.
Fishwick, P. L'Ecuyer, and R. Smith. 1999. Panel:
strategic directions in simulation research. In Proceed-
ing of the 1999 Winter Simulation Conference, ed.
P.A. Farrington, H. B. Nembhard, D. T. Sturrock, G.
W. Evans, 1509-1520. Piscataway. New Jersey: Insti-
tute of Industrial Engineers.

AUTHOR BIOGRAPHIES

BERTAN ALTUNTAS is a doctoral candidate in the
Department of Industrial and Manufacturing Engineering
at The Pennsylvania State University. He received his
B.S. degree in Industrial Engineering from The Middle
East Technical University in Turkey (1999). One year after
his graduation, he was awarded the Fulbright Fellowship
to continue his graduate studies in the U.S. In 2002, he
received his M.S. degree in Industrial Engineering and
Operations Research from The Pennsylvania State
University. He was awarded the Material Handling Educa-
tion Foundation scholarship in 2002. His research
interests include parallel and distributed discrete event
simulation, evolutionary distributed systems, cellular
automata, intelligent computer integrated manufacturing
and control of discrete event systems. He is a student
member of IEEE, INFORMS, IIE and SCS. His email
address is <bertan@psu.edu> and his web address is
<www.bertanaltuntas.com>.

RICHARD A. WYSK, Ph. D. holds the Leonhard Chair
in Engineering at Penn State University. Prior to his cur-
rent position, he was director of the Institute for Manufac-

Altuntas and Wysk

turing Systems and holder of the Royce Wisenbaker
Chair in Innovation at Texas A&M. Dr. Wysk also
served on the faculty of Virginia Tech and worked in
industry as a research analyst for the Caterpillar Tractor
Company and as production control manager for General
Electric. He is a decorated Vietnam veteran. He is the
author of several textbooks. Honors recognizing his
research include the Institute of Industrial Engineers,
David F. Baker Distinguished Research Award, and
the Society of Manufacturing Engineers Outstanding
Young Manufacturing Engineer Award. He holds his
Bachelor’s and Master’s degrees in Industrial Engineering
and Operations Research from the University of Massa-
chusetts and a Ph. D. in Industrial Engineering from
Purdue University. His work focuses on computer
integrated manufacturing, computer automated manufac-
turing, computer-aided process planning and concurrent
engineering. His email address is <rwysk@psu.edu>
and his web address is <www.engr.psu.edu/cim>.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 371
	02: 372
	03: 373
	04: 374
	05: 375
	06: 376
	07: 377

