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ABSTRACT

The concept of operations for a micro-UAV system is adopted
from nature from the appearance of flocking birds, movement
of a school of fish, and swarming bees among others.
This "emergent behavior" is the aggregate result of many
simple interactions occurring within the flock, school, or
swarm. Exploration of this emergent behavior in a swarm
is accomplished through a high performance computing
parallel discrete event simulation. After design of the system,
several experiments are designed, tested, and analyzed for
efficiency and effectiveness.

1 INTRODUCTION

The ability to use cooperative autonomous vehicles to per-
form a wartime mission is an important application in fu-
ture military operations (Brown 1998, Davis 1995, McHale
2003, French 2003). Technology in the Unmanned Aerial
Vehicles arena is moving toward smaller and more capa-
ble systems and is becoming available at a fraction of
the cost. Unmanned Aerial Vehicles (UAVs) are mobile
airborne machines that do not require an on-board human
operator. Typically they are controlled by a remote operator
or autonomous control logic.

2 PROBLEM DOMAIN

2.1 UAVs

The Department of Defense defines UAVs as “powered,
aerial vehicles that do not carry a human operator, use aero-
dynamic forces to provide vehicle lift, can fly autonomously
or be piloted remotely, can be expendable or recoverable,
and can carry a lethal or nonlethal payload” (Bone and
Bolkcom 2003). The autonomous UAVs considered in this
research are comparable in size to a bumblebee. Great
strides are being made in miniaturization of electronic and
electro-mechanical systems (Garrison 2000, Anonymous
1999, Michelson 2002, Dickinson 1999, McHale 2003).
Ron Fearing, a UC Berkeley electrical engineer, is design-
ing wings capable of mimicking the movements of a house
fly for use in a micro-mechanical flying insect (Squatriglia
2002). Another study focuses on how flies navigate with
reaction speeds that allow them to change course in just
30-thousandths of a second (Squatriglia 2002). Outside the
United States is the Seiko Epson Corporation’s “Micro Fly-
ing Robot” (uFR) (Newswire 2003). This uFR demonstrated
its micromechatronics technology in November 2003 at the
International Robot Exhibition and is known as the world’s
smallest flying prototype micro robot (Newswire 2003).

2.2 Swarming

Swarming is an emergent behavior of simple autonomous
individuals according to (Clough 2003). Simply stated,
using swarms is the same as “getting a bunch of small
cheap dump things to do the same job as an expensive
smart thing” (Clough 2003). Formally, it is a collection
of autonomous individuals relying on local sensing and
reactive behaviors interacting such that a global behavior
emerges from the interactions (Clough 2003). All members
have locally controlled behavior constrained by simple rules.
All have predesigned reactive behaviors. Swarms in nature
are best characterized by their behavior. When attempting
to mimic the behaviors found in nature, a swarm model
is not limited to simply the movement of the individual
members of the swarm but all the faculties of the swarm.
For example, a classification of swarm behavior is found
in (Dudek et al. 1996). In it, Dudek indicates that such
items as communications topology, range, and bandwidth,
and collective reconfigurability, size, and composition, and
processing ability all play a role in the classifying a swarm.
Kadrovach introduces a swarm taxonomy that uses a three
tier continuum: scale, coupling, behavior (Kadrovach 2003).
The examples he gives include a single large school of fish
as a {global, ordered, loose} swarm, and a colony of ants
foraging in widely scattered groups as a {regional, chaotic,
tight} swarm. Both of these classification methods are
helpful in understanding the characteristics in nature and in
man-made swarm models that represent “swarming.”
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3 ALGORITHM DOMAIN

3.1 Swarm Model

Several mathematical swarm models have been developed
by researchers. A partial list includes particle swarm simu-
lation (Trahan et al. 1998), physical robots (Mataric 1995),
minefield clearing (Cassinis et al. 1999), cooperative control
of autonomous air vehicles (McLain 1999) chemical cloud
detection (Kovacina et al. 2002), and distributed sensor
networks (Kadrovach 2003). This research intends to use
an existing model of acceptable fidelity.

An accurate model represents the real-world object at
the highest level of fidelity. The corresponding real-world
object being modeled are those swarm entities in nature
such as bees, fish, birds. From those natural occurrences
one can derive a common basic behavior for any kind of
swarm. That basic behavior is a small piece of the contri-
bution made by Craig Reynolds in 1987 (Reynolds 1987).
His flocking model is based on three simple steering behav-
iors as described in Figure 1–reproduced from (Reynolds
2001). The weighting and implementation of those steering
behaviors distinguishes differing swarm models. The figure
shows a circle which represents what he calls ’local’ in the
description next to each behavior; it is the same concept of
a swarm particle’s neighborhood.

Separation:

steer to avoid

crowding local

flockmates

Alignment: steer

towards the average

heading of local

flockmates

Cohesion: steer to

move toward the

average position of

local flockmates

Figure 1: Reynolds’ Distributed Behavior Model

Kadrovach designed a swarm algorithm based directly
on Reynolds three steering behaviors, with scalability im-
provements (Kadrovach 2003). The elements of cohesion,
avoidance, and attraction are enhanced with the concept of
a visibility model. He observes that flocking birds only
use a certain visual periphery of influence to adjust their
position in the swarm (also noted by Reynolds in (Reynolds
2001)). Building on that observation the behavior of one
member of the swarm is influenced by only those members
within a fixed angle of perception. Scalability is achieved
because the algorithm complexity does not increase as the
size of the swarm increases. This swarm model is used by
the author to build the parallel swarm simulation.

3.2 Parallel Simulation

Parallel algorithm design and data decomposition strategies
can be applied to increase efficiency and provide effective-
ness that could not otherwise be achieved. One distributed
processing technique is dynamic load balancing. This sec-
tion discusses these parallel concepts for a distributed sen-
sor application: swarming reconnaissance–using a swarm
of sensors to perform a wartime mission (Corner 2004).

Dividing a computational task into smaller pieces that
can be scheduled to run concurrently on multiple processors
is the key when designing parallel algorithms. This division
can be done by decomposing the data structures on which
the algorithm operates and then scheduling multiple tasks
of a computation simultaneously.

How does one determine the appropriate technique for
swarming reconnaissance? If the search space can be rep-
resented as a matrix the techniques mentioned above are
appropriate. However, if the purpose of the decomposi-
tion is applied to the swarm communications problem to
optimize the throughput and minimize the latency, then
one can consider this an optimization problem in which
exploratory decomposition is appropriate because the un-
derlying computations correspond to finding a solution in
the search space. If on the other hand one considers the
finer level detail of the simulation of the swarm network
then the problem turns into a discrete event simulation of
the packets traveling across a network topology–at which
point speculative decomposition is appropriate because the
program may take one of many possible computationally
significant branches depending on the output of other com-
putations that are predecessors. The answer depends on the
selected models to be implemented and associated model
fidelity. Ideally all of the aforementioned techniques are
applied to the swarm reconnaissance simulation.

Once the domain has been decomposed the parallel
machines can be scheduled to start solving their portion of
the problem. The idea is to balance the load evenly across all
processing elements. Scheduling these decomposed tasks
can itself be a whole new problem because of the possible
inter-dependencies within the problem domain. This results
then in a task-dependency graph also called a directed acyclic
graph (DAG). In Chapter 23 of (Buyya 1999) a description
of the scheduling problem as being an NP-complete problem
is presented as well as algorithms for the static scheduling
problem.
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An example task schedule for a reconnaissance swarm
application is decomposing the tasks into one of three types:
position updates, search strategy and bookkeeping, and sen-
sor data collection and processing.

4 IMPLEMENTATION

Commonly taught among software engineering institutions
are techniques that increase the software quality by improv-
ing code maintainability, reliability, re-usability, testability,
usability, traceability, learn-ability, and portability (Bruegge
and Dutoit 1999). Code reuse is one way to gain the most
benefit across the range of software quality measures. Sim-
ulating a swarming reconnaissance mission as shown in the
previous chapter has many complex associated models. To
write all of those models from the ground up is a task for the
individual without time constraints. Therefore, motivated
by software quality and reasonable expectations a selection
process occurred which analyzed existing software models
and simulation frameworks pertinent to this research effort,
see (Corner and Lamont 2003).

4.1 Simulator

A layered approach is determined in (Corner and Lamont
2003) where the SPEEDES parallel environment is chosen
as the lowest layer and the initial component model to build
on top is Kadrovach’s swarm behavior model (Kadrovach
2003).

4.2 Fundamental Differences

Swarm visualization can dramatically effect the validation
of a swarm model. As understanding was gained about the
implementation of the serial swarm model some questions
came to mind about the validity of the model that was
used. Can one separate the swarm behavior algorithm from
the visualization of that algorithm? No! One assumption
Kadrovach did not make is that of physically implementing
his model in a real world swarm of micro UAVs. A global
data structure would never work, but more importantly
the concept of time as implemented appears inaccurate.
Common to both a visualization system and a physical
implementation is the hard requirement that the laws of
time be maintained. When visualizing time-stepped data it
is crucial to maintain synchronization with the second hand
on the clock or else the results are skewed. Similarly, when
implementing a physical representation of a synchronized
system those interacting elements must maintain a common
clock. In both cases, the serial swarm implementation lacks
consistency. For the visualization system, assuming each
time unit is equal steps (seconds for example), then any
time-dependent movement must occur in sync with one
second. That is not the case for the serial implementation.
A simple change allows for a consistent time repre-
sentation, which is how the SPEEDES “process & proxy”
implementation models the swarm. All that is needed for
correct reporting of position time update pairs is the visibil-
ity of each position update as well as the time that it took
to perform the movement. Thus t2 is always > t1 when
a second particles receives an update based on a histori-
cal activity. After making this change, there were slightly
noticeable differences in the behavior model. The flocking
behavior showed little difference, but the swarming behav-
ior is considerably smoother (almost flocking). The quick
bursting random direction movements are now smoothed
into smaller changes in direction and their is much less
perceived acceleration. The above discussion is formed on
a basis that the swarm members make updates in a se-
rial fashion with relatively equal intervals. That does not
necessarily need to be the case.

How are each members swarm position updated in a
parallel implementation where each swarm member might
reside on a different CPU? Can the existing algorithm be
improved? The answers to these questions dramatically
affect the performance of the SPEEDES swarm application.
Below are some alternative ways to implement the position
update portion of the algorithm.

Position updates in the context of the following discus-
sion implies not only a coordinate pair, but also a heading
(direction.) Kadrovach’s original implementation of the
swarm model calculates the swarm member position up-
dates in a strictly equal time-stepped fashion, which implies
that he used a synchronous (time-based) rather than an asyn-
chronous (event-based) simulation.

A difficult part of understanding how to implement
this shift in position update time frame is understanding
how things are started. At first, one might be confused
as to how the position update occurs as it sounds like
circular reasoning; however, what must not be forgotten is
that at some discrete point in time the swarm is going to
be initialized with one member in the lead and the others
following. So the steady-state condition involves updates
continuously propagating throughout the swarm, while the
initial-state has far fewer updates that are propagated–at least
until all swarm members are deployed out of their cargo
transport or ground launch. In this way, the initial update
occurs from the swarm members who are leading. Because
the leaders of the swarm have very few (or possibly no)
visible neighbors to influence them their update cycle is more
rapid than the others. In short, from the time the UAVs are
launched until the swarm reaches a steady-state, the number
of swarm members who are communicating updates starts
with 1 and exponentially (depends on the swarm topology)
increases until all members are either publishing position
update information or calculating it.

A final alternative for the position update dilemma uses
angular information to filter what neighbors are influenc-
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ing the current particles direction. This approach can be
constructed in the SPEEDES environment by receiving po-
sition updates through a proxy for every particle in the
current particle’s neighborhood of interest. Deciding on
which neighbor to process first or to process at all can
be implemented through a filter that detects angular move-
ment. Thus neighbors that have larger angular movement
have greater influence and are considered a higher priority
when calculating a position update. A particle then has
variable influence with varying priorities resulting in non-
linear positional influence–which can be far more efficient
than a forced equal interval update pattern as currently
implemented.

For this study, a position update is synchronized at
every time step, thus the swarm’s movement is formed by
discrete updates at each time step. This is not the most
efficient choice, however, due to time constraints is the most
economical.

5 DESIGN OF EXPERIMENTS

5.1 Parallel Discrete Event Simulation Experiments

To find an efficient configuration for the SPEEDES frame-
work one can characterize the communications impact that
results from the internal communication libraries and algo-
rithms of the parallel discrete event simulation framework.
Why only characterize the communications impact? Be-
cause when changing from a serial to parallel computing
platform, the improved performance is primarily based on
the speed of the communications between processes (Grama
et al. 2003). Given a fixed network topology (cross-bar),
fixed data handling and routing (cut-through), and a fixed
protocol (TCP) the variable becomes the process communi-
cation algorithms. Using gridmanagers, proxies, and events
in the SPEEDES framework all require communications
between simulation objects–some of which are located on a
physically separate nodes, therefore the efficiency of these
built in communication algorithms is characterized.

EXPERIMENT SPEEDES-1 (S1). This experiment
expects to learn the most efficient configuration for a given
set of system parameters for a generic SPEEDES application.

EFFICIENCY. How can SPEEDES run most efficiently
on the available Beowulf system configurations? Beowulf
systems can be designed with a wide variety of parame-
ters. The parallel computing system options can include
the type of hard disk array, memory capacity (fast/slow),
cache sizes on almost every hardware component, oper-
ating system, management software/hardware, hard disk
interface, communications backplane selection, additional
specialized hardware requirements, 32/64 bit processor, pro-
cessor manufacturer, along with many additional managerial
and support related items. A detailed look at these con-
figuration details for a large scale computing application
is presented in (Corner 2003). The systems used in this
experiment were not custom designed for a parallel discrete
event simulation application, however they have a few op-
tions that can be used to configure the parallel environment
at runtime: processors per node, type of backplane, and
number of nodes.

PARALLEL CONFIGURATIONS. The configuration
variability when setting up the Beowulf system for running
the simulation combines permutations of the number of
nodes, backplane, and number of CPUs per node. For
example, the first configuration uses only 1 node with 1
CPU per node–the Ethernet backplane is not used of course.
A second configuration uses 2 nodes for the application
with 1 processor per node with the Ethernet backplane. A
variation of this second configuration is using the Myrinet
backplane.

APPLICATION. Each configuration is tested with each
SPEEDES application. The SPEEDES application used for
this experiment is a simple straight-line movement pattern
for the UAVs. The number of UAVs varies according to this
set: {10 , 20, 50, 100, 500, 1000}–which is representative
of pedagogical, medium, and larger problem sizes. No roll-
backs should occur in this application, thus the major reason
for variation is communication delays between simulation
objects.

The application is a simple simulation in which n

UAVs are moving synchronously at each simulation time
step. In addition, each UAV simulation object has a DDM
subscription to every UAV within a three unit range. This
means that if UAV 1 the x,y coordinate pair of (5, 8) that it
will detect through the DDM proxy all other UAVs within
this square (5 ± 3, 8 ± 3). Using DDM in the application
requires SPEEDES to create the gridmanagers to implement
the DDM function thus utilizing the communications to
the fullest extent. The simulation end time is set to 12
time units. That number is chosen because the amount
of communication that is occurring between the SPEEDES
applications and the number of events in the queue in
addition to those that are being processed by the SPEEDES
framework are enough to produce an acceptable “steady
state” for this research. An external module is connected
to record the movement of each UAV–this is the program
that produces the ’.swh’ history file (a binary file recording
swarm positions for every time step.)

5.2 Parallel Swarm Algorithm Experiments

PARALLEL EXPERIMENT #1 (P1). What experiments
are necessary to understand if fidelity has been maintained
or increased for the swarm simulation model? The behavior
of a swarm across the various implementations (Microsoft,
Linux, SPEEDES) is comparable only by observation of
identical behavior. It is known that the exact reproduction of
the sequence of moves is not possible even with the same
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set of parameters due to the random number generation
variants in each of the implementations. Also, SPEEDES
is not expected to produce the same sequence of moves
as the Linux version even though these implementations
are using the same random number generators because in a
distributed simulation UAVs are their own process and thus
what would have been a random number in the sequential
Linux algorithm for the 40th swarm member is now the 2nd
random number for a local process on the 8th node. The
result is that even with exact parameters the movements are
anticipated to be different on all three platforms. However,
forcing the SPEEDES implementation to behave in a serial
fashion like the Linux variant is possible. It is also possible to
temporarily remove the random number generation forcing
a fixed number instead, thereby producing identical results.

CONFIGURATION. A necessary requirement for this
test is that the randomness be removed from the swarming al-
gorithm. The programs that are tested include Kadrovach’s
original swarm movement algorithm (command line ver-
sion), the author’s Linux port, and the SPEEDES version.
The random number function that is called throughout the
algorithm is defined in the drand() function, so all three
implementations are recompiled with this function simply
returning a value of 34.03 (arbitrary choice.)

TEST SETUP. In this experiment the well formed for-
mula is a deterministic program which is a formal mathe-
matical expression represented by byte code at its lowest
level. The parameter that varies is t , the current simulation
time. The condition that needs to hold true is the value of
the program at time t on multiple platforms. Thus there are
six variants needed for this experiment: 2 for each of the 3
configurations (t = 1 and t = 89). The first is the base case,
the second is the induction step where n + 1 = 89. The
remainder of the experiment, however, can be assumed true
by the second principle of mathematical induction (Shaffer
2001).

PARALLEL EXPERIMENT #2 (P2). Accomplishing
efficiency testing with a parallelized version of a serial
program is straightforward. The simplest test is to compare
run times for identical parameters for a given variety of
parameters.

APPLICATION. The application to test the efficiency
of the parallelized version of the swarm program uses a
similar application as above only running until a steady-state
condition is reached (12 time steps). The number of UAVs
used in this application vary also according to the findings
in the first experiment indicating three transitions in the
SPEEDES framework’s performance {100, 500, 1000}.

Statistical runs are still needed because of the inconsis-
tencies when running a SPEEDES framework application
(probably due to the TCP connections and higher level
proxy connection oriented protocol). The entries in the test
matrix that have 30 statistical runs refer to running the par-
allel SPEEDES swarming application. Some entries have
only 1 run and are those running the original single-CPU
swarming application.

6 TESTING & ANALYSIS

6.1 Parallel Discrete Event Simulation Experiments

S1 ANALYSIS. The metric of interest concerning efficiency
is elapsed time. SPEEDES has a default output field that
provides the total wall time used to indicate the length of
the entire simulation. That field is specified by “wall=” in
the standard output of the end of a SPEEDES application.

Since 30 runs were performed with each of the entries
in the test matrix a box plot analysis is conducted to show
the sample median, the interquartile range (middle 50%
range of the data), and any outliers of the execution time
for the given parameter sets. Figure 2 shows this data for
1000 UAVs. What additional insight does this box plot
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Figure 2: Box Plot of Elapsed Time Data for Experiment
1 for 1000 UAVs

give? The 3 boxed numbers written parallel to the y-axis
indicate actual values of the median in the nearby box
revealing similar execution time at the lowest levels. No
one configuration stands out above the rest when comparing
median values. It does not make sense to perform speedup
calculations on the SPEEDES program itself with varying
numbers of UAVs, although that information is available.
One might ask about the outliers down near the ’0’ value.
After probing the data, these runs were not true runs.

It contains the same format of the configurations across
the bottom as in the figure above, but this time in addition to
the base UAV count (1000) for the figure, all of the remaining
UAV counts are laid over this plot to contrast the various
execution medians. The data points are the median values
of the 30 statistical runs, identical to the solid line in the
middle of the box in the box plot figure. This figure shows
a major demarcation for the SPEEDES framework when
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transitioning from hundreds to thousands of UAV objects.
Thus it can be expected that simulations involving over 1000
simulation objects that require intercommunication will take
at least 200 seconds to execute 12 simulation time units.

Probing further into the plot reveals another solid de-
marcation at 500 UAVs, however at 100 UAVs and below
the efficiency of the SPEEDES framework is relatively close
(< 5 seconds).

The final analysis of interest is finding a subset of the
configurations which are consistently more efficient. Figure
3 reveals there are certain configurations which always
take longer no matter how many UAVs are used. The
configurations with 2 processors per node are eliminated.
The remaining values are easily rank ordered by the average
normalized median values. The top three configurations
across all remaining configurations and UAV counts are
shown in Figure 4.

0

1

2

3

4

5

6

7

8

9

10

configuration

se
co

nd
s

Median Calculations Configurations vs. UAV Counts

p1
bE

u50
0 c1

un
te

st
ed

p2
bE

u50
0 c1

p1
bM

u50
0 c1

p2
bM

u50
0 c1

p1
bE

u50
0 c2

p2
bE

u50
0 c2

p1
bM

u50
0 c2

p2
bM

u50
0 c2

p1
bE

u50
0 c5

p2
bE

u50
0 c5

p1
bM

u50
0 c5

p2
bM

u50
0 c5

p1
bE

u50
0 c10

p2
bE

u50
0 c10

p1
bM

u50
0 c10

p2
bM

u50
0 c10

p1
bE

u50
0 c20

p2
bE

u50
0 c20

p1
bM

u50
0 c20

p2
bM

u50
0 c20

p1
bE

u50
0 c25

p2
bE

u50
0 c25

p1
bM

u50
0 c25

p2
bM

u50
0 c25

UAV500
r
unMat

UAV100
r
unMat

UAV50
r
unMatr

UAV20
r
unMatr

UAV10
r
unMatr

Figure 3: Median Values of Configurations vs. UAV counts
(up to 100)
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Figure 4: Average Normalized Median Values for Each Con-
figurations
6.2 Parallel Swarm Experiments

P1 ANALYSIS. Running the experiments with varying val-
ues of t results in a binary output file that must be viewed
through a visualization program. Thus the results are eval-
uated empirically. Execution of the test is simply using the
correct parameter files and command line arguments. The
output is captured for all six runs and shown in Figures 5
and 6. By observation, the output is identical for both cases
of the induction procedure, therefore it is proven that these
algorithms behave accurately for all values of t .
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Figure 5: Experiment P1 at t = 1
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Figure 6: Experiment P1 at t = 89

P2 ANALYSIS. When running this experiment, it did
not take long before it was evident that there were some
efficiency problems. The first row in the test matrix was not
the issue, however when the runs from the second row started
executing, hours had passed and the SPEEDES run with
500 UAVs was still not complete even though the original
serial implementation had finished within the first 5 minutes
of execution. After probing the output files it was clear that
a number of inefficiencies were discovered. Those items
include the number of proxy connections, number of rollback
events, and the number of events needing processed before
simulation time was allowed to advance. At that point
it was clear that the working parallel swarm SPEEDES
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implementation was not efficient enough for running larger
UAV counts (> 100 ). Further investigation is conducted
in the Analysis paragraph below.

The test was modified then to only include smaller
UAV counts (< 100 ) and rerun. The output is shown in
Figure 7. As expected, the difference in execution times is
negligible for values of 50 and under. Unexpected, however,
is the lack of speedup for the largest data set. Speedup
measures how much quicker the parallel implementation
executes the program over the serial, but as seen in this
chart any speedup calculation is less than 1, indicating no
speedup at all. The larger data runs did finish on the serial
version and the execution times are presented in Table 1.
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Figure 7: Experiment P2 Median SPEEDES Execution for
UAVs∈ {20, 50, 100} vs. Serial Execution

Table 1: Experiment P2 Serial Execution
times for UAVs ∈ {100, 500, 1000}

UAV Count Execution Time (sec-
onds)

100 4
500 198
1000 1478

An intrusive look into the SPEEDES framework is
required for understanding the reason for this inefficiency. A
preliminary investigation modified configurable SPEEDES
implementation options, re-executed the run, and found the
following:

• original unsuccessful run

– last output line after 12512 seconds of ex-
ecution averaged 1042 wall clock seconds/1
simulation second

• 2nd attempt
• CHANGE: basic SPEEDES algorithm from Breath-
ing Time Warp to Breathing Time Buckets

• THEORY: Breathing Time Buckets will always
process at least 1 event so no chance for deadlock
to occur

– last output line after 11590 seconds of execu-
tion averaged 966/1

• 3rd attempt
• CHANGE: number of processors: 5 CPUs
• THEORY: Communication is causing the simula-

tion delay, therefore with half the CPUs there is
much less needed communication

– last output line after 22237 seconds of execu-
tion; averaged 1853/1.

From these limited attempts there is no obvious solution to
improving the efficiency of processing the of the discrete
events for this swarming application. Obvious eyesores are
the millions of rollbacks that are occurring on a regular
basis. This is probably due to the optimistic processing
of future events that need rolled back because each UAV
depends on the data that has already been modified at a
future simulation time, so that n UAVs are causing rollbacks
on all other UAVs. This potentially could lead to thrashing
and even deadlock–but that is obviously not the case here.
Other attempts were made by changing the update interval
so that each UAV has a designated time slot offset by
1/numUAV s but this took longer even though it had 0
rollbacks! One other possibility is that the performance
of SPEEDES gets worse before it gets better, so that at
even higher data loads, swarming SPEEDES outperforms
the serial version. This is certainly true for data sets that
run out of available memory on 1 CPU.

7 CONCLUSIONS

Current research has not seen a parallel implementation
of a swarming system. This unique contribution is even
more pivotal because the framework upon which it is built
includes support for discrete event simulations. This allows
for quickly integrating higher fidelity or specialized support
models as needed. While speedup is not achieved with the
current implementation, it is achievable in future implemen-
tations that incorporate optimized parallel algorithms.
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