
Proceedings of the 2004 Winter Simulation Conference
R .G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, eds.

MODELING AND SIMULATION OF HARDWARE/SOFTWARE SYSTEMS WITH CD++

Ezequiel Glinsky
Gabriel Wainer

Dept. of Systems and Computer Engineering

Carleton University
4456 Mackenzie Building

1125 Colonel By Drive
Ottawa, Ontario K1S 5B6 CANADA

ABSTRACT

Modeling and simulation (M&S) methodologies can be
useful in the development of hardware-in-the-loop applica-
tions. CD++ is a toolkit with support for real-time model
execution that implements DEVS, a sound, formal M&S
framework allowing hierarchical, modular model composi-
tion and component reuse. We present a methodology that
uses CD++ to develop hybrid hardware/software systems.
The technique enables incremental transition from the
simulated models to the actual hardware counterparts, sup-
ports experimental frameworks to facilitate testing in a
risk-free environment, encourages component reuse, and
allows developing models with different levels of abstrac-
tion. CD++ can reduce cost and time-to-market of hard-
ware-in-the-loop applications, and preserves the benefits of
a formal M&S methodology like DEVS.

1 INTRODUCTION

Modeling and simulation (M&S) have gained popularity in a
wide variety of fields ranging from biotechnology to game
design, from aerospace engineering to economics, from lo-
gistics management to fluid dynamics. Scientists and engi-
neers use M&S methodologies and tools to understand and
analyze complex phenomena under risk-free environments.
Moreover, M&S is used to develop new systems and to im-
prove existing ones in a cost-effective manner. Using a
simulated environment, it is possible to verify the correct-
ness of the system under different conditions.

The development of hardware-in-the-loop applications
is a challenging process in which M&S can become essen-
tial. These applications are inherently complex as a result
of the high degree of interaction between software and
hardware components. Since different parts of the system
are often deployed in parallel and therefore are not avail-
able, it is difficult to perform thorough testing in early
stages of the development process. Development teams

face delays waiting for components to be ready, affecting
the time-to-market of the application.

We present a methodology to use M&S with hard-
ware-in-the-loop applications. This approach combines the
advantages of a simulation-based approach with the rigour
of a formal methodology. DEVS (Discrete EVents Systems
specifications) (Zeigler, Kim, and Praehofer 2000) is a for-
mal foundation to M&S, proved to be successful in a wide
range of complex systems.

CD++ (Wainer 2002) is a M&S software that imple-
ments DEVS theory with extensions to support real-time
model execution (Glinsky and Wainer 2002a). CD++ was
used as the base for our development, building on previous
research focused on real-time applications with hardware-
in-the-loop (Li, Pearce, and Wainer 2003).

We will explain how to use this framework to seam-
lessly integrate simulation models with hardware compo-
nents. Initially, we develop models entirely in CD++, and
we replace them incrementally with hardware surrogates at
later stages of the process. Thus, it is possible to make the
transition in incremental steps, incorporating models in the
target environment with hardware-software components
after thorough testing in the simulated platform. The use of
this methodology shortens the development cycle and re-
duces its cost.

Our approach does not impose any order in the de-
ployment of the actual hardware components, providing
flexibility to the overall process. The use of DEVS im-
proves reliability (in terms of logical correctness and tim-
ing), enables model reuse, and permits reducing develop-
ment and testing times for the overall process.

2 BACKGROUND

The DEVS (Discrete EVents Systems specifications) for-
malism (Zeigler, Kim, and Praehofer 2000) is a M&S
framework based on systems theory. DEVS has well-
defined concepts for coupling of components and hierar-

Glinsky and Wainer

chical, modular model composition. DEVS defines a com-
plex model as a composite of basic components (called
atomic), which can be hierarchically integrated into cou-
pled models. A DEVS atomic model is described as:

M = < X, S, Y, δint, δext, λ, ta >

where X is the set of input events, S is the set of discrete
states, Y is the set of output events, δint is the internal tran-
sition function, δext is the external transition function, λ is
the output function, and ta is the time advance function.
Every state is associated with a lifetime, which is defined
by the time advance function. When an event receives an
input event, the external transition function is triggered.
This function uses the input event, the current state and the
time elapsed since the last event in order to determine
which is the next model’s state. If no events occur before
the time specified by the time advance function for that
state, the model activates the output function (providing
outputs), and changes to a new state determined by the in-
ternal transition function.

A DEVS coupled model is defined as:

CM = < I, X, Y, D, {Mi}, {Ii}, {Zij} >

where X is the set of input events, and Y is the set of output
events. D is an index of components, and for each i ∈ D,
Mi is a basic DEVS model (atomic or coupled). Ii is the set
of influencees of model i. For each j ∈ Ii, Zij is the i to j
translation function.

A coupled model is composed by a set of basic models
(i.e., atomic or coupled) interconnected through their inter-
faces. The translation function, Zij, converts the outputs of
a model into inputs for others using I/O ports. An index of
influencees is created for each model (Ii), determining the
destination models for the outputs. This index is used to
connect outputs in model Mi are connected with inputs in
the model Mj (for each j in Ii). The formalism is closed un-
der coupling, therefore, coupled and atomic models are se-
mantically equivalent, which enables model reuse.

DEVS models can be executed by an abstract mecha-
nism that is independent from the model itself. As a result of
this explicit separation of concerns between modeling and
simulation, it is possible to verify each layer independently.
DEVS also permits defining independent experimental
frames for the model, that is, a set of conditions under which
the system is observed or experimented with. Experimental
frames formulate the objectives that motivate the project
(Zeigler, Kim, and Praehofer 2000). Within the conditions
imposed by an experimental frame, the modeler observes the
behaviour of the system and determines its correctness.

CD++ (Wainer 2002) is a M&S toolkit that
implements DEVS theory. Atomic models can be defined
using a state-based approach (coded in C++ or an
interpreted graphical notation). The toolkit has been used
to model and simulate a wide variety of applications, such
as urban traffic, robot path planning, and computer
architectures (Wainer 2002).

Figure 1 shows the definition of an atomic model that
represents the behaviour of an Ethernet switch using CD++.

EthernetSwitch::EthernetSwitch
(const string &name) : Atomic(name),
in1(addInputPort("in1")),
in2(addInputPort("in2")),
in3(addInputPort("in3")),
enable(addInputPort("enable")),
disable(addInputPort("disable")),
out1(addOutputPort("out1")), ... , { }

Model &EthernetSwitch::externalFunction
(const ExternalMessage &msg) {

 if ((state() == passive) &&
 ((msg.port() == in1) && (enabled1 == 1)) ||
 ((msg.port() == in2) && (enabled2 == 1)) ||
 ((msg.port() == in3) && (enabled3 == 1))) {
 request = msg.value();
 request_waiting = 1;
 holdIn (active, delay);
 }

 if ((state() == passive) &&
 (msg.port() == disable)) {
 if (msg.value() == 1) enabled1 = 0;
 if (msg.value() == 2) enabled2 = 0;
 if (msg.value() == 3) enabled3 = 0;
 request_waiting = 0;
 holdIn (active, delay);
 }

 if ((state() == passive) &&
 (msg.port() == enable)) {
 if (msg.value() == 1) enabled1 = 1;
 ...
 holdIn (active, delay);
 }

}

Model &EthernetSwitch::internalFunction
(const InternalMessage &msg) {

 request_ready = 0;
 passivate();
 return *this ;

}

Model &EthernetSwitch::outputFunction
(const InternalMessage &msg) {

 if (request_ready == 1) {
 if ((request == node_1) && (hab1 == 1))
 sendOutput(msg.time(), out1, request) ;

 if ((request == node_2) && (hab2 == 1))
 sendOutput(msg.time(), out2, request) ;
 ...

}

Figure 1: Specification of EthernetSwitch in CD++

Glinsky and Wainer

Most of the logic of the EthernetSwitch is located in the
external transition (δext). This function determines what to do
with the incoming packets. External events arriving via the
input ports in1, in2, and in3 represent packets received from
the network, whereas enable and disable are used to indicate
which ports are working. The next internal event (δint) is
scheduled by the holdIn method, which implements the time
advance function (ta). For example, if an event is received
via in2 and the port is enabled (enabled2), the model stores
the value received and schedules an internal transition.
When the time indicated by the variable delay expires, the
output function (λ) notices that there is a request ready and
directs the output to the corresponding port, according to the
value previously received (i.e., request). Enabling and
disabling ports do not generate any output. The internal
transition function clears the request_ready flag and
passivates the model (i.e., sets the next internal transition
time to infinity).

CD++ also enables the user to define coupled models
by using a built-in specification language that follows
DEVS formal specifications. Once an atomic model is de-
fined (as in Figure 1), it can be integrated into a coupled
model as the one presented in Figure 2.

components: server1 server2
components: client eth@EthernetSwitch
in: eth_enable eth_disable
in: hss1_start hss1_stop hss2_start hss2_stop
...
out: packets status
link: server_out@serv1 in1@eth
link: out1@eth server_in@serv1
link: server_out@serv2 in2@eth
link: out2@eth server_in@serv2
...

[eth]
delay: 00:00:01:000
node_1: 1 node_2: 2 node_3: 3

[client]
components: WSclient clientNet@Network com-
ponents: hsclient@HSClient
in: hs_start hs_stop client_in
out: client_out
link: hs_start start@hsclient
...
[WSclient]
components: selclient@Selector display@Display
...
[server1]
components: WSserv1 s1Net@Network
components: hsserv1@HSServer PDBserv1
components: drvserv1@Driver
...

Figure 2: Specification of a Coupled Model in CD++

The top model here is composed of three coupled

models (server1, server2, and client) and one atomic
component (eth, an instance of EthernetSwitch). client is
composed by two atomic components (clientNet and
hsclient) and one coupled component (WSclient). The
input and output ports define the model’s interface, and
the links between components define the model’s
coupling. The input ports in the top model (e.g.,
eth_enable, eth_disable, hss1_start) are used to activate
and deactivate the Ethernet switch, server nodes, and
client. The output ports (e.g., status, packets) are used to
inform the progress in the system.

Models developed in CD++ are independent from the
engine in charge of driving their execution. At present,
CD++ is able to execute models in single processor,
parallel or real-time mode. The execution engine uses
model’s specifications, and it builds one object to control
each component in the model hierarchy. These objects
communicate using message passing, and they are called
processors. There are different types of processors
according to the activity they carry out: simulators are
specialized in atomic models (executing its associated
functions), coordinators manage coupled models, and the
root coordinator controls global execution aspects (time,
start/stop, interfacing with the environment, etc.).

RT-CD++ (Glinsky and Wainer 2002a) uses the real-
time clock to trigger the processing of discrete events in
the system. Figure 3 outlines the processor’s hierarchy
generated by RT-CD++ to execute the model presented in
Figure 2. The root coordinator created at the top level
manages the interaction with the experimental frame that
tests the model receiving inputs (via eth_enable,
eth_disable, hss1_start, etc.), and returns outputs (via
status and packets). The root coordinator exchanges mes-
sages with its children. Coordinators are created to handle
the coupled models server1, server2, client, etc. Simulators
are created to handle the components eth (which inherits
from the atomic EthernetSwitch), clientNet (from atomic
Network), hsclient (from atomic HSClient), drvserv1 (from
atomic Driver), etc.

root coordinator

System simulated
in RT-CD++

External events
(eth_enable, eth_disable,

hss1_start, etc.)

Outputs
(packets,
status)

Wall-
Clock

server1: coordinator eth: simulator

in1, in2, in3

...

out1, out2

...

externalFunction()
internalFunction()
outputFunction()

drvserv1: simulator

externalFunction()
internalFunction()
outputFunction()

Figure 3: RT-CD++ Simulation Scheme

Glinsky and Wainer

Model execution is triggered by the real-time clock us-
ing the time of the external events. When the root coordi-
nator receives a new event, it forwards the message to the
corresponding processor. Timing constraints (deadlines)
can be associated to each external event. When the pro-
cessing of an event is completed, the root coordinator
checks if the deadline has been met. In this way, we can
obtain performance metrics (number of missed deadlines,
worst-case response time).

We thoroughly tested the execution performance of
RT-CD++ (Glinsky and Wainer 2002a). These studies
showed that models with more than 50 components exe-
cute with an overhead below 2%. For larger models (over
200 components), the overhead incurred by the tool is be-
low 3%. We have used RT-CD++ to build simulations
hardware-in-the-loop (Li, Pearce, and Wainer 2003), creat-
ing a model of the CODEC of an Analog Devices 2189M
EZ-KITLITE DSP board. Different tests showed the feasi-
bility of the approach, as we were able to reproduce simu-
lated results in the real-time environment. Nevertheless,
when building components on the board, some of the exist-
ing models needed some rework (due to the use of Analog
Devices’ IDE that was in charge of the communications
between CD++ and the hardware surrogate). These prob-
lems were solved by incorporating communication be-
tween facilities into CD++, permitting direct communica-
tion with the toolkit and external hardware. In the
following section, we will show how to use CD++ to de-
velop a hardware-in-the-loop application. The experiments
evolve from a simulated model running in a workstation to
a microcontroller-based application. We have used the Mo-
torola 68HC12 board, with a project board (including var-
ied sensors and actuators).

3 AN AUTOMATED FACTORY MODEL

We built an automated manufacturing system (AMS) with
both hardware and simulated components. The proposed
AMS is composed by dedicated stations that perform tasks
on products being assembled, and conveyors that transport
the products to/from those workstations.

Figure 4 shows the physical layout of our AMS, which
consists of four stations and two conveyor belts to trans-
port the products (A and B). The production cycle is organ-
ized by a scheduler, which depends on the type of piece
being assembled. The scheduler determines which station
(e.g., painting machine, baking machine, storing station)
should receive and work on the product.

We started by modeling the entire system in CD++
based on the previous layout. The system is composed by
two coupled components (conveyors), and three atomic
components (a controller system, a scheduler, and a display
controller). Each conveyor is formed by two atomic mod-
els (an engine and a sensor controller). Component reuse is
an essential aim of our approach. In the development of the

Conveyor A Conveyor B

Station
1

Station
2

Station
3

Station
4

B

A

Figure 4: Layout of the AMS

AMS, we reused a controller unit that was implemented for
an elevator control system. We also reused a prototype of a
painting station, which paints pieces placed on its working
area following a predefined sequence (e.g., heat the paint at
80ºC, activate a motor at 50 RPS).

Scheduler

Controller
Unit

Display Controller

Conveyor_A

Engine

Sensor
Controller

status_conveyor_A
status_conveyor_B

Conveyor_B

Engine

Sensor
Controller

Figure 5: Scheme of the AMS (entirely in CD++)

The sensor controller is an atomic model, defined as

shown in Figure 1. It receives events from the environ-
ment, and forwards them to the controller unit (CU), re-
sembling the real components of the system. The display
controller handles the digital display (showing the location
of the piece in each conveyor belt), based on the signals
received from the controller unit. The controller receives

Glinsky and Wainer

input signals from sensors and the scheduler, and deter-
mines where to dispatch each piece activating the engines
of the conveyor belts. The scheduler stores information
about which stations have to work on a specific product.
Figure 6 shows the CU of the AMS.

Controller

Unit

station_1A

sensor_1A

sensor_2A

sensor_3A

sensor_4A

station_display_A

direction_A

activate_A

station_2A

station_3A

station_4A

station_1B

station_2B

station_3B

station_4B

sensor_1B

sensor_2B

sensor_3B

sensor_4B

direction_display_A

station_display_B

direction_B

activate_B

direction_display_B

Figure 6: Diagram of the Controller Unit

Most of the logic of the CU is located in the external

transition function, which handles the incoming events.
Events received via ports station_ij are sent by the
scheduler, and represent that the product in conveyor belt j
has to be sent to station i. Events received via sensor_ij
indicate that the product in conveyor j has reached station
i. Thus, the controller can schedule the next internal
transition function to activate or deactivate the engine of
the corresponding conveyor (via direction_j and
activate_j). It can also signal the display controller when
the conveyor belt starts moving or a product reaches a new
station (via direction_display_j and station_display_j).
Users can define the activation time for the engine,
customizing its timing behaviour.

Different experimental frames were applied to this
model, allowing the analysis of different scenarios. We
started by analyzing the behaviour of each submodel inde-
pendently (using the specifications for their physical coun-
terparts) and then, we conducted integration tests. Figure 7
shows a sample event file for one of such experiments.

Time Deadline In-port Out-Port Value
00:09:100 00:09:300 sta_3A activate_A 1
00:12:500 00:12:700 sensor_2A sta_disp_A 1
00:17:500 00:17:700 sensor_3A sta_disp_A 1
00:35:100 00:35:300 sta_4B activate_B 1
00:30:000 00:30:200 sensor_2B sta_disp_B 1
00:34:100 00:34:300 sensor_3B sta_disp_B 1
...

Figure 7: Experimental Frame for the AMS Controller Unit
Initially, a piece is placed in station 1 of each con-
veyor belt and there are no pending events. The first event
represents a job scheduled for product A in station 3. The
event occurs at time 00:09:100, and the simulator receives
it via input port sta_3A. As a result, we expect to turn on
the conveyor belt in less than 200 ms to transport the prod-
uct. The second event in the list represents the activation of
sensor_2A (i.e., the product in belt A has reached the sec-
ond station). In this case, we expect an output via port
sta_disp_A before 00:12:700, informing the arrival of the
product to that station. The value of 1 represents activation
of sensors and scheduling of tasks in stations. Figure 8
shows the outputs generated by the real-time simulator for
this experiment.

Time Deadline Out-port Value
00:09:110 direction_A 1
00:09:110 00:09:300 activate_A 1
00:12:510 00:12:700 sta_disp_A 2
00:17:510 00:17:700 sta_disp_A 3
00:17:510 direction_A 0
00:35:110 direction_B 1
00:35:110 00:35:300 activate_B 1
...

Figure 8: Outputs Generated by the AMS Controller Unit

As we can see, the deadlines were met in every case.

For example, the first event met its deadline, activating the
engine of conveyor belt A at time 00:09:110 in the correct
direction (the value 1 via port direction_A indicates that
the belt will move forward). The third output is the result
of activating the sensor at the second station in belt A, and
the following one represents the product reaching the third
station at time 00:17:510. The fifth line shows that the
conveyor belt has stopped after product A has reached sta-
tion 3. The last two lines show the initial activity that gen-
erates scheduling a job in station 4 for product B.

We used different experimental frames to thoroughly
test this model, and once satisfied with its behaviour, we
progressively started to replace simulated components with
their hardware counterparts. The first step was to replace the
scheduler model, and to execute it on the microcontroller, as
shown in Figure 9. The microcontroller generates the events
to the simulated model, indicating that a product has to be
sent to a station. The rest of the components remain un-
changed from the architecture described in Figure 5.

Figure 10 shows the CD++ coupled model specifica-
tion for this version of the system.

The components for the top model follow the architec-
ture in Figure 9. Here, conveyor_A and conveyor_B are
coupled components, whereas cu and dis are atomic. The-
top model input ports are used to receive events from the
scheduler now running in the external board. Replacing a
CD++ component with its counterpart running in the ex-
ternal devices is straightforward, since the model is not
changed (an option in the executable engine will establish

Glinsky and Wainer

Scheduler

RT-CD++

Microcontroller

sta_1A, sta_2A, sta_3A, sta_4A
sta_1B, sta_2B, sta_3B, sta_4B

Controller
Unit

Display Controller

Conveyor_A

Engine

Sensor
Controller

status_conveyor_A
status_conveyor_B

Conveyor_B

Engine

Sensor
Controller

Figure 9: Scheduler in Hardware

components: conveyor_A conveyor_B scheduler
 cu@CU dis@Display
in : sta_1A sta_2A sta_3A sta_4A
in : sta_1B sta_2B sta_3B sta_4B
out : status_conv_A
out : status_conv_B
link : sta_1A sta_1A@cu
link : sta_2A sta_2A@cu
...
link : sensor_1@conveyor_A sensor_1@cu
link : sensor_2@elevBox sensor_2@ec
...
link : dir_display_A@cu dir_display_A@dis
link : status_conv_A@cu status_conv_A@dis
link : dir_display_B@cu dir_display_B@dis
link : status_conv_B@cu status_conv_B@dis
...
[conveyor_A]
components: sb@SensorController eng@Engine
in : activate direction
out : sensor_1 sensor_2 sensor_3 sensor_4
link : activate activate@eng
link : direction direction@eng
link : sensor_1@sb sensor_1
...
link : current_pos@eng sensor_triggered@sb
...
[conveyor_B]
components: sb@SensorController eng@Engine
...

Figure 10: CD++ Model: Scheduler in Hardware

that the scheduler is running in an external device). Like-
wise, testing this model only requires reusing the previously
defined experimental frames. As the scheduler model was
built using the hardware specifications for the actual system,
and the interfaces of the submodels do not change, the tran-
sition is transparent. Figure 11 shows the output of a sample
execution of this model. The results obtained are the same as
before, regardless of the use of a hardware surrogate.

Time Out-port Value
00:08:170 status_conv_A 2
00:19:540 status_conv_A 3
00:30:130 status_conv_B 2
00:35:140 status_conv_B 3
00:40:150 status_conv_B 4
...

Figure 11: Outputs for Example Shown in Figure 10

In this case, events generated by the scheduler running

on the experimental board are sent to CD++. These events
trigger the same activities in the model as in the simulated
environment (e.g., activating the conveyor engines,
displaying the direction of the conveyor belt). In the previous
figure, status_conv_A and status_conv_B show that the
products in both belts are transported to the corresponding
stations, similarly to what was shown in Figure 10.

After conducting extensive tests, we also moved the
display controller to the microcontroller. The value dis-
played on the digital display (which is informed by the
model running in CD++), represents the current station for
each product. The display controller and the scheduler
were combined in a single application following the previ-
ous model specifications. The resulting configuration is
shown in Figure 12.

Scheduler

RT-CD++

Microcontroller
sta_1A, sta_2A,
sta_3A, sta_4A,
sta_1B, sta_2B,
sta_3B, sta_4B

Controller
Unit

Display Controller

Conveyor_A

Engine

Sensor
Controller

status_conv_A
status_conv_B

Conveyor_B

Engine

Sensor
Controller

Figure 12: Scheduler and Display Controller in Hardware

Glinsky and Wainer

By simply activating the simulation engine specifying

that the display controller is running in a hardware
surrogate, we are able to execute the new application
without any modifications.

Every time the models activates the output ports
status_conv_A and status_conv_B in Figure 10, the display
controller on the board is activated, showing on the LCD
the current location of each product. The following event
log was obtained as a result of scheduling jobs in stations
(3, 1, 2) for product A and stations (2, 4, 3) for product B,
with both pieces located initially on the first station.

The first two lines of the following figure show the
product in conveyor A moving from the first to the third sta-
tion. The third line shows the product in conveyor B moving
to station 2 at time 00:34:390. After station 3 finished its
work on product A, the product reaches to station 1 at time
01:15:170. Product B reaches station 4 at 01:26:170, which
corresponds to the second job scheduled for it.

Time Out-port Value
00:27:410 status_conv_A 2
00:33:180 status_conv_A 3
00:34:390 status_conv_B 2
01:10:690 status_conv_A 2
01:15:170 status_conv_A 1
01:21:110 status_conv_B 3
01:26:170 status_conv_B 4
...

Figure 13: Outputs for Example Shown in Figure 12

When the external display controller receives new

data, it displays the value (i.e., the current position of the
product in that belt) on the LCD display, and then waits for
more data.

The final step was to implement the complete AMS on
the microcontroller. Figure 14 shows the scheme for this
experimental frame, in which only the engines are still
simulated in CD++.

The model does not require any modification, and the
model executing in the microcontroller feeds the input
ports activate_in and direction_in in Figure 10.

Figure 15 shows the events generated by the model
running in the microcontroller, which represents setting the
direction, activation and deactivation of the conveyor belt
engines A and B.

Figure 16 shows the activation and deactivation of the
belts when the requests are received, which is the result of
the activity in the microcontroller. The values issued by the
port result_A and result_B represent that the belt is acti-
vated to move forward (1), reverse (2), or deactivated (0).

4 CONCLUSION

The development of M&S applications with hardware-in-
the-loop can be significantly beneficiated by using a formal
technique like DEVS. In this work, we showed how to use
CD++ to develop a sample application in which we incorpo-

Scheduler

RT-CD++

Microcontroller

Controller
Unit

Display Controller

Engine
(Conveyor_A)

Sensor
Controller
(Conveyor_A)

Sensor
Controller
(Conveyor_B)

Engine
(Conveyor_B)

activate_A
direction_A

activate_B
direction_B

result_A result_B

Figure 14: Controller Unit Implemented in Hardware

Time Port Value
00:06:120 direction_A 1
00:06:130 activate_A 1
00:15:930 activate_A 0
00:56:800 direction_B 2
00:56:810 activate_B 1
01:01:130 activate_B 0
01:22:710 direction_B 2
01:22:720 activate_B 1
...

Figure 15: Event Log Generated by the Engines Model

Time Out-port Value
00:06:130 result_A 1
00:15:930 result_A 0
00:56:810 result_B 2
01:01:130 result_B 0
01:22:720 result_B 2
...

Figure 16: Outputs for the Model in Figure 14

rated hardware components gradually as the components be
came available. Our technique enables a flexible approach to
develop embedded applications, which is particularly useful
when some of the components are being developed simulta-
neously and therefore are not available yet.

Experimental frameworks allowed us to analyze the
model execution in a simulated environment, checking the
model’s behaviour and timing constraints within a risk-free
environment. The simulation results were then used in the
development of the actual application, permitting develop-
ers to validate their systems and subsystems at every stage
of the process.

The time required to develop models in RT-CD++ is a
major concern, given that time-to-market is generally a
crucial factor. The development of an atomic component

Glinsky and Wainer

with medium complexity like the EthernetNetwork
required approximately 30 minutes for an experienced
CD++ developer (or 2.5 hours to a developer who is new
to CD++ but familiar with C++). Developing a coupled
component like the conveyor presented in Figure 5
required approximately 2 hours for an advanced CD++
developer (or 5 hours to a new developer). Additionally,
the integration of hardware components into the system
was straightforward. The transition from simulated models
to the actual hardware counterparts can be incremental,
incorporating deployed models into the framework when
they are ready. Testing and maintenance phases are highly
improved due to the use of a formal approach like DEVS
for modeling. DEVS provides a sound methodology for
developing discrete-event applications, which can be easily
applied to improve the development of real-time embedded
applications. These advantages include secure, reliable
testing, model reuse, and the possibility of analyzing
different levels of abstraction in the system. Model
execution is automatically verifiable, as the execution
processors are built following the formal specifications of
DEVS. DEVS bibliography shows how to build execution
engines that enable mimicking the model’s behaviour in a
homomorphic formalism. Hence, the developer only needs
to focus on the model under development.

Relying on experimental frameworks facilitates testing
in a cost-effective manner, allowing users to build and re-
use test frames for each submodel of the system. Since the
DEVS formalism is closed under coupling, models can be
decomposed in simpler versions, always obtaining equiva-
lent behaviour. Finally, the semantics of models are not
tied to particular interpretations, thus existing models can
be reused. Likewise, model’s functions can be reused by
just associating them with new models as needed. For in-
stance, we are now building an extension to the examples
presented here that will handle 10 conveyors and 20 sta-
tions. Extending the model here presented requires modify-
ing only the external transition function in the CU, and de-
fining a new coupled model including the new stations,
while keeping the remaining methods unchanged.

REFERENCES

Glinsky, E. and G. Wainer. 2002a. Definition of Real-Time
simulation in the CD++ toolkit. In Proceedings of the
2002 Summer Computer Simulation Conference. San
Diego, USA.

Glinsky, E. and G. Wainer. 2002b. Performance Analysis
of Real-Time DEVS Models. In Proceedings of the
2002 Winter Simulation Conference. Eds. E. Yücesan,
C. –H. Chen, J. L. Snowdon, and J. M. Charnes. San
Diego, USA. 588-594.

Li, L., T. Pearce, and G. Wainer. 2003. Interfacing Real-
Time DEVS models with a DSP platform. In Pro-
ceedings of the Industrial Simulation Symposium.
Valencia, Spain.

Wainer, G. 2002. CD++: a toolkit to develop DEVS models.
Software - Practice and Experience. 32: 1261-1306.

Zeigler, B., T. Kim, and H. Praehofer. 2000. Theory of
Modeling and Simulation: Integrating Discrete Event
and Continuous Complex Dynamic Systems. (2nd Edi-
tion.) Academic Press.

AUTHOR BIOGRAPHIES

EZEQUIEL GLINSKY has received a B. Sc. (2000) and
M. Sc. in Computer Sciences (2002) from the Universidad
de Buenos Aires, Argentina. He is currently a second year
Masters student in Electrical Engineering at the Depart-
ment of Systems and Computer Engineering in Carleton
University, Ottawa, ON, Canada. His e-mail address is
<eglinsky@sce.carleton.ca>.

GABRIEL WAINER received the M.Sc. (1993) and
Ph.D. degrees (1998, with highest honors) of the Universi-
dad de Buenos Aires, Argentina, and Université d’Aix-
Marseille III, France. He is Assistant Professor in the Dept.
of Systems and Computer Engineering, Carleton Univer-
sity. He was a visiting research scholar at the University of
Arizona and LSIS, CNRS, France. He is author of a book
on real-time systems and another on Discrete-Event simu-
lation and more than 90 research articles. He is Associate
Editor of the Transactions of the SCS. He has been the PI
of several research projects, and participated in different
international research programs. Prof. Wainer is a member
of the Board of Directors and the chair of the SISO DEVS
standardization study group. His e-mail and we addresses
are <gwainer@sce.carleton.ca> and <www.sce.
carleton.ca/faculty/wainer>.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 198
	02: 199
	03: 200
	04: 201
	05: 202
	06: 203
	07: 204
	08: 205

