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ABSTRACT 

Ontologies represent the next important phase of the World 
Wide Web, creating a semantic web which links together 
disparate pieces of information and knowledge. Creating 
ontologies within computer simulation can be seen as a 
logical next phase of the web-based modeling and simula-
tion thrust, where the emphasis is on knowledge and its 
representation rather than on run-time network characteris-
tics. We introduce the concept of an ontology and then 
survey two groups performing research in this area at the 
Universities of Florida and Georgia, respectively. 

1 INTRODUCTION 

Web content has traditionally been created through the 
HyperText Markup Language (HTML). For example, most 
web pages, whether generated on the fly or created with a 
web page authoring tool, are structured in HTML. HTML 
tags define how text looks—the presentation of the docu-
ment, but not its underlying semantic content. Even though 
presentation languages do provide a layer of semantics, the 
semantics are focused on whether to create a bold-faced 
font or how to indent a paragraph. The knowledge con-
tained within the paragraph must be gleaned by the human 
reader of the web page, and so it becomes difficult to 
automate knowledge acquisition without a complex proce-
dure involving natural language parsing. Suppose, for in-
stance, that the web page had the following text phrase: 
“…the model contains a Markov chain of 4 states labeled 
M1, M2, M3 and M4…” It might be more productive to 
specify the structure of the Markov chain and then generate 
the text on the fly. That way, the knowledge takes center 
stage, and can be used to link to other knowledge about 
Markov chains, states, and models. 

This more productive approach is basically the goal of 
the Semantic Web (Berners-Lee et al. 2001)—to surface 
the underlying knowledge about domains and objects, 
rather than focus solely on how this knowledge is pre-
sented in the way of text or diagrams. 

 

An ontology represents a knowledge representation 

used to capture information and knowledge about a sub-
ject, generally within the structure of a semantic network, 
consisting of a diagram composed of nodes and arcs. An 
ontology may be expressed in the Extensible Markup Lan-
guage (XML), the relatively new lingua franca of the web. 
Ontologies establish a semantic foundation for models, 
systems, results, applications and markup languages that 
enhances discovery, use and interoperation. The evolving 
web ontology initiative is developing a suite of languages 
to facilitate this: RDF, RDF-S, OWL, and SWRL.  

Figure 1 illustrates a simple ontology, which relates 
various Petri Net (Fishwick 1995) models together.  

 

 
Figure 1: An Ontology for Petri Nets 

 
It specifies the following knowledge: (1) A Petri net is a 
kind of (ako) Timed Petri Net, which in turn is a kind of 
Stochastic Petri Net; (2) Each Petri Net is composed of 
Places and Transitions; and (3) One particular Petri Net is 
labeled Pnet1. While simple in structure, this knowledge 
can be used in various ways. The ontology has archival or 
educational taxonomic properties, providing categorical 
information (i.e., that Timed Petri Nets are types of Sto-
chastic Petri Nets). Also, the instance Pnet1 defines one 
specific Petri Net that may be associated with a manufac-
turing process, for example. In this latter sense, the ontol-
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ogy not only contains information on categories, but also 
serves as a kind of “database” where instances can be 
stored and retrieved. In many implementations of ontolo-
gies and knowledge-bases, there is some difference noted 
between type (or class) information and instance informa-
tion. For example, the types might create a schema defini-
tion, and the instances are stored in a tabular or database 
format. On the other hand, many of the examples of asso-
ciate networks (Findler 1979, Sowa 2000) that can be said 
to have lead to the study of semantic networks and ontolo-
gies define semantic networks that are comprised of both 
classes and instances. The question is whether one consid-
ers the knowledge to consist only of the more abstract 
categories, or whether the objects are also considered an 
integral part of the ontology. 

There are issues about ontology research which will 
need to be addressed within the simulation community.  
We mentioned one issue: What are ontologies good for? 
They can be used to store both class and instance informa-
tion about models, model types, or model structures. But, 
perhaps the more important question is how do we relate 
ontologies? People will no doubt be creating different on-
tologies, requiring some form of standardization process to 
form communities intent on sharing the knowledge. Are 
there ways to relate ontological information automatically? 
For instance, if someone else created an ontology with the 
word Petri Network instead of Petri Net for Figure 1, can a 
program with natural language processing capabilities 
compare these two and form a synergy? Can ontologies be 
used as a basis for defining model repositories? It would 
appear that they can, as long as we allow instances and 
classes to be included. 

Our purpose in this manuscript is not to answer all of 
these questions, but to begin the discussion of ontologies in 
modeling and simulation through example—briefly sur-
veying work done in two different University settings: the 
University of Florida (UF) and the University of Georgia 
(UGA). The emphasis in each laboratory is somewhat dif-
ferent since at UF, the emphasis is on capturing mostly ob-
ject or instance-based knowledge, whereas at UGA, the fo-
cus is more on the creation of a ontology for general 
stochastic models such as Markov Processes or Petri Nets. 

2 UNIVERSITY OF FLORIDA 

For the past four years, we have developed a software 
framework called RUBE. RUBE’s purpose is to provide a 
modeler with a way in which to better integrate the phe-
nomenon being modeled and the model itself (Fishwick 
2004). This integration is done using multiple visual 
modes of display (Hopkins and Fishwick 2003), allowing 
the dynamic models, as well as the phenomena, to be dis-
played in 3D. Figure 2 displays the RUBE architecture. 
Our use of ontologies within the RUBE project is 
founded on two approaches: (1) schema definitions and 
XML files for model types and model files; and (2) an 
OWL representation of a sample air reconnaissance 
scene. We proceed with these in sequence. 

RUBE begins its process with two types of interfaces: a 
2D interface using the SodiPodi tool, and a 3D one using 
Blender, which is a tool for authoring and animating 3D 
scenes. The simulation analyst builds a scene to be simu-
lated, and then builds dynamic models of that scene. The 
dynamic models are translated into MXL (Multimodel eX-
change Language) (Kim et al. 2002). MXL contains an on-
tology (or XML schema) defining certain model types and 
how they are defined. For example, a Finite State Machine 
contains an initial state, a set of states, and transitions. DXL 
(Dynamics eXchange Language) is a lower-level homoge-
neous block-model language capable of describing both syn-
chronous and asynchronous execution of block networks. As 
such, DXL networks reflect behaviors such as those found in 
digital circuits as well as more loosely connected data flow 
networks. Both MXL and DXL are XML languages. Each 
has a schema, defining the language as an ontology.  
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Figure 2: RUBE Framework, from Interface to Code Generation 
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Returning to the process defined in Figure 2, a model is 
converted into MXL and then DXL, and finally into a tar-
get language such as Java or JavaScript. This JavaScript 
code is then reinserted into the scene. This is done by first 
exporting the Blender scene into an X3D (eXtensible 3D) 
file and then defining the JavaScript in X3D script nodes. 
The final X3D scene file, intact with both geometric and 
dynamic properties, is then executed to yield the simula-
tion. In addition to the work performed in RUBE, we have 
recently started to create an ontology that attempts to bring 
all knowledge about an application domain together. Fig-
ure 3 shows a network relating elements of a scene 
(JSTARS, F15, and UAV) with the geometry and dynam-
ics of these objects; we have listed the defined styles that 
might be required during the formatting process. The idea 
here is that we can use RUBE to generate objects, which 
are then updated in the ontology. Moreover, we can add to 
the ontology manually, if necessary, to express the seman-
tic relations. We are using OWL for expressing the net-
work, and the Stanford Protégé tool (Protégé 2004) for 
 

managing the links. There is a two-way connection be-
tween Blender and Protégé so that information can be en-
tered in Protégé and then appear in Blender, and vice versa. 

3 UNIVERSITY OF GEORGIA 

This section highlights ongoing work at UGA to de-
velop a prototype ontology for discrete-event modeling and 
simulation. The prototype serves as a test bed for exploring 
issues in both ontology development and formal methods 
for simulation and modeling. Work on this prototype has 
brought to the forefront several issues  

• Finding a suitable ontology language. 
• Finding useful upper and mid-level ontologies. 
• Creating a backbone taxonomy for the ontology..  
• Choosing appropriate breadth and depth. 
• Dealing with relationships to existing XML  

dialects. 
 

Figure 3: AN Ontology Defining an Air Battle Scene with Reconnaissance and Surveillance Aircraft 
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Although ontology languages such the Knowledge In-
terchange Format (KIF) were developed in the 1990’s, the 
Semantic Web initiative has reinvigorated efforts to create 
a new ontology language which can have a wider appeal.  
KIF has the expressive power of First Order Logic (FOL) 
which enables complex concepts to be precisely described.  
The truth value of any FOL expression can be effectively 
checked (FOL is sound), but it is not possible to generate 
all true statements (FOL is incomplete).  Taken together-
FOL is said to be semi-decidable.  For the Semantic Web, 
some researchers feel that a decidable language would be 
more appropriate, since limiting the languages expressivity 
will improve its computability/tractability.  The Web On-
tology Language (OWL) was designed with this express- 
ivity/complexity trade-off in mind and comes in three fla-
vors: OWL Lite, OWL DL and OWL Full, with the first 
two being decidable.  Still some simple expressions such x 
< y or z = x + 1 as well as recursive definitions are beyond 
the capabilities of OWL.  To fill the gap, the Semantic 
Web Rule Language (SWRL) is being proposed.  The cur-
rent proposal for combining OWL with SWRL will lead to 
a semi-decidable language, although there is active re-
search ongoing to find decidable subsets that are useful 
(Bechhofer et al. 2004).  From our experience, complex 
ontologies suitable for modeling and simulation will need 
the capabilities of OWL+SWRL. 

Higher level ontologies such as upper and mid-level on-
tologies are important for the following reason.  A typical 
domain is likely to consist of upward of one hundred interre-
lated concepts.  However, the concepts in a domain such as 
modeling and simulation will be defined using concepts 
from more general, foundational fields of study such as 
mathematics and statistics.  If a modeling and simulation on-
tology is not built from these ontologies, then many con-
cepts must be defined informally using natural language.  
Fortunately, work has begun on developing general upper 
ontologies as well as ontologies for mathematics and statis-
tics. Two major initiatives for upper ontologies are the Sug-
gested Upper Merged Ontology (SUMO) and the IEEE 
Standard Upper Ontology (SUO) (Niles and Pease 2001). In 
Mathematics, the Mathematics on the Net (MONET 2004) 
project is developing an OWL ontology based on the 
OpenMath (Caprotti et al. 2002) and MathML initiatives. 

When first attempting to define an ontology in a new 
field, one may begin to feel as if they have chosen to swim 
across an ocean.  The problem is so big and it is hard to 
know where to begin.  We have cut down on the size of the 
problem by only considering discrete-event modeling and 
simulation.  One way to begin is to review existing work 
on modeling and simulation taxonomies as well as related 
formal work.  For example, several formal modeling tech-
niques discuss homeomorphisms between their techniques 
and other well known techniques. Following this approach, 
one can identify several general types of discrete-event 
models such as Simulation Event Graphs (Yucesan and 
Schruben 1992), Generalized Semi-Markov Processes 
(Glynn 1983, Haas and Shedler 1987), Extended Stochastic 
Petri Nets (Dugan et al. 1984), and Process Templates 
(Cota and Sargent 1992).  In (Miller et al. 2004) the DeMO 
ontology is discussed which uses these four types of mod-
els as roots of four model hierarchies, one for event, state, 
activity and process oriented models, respectively.  Figure 
4 is a screen-shot of part of the DeMO ontology (DeMO 
2004) using the Jambalaya plug-in for Protégé. 

 

 
Figure 4: A Portion of the DeMO Ontology 

 
The figure presents a radial view of the DeMO class 

hierarchy. The nodes represent ontology classes (concepts) 
and the edges symbolize a subclass relation. Other rela-
tions between different concepts are not shown in the pic-
ture. Clicking on the Finite-State Automata node produced 
the path from the root of the tree to the concept (i.e., Fi-
nite-State Automata is a subclass of State Automata, which 
is the subclass of Timed Automata). 

This four way design begs the question of why four and 
why these four roots.  Developing a more unified theory 
could be useful where each of the four roots in the DeMO 
ontology become a special case of one or more general 
models, so long as these more general models are not overly 
complex. Also, for clarity and historical preservation, using 
more than four roots may be a better approach. Ideally, over 
time a consensus on this issue should be developed.  

Closely related to the issue of producing the backbone 
for the ontology are issues related to breadth and depth of 
the ontology.  If an ontology is too broad and deep, it will 
be very hard to develop and maintain.  At the other ex-
treme, it will serve only a limited number of applications 
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and might be more appropriately viewed as schema speci-
fication.  The depth issue has important implications for 
automation.  Many of today’s ontologies will define con-
cepts as classes with properties, where object properties 
imply a relationship.  The definition of one concept is built 
from others.  However, the definitions of many of the con-
cepts are left to natural language.  A good example in the 
DeMO ontology is the concept of probability.  Defining 
probability formally would be a large undertaking, and bet-
ter suited from some other community to do so. 

The first part of the Semantic Web, the Extensible 
Markup Language (XML) has been well established for sev-
eral years.  XML is considered to be more semantically ori-
ented than HTML since the tags are more meaningful, at 
least to humans and to applications that are coded with a 
given set of tags in mind.  Because of this, much of what the 
OWL+SWRL ontologies will provide in the future is being 
attempted by defining dialects of XML such as the success-
ful Mathematics Markup Language (MathML) and the 
Chemical Markup Language (CML) (Carlisle et al. 
2003,Error! Hyperlink reference not valid.. These lan-
guages are formally specified using schema languages such 
as Document Type Definitions (DTD’s) or XML Schema 
Definitions (XSD’s).  Similar efforts are ongoing in model-
ing and simulation. For example, the Simulation Reference 
Markup Language (SRML) (Reichenthal 2002) defines sev-
eral tags/elements such as Script, Link, Item, EventClass, 
EventSink, Simulation, etc. SRML provides both DTD and 
XSD schemas and has been sent to the W3C for approval.  
Another example is the Extensible Modeling and Simulation 
Framework (XMSF), see (Brutzman 2004).  These XML 
dialects are a useful source of information for the creation of 
modeling and simulation ontologies. 

4 CONCLUSIONS 

This paper overviews the semantic web technology and 
highlights ongoing work at the Universities of Florida and 
Georgia related to applying Semantic Web technologies to 
Modeling and Simulation (M&S). We have performed re-
search the first level language of XML as well as some ini-
tial work at the higher levels of the Semantic Web (meta-
data with RDF and ontologies with OWL). These three lev-
els allow for the creation of XML markup sub-languages 
for modeling and simulation which facilitate data exchange 
and interoperability, annotations of simulation resources 
available on the Web using RDF and finally, the creation 
of ontologies for modeling and simulation. When the lan-
guage for the next level, SWRL providing rules, is com-
pleted, it will permit greater expressivity in ontologies as 
well as the development of rule oriented knowledge bases. 
In summary, the large-scale initiative to create the future 
Semantic Web, promises to open up and connect research 
and development groups on a Web scale and holds consid-
erable promise for the M&S community. 
There remain a number of issues of how the Semantic 
Web will affect modeling and simulation. It seems reason-
able that, just as different groups have formed their own 
modeling communities, these same groups will formalize 
their model structures using XML, RDF, or OWL, with po-
tential logical extensions with SWRL. Our community will 
require semi-automatic methods of comparing and con-
trasting, different Semantic model types, so that simply 
placing a modeling paradigm into XML serves as the first 
step in a more comprehensive process. 
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