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ABSTRACT 

Modeling and simulation (M&S) methodologies can be 
useful in the development of hardware-in-the-loop applica-
tions. CD++ is a toolkit with support for real-time model 
execution that implements DEVS, a sound, formal M&S 
framework allowing hierarchical, modular model composi-
tion and component reuse. We present a methodology that 
uses CD++ to develop hybrid hardware/software systems. 
The technique enables incremental transition from the 
simulated models to the actual hardware counterparts, sup-
ports experimental frameworks to facilitate testing in a 
risk-free environment, encourages component reuse, and 
allows developing models with different levels of abstrac-
tion. CD++ can reduce cost and time-to-market of hard-
ware-in-the-loop applications, and preserves the benefits of 
a formal M&S methodology like DEVS. 

1 INTRODUCTION 

Modeling and simulation (M&S) have gained popularity in a 
wide variety of fields ranging from biotechnology to game 
design, from aerospace engineering to economics, from lo-
gistics management to fluid dynamics. Scientists and engi-
neers use M&S methodologies and tools to understand and 
analyze complex phenomena under risk-free environments. 
Moreover, M&S is used to develop new systems and to im-
prove existing ones in a cost-effective manner. Using a 
simulated environment, it is possible to verify the correct-
ness of the system under different conditions. 

The development of hardware-in-the-loop applications 
is a challenging process in which M&S can become essen-
tial. These applications are inherently complex as a result 
of the high degree of interaction between software and 
hardware components. Since different parts of the system 
are often deployed in parallel and therefore are not avail-
able, it is difficult to perform thorough testing in early 
stages of the development process. Development teams 

 

face delays waiting for components to be ready, affecting 
the time-to-market of the application. 

We present a methodology to use M&S with hard-
ware-in-the-loop applications. This approach combines the 
advantages of a simulation-based approach with the rigour 
of a formal methodology. DEVS (Discrete EVents Systems 
specifications) (Zeigler, Kim, and Praehofer 2000) is a for-
mal foundation to M&S, proved to be successful in a wide 
range of complex systems.  

CD++ (Wainer 2002) is a M&S software that imple-
ments DEVS theory with extensions to support real-time 
model execution (Glinsky and Wainer 2002a). CD++ was 
used as the base for our development, building on previous 
research focused on real-time applications with hardware-
in-the-loop (Li, Pearce, and Wainer 2003). 

We will explain how to use this framework to seam-
lessly integrate simulation models with hardware compo-
nents. Initially, we develop models entirely in CD++, and 
we replace them incrementally with hardware surrogates at 
later stages of the process. Thus, it is possible to make the 
transition in incremental steps, incorporating models in the 
target environment with hardware-software components 
after thorough testing in the simulated platform. The use of 
this methodology shortens the development cycle and re-
duces its cost. 

Our approach does not impose any order in the de-
ployment of the actual hardware components, providing 
flexibility to the overall process. The use of DEVS im-
proves reliability (in terms of logical correctness and tim-
ing), enables model reuse, and permits reducing develop-
ment and testing times for the overall process. 

2 BACKGROUND 

The DEVS (Discrete EVents Systems specifications) for-
malism (Zeigler, Kim, and Praehofer 2000) is a M&S 
framework based on systems theory. DEVS has well-
defined concepts for coupling of components and hierar-
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chical, modular model composition. DEVS defines a com-
plex model as a composite of basic components (called 
atomic), which can be hierarchically integrated into cou-
pled models. A DEVS atomic model is described as: 

 
M = < X, S, Y, δint, δext, λ, ta > 

 
where X is the set of input events, S is the set of discrete 
states, Y is the set of output events, δint is the internal tran-
sition function, δext is the external transition function, λ is 
the output function, and ta is the time advance function. 
Every state is associated with a lifetime, which is defined 
by the time advance function. When an event receives an 
input event, the external transition function is triggered. 
This function uses the input event, the current state and the 
time elapsed since the last event in order to determine 
which is the next model’s state. If no events occur before 
the time specified by the time advance function for that 
state, the model activates the output function (providing 
outputs), and changes to a new state determined by the in-
ternal transition function. 

A DEVS coupled model is defined as: 
 

CM = < I, X, Y, D, {Mi}, {Ii}, {Zij} > 
 
where X is the set of input events, and Y is the set of output 
events. D is an index of components, and for each i ∈ D, 
Mi is a basic DEVS model (atomic or coupled). Ii is the set 
of influencees of model i. For each j ∈ Ii, Zij is the i to j 
translation function.  

A coupled model is composed by a set of basic models 
(i.e., atomic or coupled) interconnected through their inter-
faces. The translation function, Zij, converts the outputs of 
a model into inputs for others using I/O ports. An index of 
influencees is created for each model (Ii), determining the 
destination models for the outputs. This index is used to 
connect outputs in model Mi are connected with inputs in 
the model Mj (for each j in Ii). The formalism is closed un-
der coupling, therefore, coupled and atomic models are se-
mantically equivalent, which enables model reuse. 

DEVS models can be executed by an abstract mecha-
nism that is independent from the model itself. As a result of 
this explicit separation of concerns between modeling and 
simulation, it is possible to verify each layer independently. 
DEVS also permits defining independent experimental 
frames for the model, that is, a set of conditions under which 
the system is observed or experimented with. Experimental 
frames formulate the objectives that motivate the project 
(Zeigler, Kim, and Praehofer 2000). Within the conditions 
imposed by an experimental frame, the modeler observes the 
behaviour of the system and determines its correctness. 

CD++ (Wainer 2002) is a M&S toolkit that 
implements DEVS theory. Atomic models can be defined 
using a state-based approach (coded in C++ or an 
interpreted graphical notation). The toolkit has been used 
to model and simulate a wide variety of applications, such 
as urban traffic, robot path planning, and computer 
architectures (Wainer 2002). 

Figure 1 shows the definition of an atomic model that 
represents the behaviour of an Ethernet switch using CD++. 
 
EthernetSwitch::EthernetSwitch  
( const string &name ) : Atomic( name ),  
in1( addInputPort( "in1" ) ), 
in2( addInputPort( "in2" ) ), 
in3( addInputPort( "in3" ) ),  
enable( addInputPort( "enable" ) ), 
disable( addInputPort( "disable" ) ), 
out1( addOutputPort( "out1" ) ), ... , { } 
 
Model &EthernetSwitch::externalFunction 
( const ExternalMessage &msg ) { 
 
  if ( (state() == passive) && 
  ((msg.port() == in1) && (enabled1 == 1)) || 
  ((msg.port() == in2) && (enabled2 == 1)) || 
  ((msg.port() == in3) && (enabled3 == 1)) ) { 
    request = msg.value(); 
    request_waiting = 1; 
    holdIn (active, delay); 
  } 
 
  if ( (state() == passive) && 
  (msg.port() == disable) )   { 
    if ( msg.value() == 1 ) enabled1 = 0; 
    if ( msg.value() == 2 ) enabled2 = 0; 
    if ( msg.value() == 3 ) enabled3 = 0; 
    request_waiting = 0; 
    holdIn (active, delay); 
  } 
 
  if ( (state() == passive) && 
      (msg.port() == enable) )  {  
    if ( msg.value() == 1 ) enabled1 = 1; 
    ... 
    holdIn (active, delay); 
  } 
 
} 
 
Model &EthernetSwitch::internalFunction 
( const InternalMessage &msg ) { 
 
  request_ready = 0; 
  passivate(); 
  return *this ; 
 
} 
 
Model &EthernetSwitch::outputFunction 
( const InternalMessage &msg ) { 
 
  if (request_ready == 1)   {  
    if (( request == node_1 ) && ( hab1 == 1 )) 
      sendOutput( msg.time(), out1, request ) ; 
 
    if ((request == node_2 ) && ( hab2 == 1 )) 
      sendOutput( msg.time(), out2, request ) ; 
  ... 
 
} 

Figure 1: Specification of EthernetSwitch in CD++ 
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Most of the logic of the EthernetSwitch is located in the 
external transition (δext). This function determines what to do 
with the incoming packets. External events arriving via the 
input ports in1, in2, and in3 represent packets received from 
the network, whereas enable and disable are used to indicate 
which ports are working. The next internal event (δint) is 
scheduled by the holdIn method, which implements the time 
advance function (ta). For example, if an event is received 
via in2 and the port is enabled (enabled2), the model stores 
the value received and schedules an internal transition. 
When the time indicated by the variable delay expires, the 
output function (λ) notices that there is a request ready and 
directs the output to the corresponding port, according to the 
value previously received (i.e., request). Enabling and 
disabling ports do not generate any output. The internal 
transition function clears the request_ready flag and 
passivates the model (i.e., sets the next internal transition 
time to infinity). 

CD++ also enables the user to define coupled models 
by using a built-in specification language that follows 
DEVS formal specifications. Once an atomic model is de-
fined (as in Figure 1), it can be integrated into a coupled 
model as the one presented in Figure 2. 

 
components:  server1   server2  
components:  client    eth@EthernetSwitch 
in:  eth_enable  eth_disable 
in: hss1_start  hss1_stop  hss2_start hss2_stop 
... 
out: packets     status 
link: server_out@serv1   in1@eth 
link: out1@eth        server_in@serv1 
link: server_out@serv2   in2@eth 
link: out2@eth        server_in@serv2 
... 
 
[eth] 
delay:  00:00:01:000 
node_1: 1      node_2: 2      node_3: 3 
 
[client] 
components: WSclient   clientNet@Network   com-
ponents: hsclient@HSClient 
in:   hs_start    hs_stop   client_in 
out:  client_out 
link: hs_start    start@hsclient 
... 
[WSclient] 
components: selclient@Selector  display@Display 
... 
[server1] 
components: WSserv1           s1Net@Network   
components: hsserv1@HSServer  PDBserv1 
components: drvserv1@Driver 
... 

Figure 2: Specification of a Coupled Model in CD++ 
 
The top model here is composed of three coupled 

models (server1, server2, and client) and one atomic 
component (eth, an instance of EthernetSwitch). client is 
composed by two atomic components (clientNet and 
hsclient) and one coupled component (WSclient). The 
input and output ports define the model’s interface, and 
the links between components define the model’s 
coupling. The input ports in the top model (e.g., 
eth_enable, eth_disable, hss1_start) are used to activate 
and deactivate the Ethernet switch, server nodes, and 
client. The output ports (e.g., status, packets) are used to 
inform the progress in the system. 

Models developed in CD++ are independent from the 
engine in charge of driving their execution. At present, 
CD++ is able to execute models in single processor, 
parallel or real-time mode. The execution engine uses 
model’s specifications, and it builds one object to control 
each component in the model hierarchy. These objects 
communicate using message passing, and they are called 
processors. There are different types of processors 
according to the activity they carry out: simulators are 
specialized in atomic models (executing its associated 
functions), coordinators manage coupled models, and the 
root coordinator controls global execution aspects (time, 
start/stop, interfacing with the environment, etc.).  

RT-CD++ (Glinsky and Wainer 2002a) uses the real-
time clock to trigger the processing of discrete events in 
the system. Figure 3 outlines the processor’s hierarchy 
generated by RT-CD++ to execute the model presented in 
Figure 2. The root coordinator created at the top level 
manages the interaction with the experimental frame that 
tests the model receiving inputs (via eth_enable, 
eth_disable, hss1_start, etc.), and returns outputs (via 
status and packets). The root coordinator exchanges mes-
sages with its children. Coordinators are created to handle 
the coupled models server1, server2, client, etc. Simulators 
are created to handle the components eth (which inherits 
from the atomic EthernetSwitch), clientNet (from atomic 
Network), hsclient (from atomic HSClient), drvserv1 (from 
atomic Driver), etc. 

 

root coordinator 

System simulated 
in RT-CD++ 

External events 
(eth_enable, eth_disable, 

hss1_start, etc.) 

Outputs 
(packets, 
status) 

Wall-
Clock 

server1: coordinator eth: simulator 

in1, in2, in3

...

out1, out2 

... 

externalFunction() 
internalFunction() 
outputFunction() 

drvserv1: simulator

externalFunction() 
internalFunction() 
outputFunction() 

 
Figure 3: RT-CD++ Simulation Scheme 



Glinsky and Wainer 

 

Model execution is triggered by the real-time clock us-
ing the time of the external events. When the root coordi-
nator receives a new event, it forwards the message to the 
corresponding processor. Timing constraints (deadlines) 
can be associated to each external event. When the pro-
cessing of an event is completed, the root coordinator 
checks if the deadline has been met. In this way, we can 
obtain performance metrics (number of missed deadlines, 
worst-case response time).  

We thoroughly tested the execution performance of 
RT-CD++ (Glinsky and Wainer 2002a). These studies 
showed that models with more than 50 components exe-
cute with an overhead below 2%. For larger models (over 
200 components), the overhead incurred by the tool is be-
low 3%. We have used RT-CD++ to build simulations 
hardware-in-the-loop (Li, Pearce, and Wainer 2003), creat-
ing a model of the CODEC of an Analog Devices 2189M 
EZ-KITLITE DSP board. Different tests showed the feasi-
bility of the approach, as we were able to reproduce simu-
lated results in the real-time environment. Nevertheless, 
when building components on the board, some of the exist-
ing models needed some rework (due to the use of Analog 
Devices’ IDE that was in charge of the communications 
between CD++ and the hardware surrogate). These prob-
lems were solved by incorporating communication be-
tween facilities into CD++, permitting direct communica-
tion with the toolkit and external hardware. In the 
following section, we will show how to use CD++ to de-
velop a hardware-in-the-loop application. The experiments 
evolve from a simulated model running in a workstation to 
a microcontroller-based application. We have used the Mo-
torola 68HC12 board, with a project board (including var-
ied sensors and actuators). 

3 AN AUTOMATED FACTORY MODEL 

We built an automated manufacturing system (AMS) with 
both hardware and simulated components. The proposed 
AMS is composed by dedicated stations that perform tasks 
on products being assembled, and conveyors that transport 
the products to/from those workstations.  

Figure 4 shows the physical layout of our AMS, which 
consists of four stations and two conveyor belts to trans-
port the products (A and B). The production cycle is organ-
ized by a scheduler, which depends on the type of piece 
being assembled. The scheduler determines which station 
(e.g., painting machine, baking machine, storing station) 
should receive and work on the product. 

We started by modeling the entire system in CD++ 
based on the previous layout. The system is composed by 
two coupled components (conveyors), and three atomic 
components (a controller system, a scheduler, and a display 
controller). Each conveyor is formed by two atomic mod-
els (an engine and a sensor controller). Component reuse is 
an essential aim of our approach. In the development of the 
 

Conveyor A Conveyor B

Station 
1 

Station 
2 

Station 
3 

Station 
4 

B

A

 
Figure 4: Layout of the AMS 

 
AMS, we reused a controller unit that was implemented for 
an elevator control system. We also reused a prototype of a 
painting station, which paints pieces placed on its working 
area following a predefined sequence (e.g., heat the paint at 
80ºC, activate a motor at 50 RPS). 
 

 

Scheduler

 
 

Controller 
Unit 

Display Controller

Conveyor_A

Engine

Sensor 
Controller 

status_conveyor_A 
status_conveyor_B 

Conveyor_B

Engine

Sensor 
Controller 

 
Figure 5: Scheme of the AMS (entirely in CD++) 
 
The sensor controller is an atomic model, defined as 

shown in Figure 1. It receives events from the environ-
ment, and forwards them to the controller unit (CU), re-
sembling the real components of the system. The display 
controller handles the digital display (showing the location 
of the piece in each conveyor belt), based on the signals 
received from the controller unit. The controller receives 
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input signals from sensors and the scheduler, and deter-
mines where to dispatch each piece activating the engines 
of the conveyor belts. The scheduler stores information 
about which stations have to work on a specific product. 
Figure 6 shows the CU of the AMS. 

 
  

 
 
 
 
 
 

 
Controller 

Unit 

station_1A 

sensor_1A 

sensor_2A 

sensor_3A 

sensor_4A 

station_display_A

direction_A 

activate_A 

station_2A 

station_3A 

station_4A 

station_1B 

station_2B 

station_3B 

station_4B 

sensor_1B 

sensor_2B 

sensor_3B 

sensor_4B 

direction_display_A

station_display_B

direction_B 

activate_B 

direction_display_B

 
Figure 6: Diagram of the Controller Unit 

 
Most of the logic of the CU is located in the external 

transition function, which handles the incoming events. 
Events received via ports station_ij are sent by the 
scheduler, and represent that the product in conveyor belt j 
has to be sent to station i. Events received via sensor_ij 
indicate that the product in conveyor j has reached station 
i. Thus, the controller can schedule the next internal 
transition function to activate or deactivate the engine of 
the corresponding conveyor (via direction_j and 
activate_j). It can also signal the display controller when 
the conveyor belt starts moving or a product reaches a new 
station (via direction_display_j and station_display_j). 
Users can define the activation time for the engine, 
customizing its timing behaviour. 

Different experimental frames were applied to this 
model, allowing the analysis of different scenarios. We 
started by analyzing the behaviour of each submodel inde-
pendently (using the specifications for their physical coun-
terparts) and then, we conducted integration tests. Figure 7 
shows a sample event file for one of such experiments. 

 
Time     Deadline   In-port    Out-Port   Value 
00:09:100 00:09:300  sta_3A     activate_A   1 
00:12:500 00:12:700  sensor_2A  sta_disp_A   1 
00:17:500 00:17:700  sensor_3A  sta_disp_A   1 
00:35:100 00:35:300  sta_4B     activate_B   1 
00:30:000 00:30:200  sensor_2B  sta_disp_B   1 
00:34:100 00:34:300  sensor_3B  sta_disp_B   1 
... 
 

Figure 7: Experimental Frame for the AMS Controller Unit 
Initially, a piece is placed in station 1 of each con-
veyor belt and there are no pending events. The first event 
represents a job scheduled for product A in station 3. The 
event occurs at time 00:09:100, and the simulator receives 
it via input port sta_3A. As a result, we expect to turn on 
the conveyor belt in less than 200 ms to transport the prod-
uct. The second event in the list represents the activation of 
sensor_2A (i.e., the product in belt A has reached the sec-
ond station). In this case, we expect an output via port 
sta_disp_A before 00:12:700, informing the arrival of the 
product to that station. The value of 1 represents activation 
of sensors and scheduling of tasks in stations. Figure 8 
shows the outputs generated by the real-time simulator for 
this experiment. 

 
Time        Deadline     Out-port       Value 
00:09:110                direction_A      1 
00:09:110   00:09:300    activate_A       1 
00:12:510   00:12:700    sta_disp_A       2 
00:17:510   00:17:700    sta_disp_A       3 
00:17:510                direction_A      0 
00:35:110                direction_B      1 
00:35:110   00:35:300    activate_B       1 
... 
 

Figure 8: Outputs Generated by the AMS Controller Unit 
 
As we can see, the deadlines were met in every case. 

For example, the first event met its deadline, activating the 
engine of conveyor belt A at time 00:09:110 in the correct 
direction (the value 1 via port direction_A indicates that 
the belt will move forward). The third output is the result 
of activating the sensor at the second station in belt A, and 
the following one represents the product reaching the third 
station at time 00:17:510. The fifth line shows that the 
conveyor belt has stopped after product A has reached sta-
tion 3. The last two lines show the initial activity that gen-
erates scheduling a job in station 4 for product B. 

We used different experimental frames to thoroughly 
test this model, and once satisfied with its behaviour, we 
progressively started to replace simulated components with 
their hardware counterparts. The first step was to replace the 
scheduler model, and to execute it on the microcontroller, as 
shown in Figure 9. The microcontroller generates the events 
to the simulated model, indicating that a product has to be 
sent to a station. The rest of the components remain un-
changed from the architecture described in Figure 5. 

Figure 10 shows the CD++ coupled model specifica-
tion for this version of the system. 

The components for the top model follow the architec-
ture in Figure 9. Here, conveyor_A and conveyor_B are 
coupled components, whereas cu and dis are atomic. The-
top model input ports are used to receive events from the 
scheduler now running in the external board. Replacing a 
CD++ component with its counterpart running in the ex-
ternal devices is straightforward, since the model is not 
changed (an option in the executable engine will establish 
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Scheduler  

RT-CD++ 

Microcontroller 

sta_1A, sta_2A, sta_3A, sta_4A 
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Controller 
Unit 

Display Controller 

Conveyor_A 
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Sensor 
Controller 

status_conveyor_A 
status_conveyor_B 

Conveyor_B 

Engine 

Sensor 
Controller 

 
Figure 9: Scheduler in Hardware 

 
components:  conveyor_A  conveyor_B scheduler 
             cu@CU       dis@Display 
in   : sta_1A    sta_2A    sta_3A    sta_4A   
in   : sta_1B    sta_2B    sta_3B    sta_4B   
out  : status_conv_A    
out  : status_conv_B 
link : sta_1A    sta_1A@cu 
link : sta_2A    sta_2A@cu 
... 
link : sensor_1@conveyor_A   sensor_1@cu 
link : sensor_2@elevBox sensor_2@ec 
... 
link : dir_display_A@cu    dir_display_A@dis 
link : status_conv_A@cu    status_conv_A@dis 
link : dir_display_B@cu    dir_display_B@dis 
link : status_conv_B@cu    status_conv_B@dis 
... 
[conveyor_A] 
components:  sb@SensorController   eng@Engine 
in   : activate  direction 
out  : sensor_1 sensor_2 sensor_3 sensor_4 
link : activate    activate@eng 
link : direction   direction@eng 
link : sensor_1@sb sensor_1 
... 
link : current_pos@eng sensor_triggered@sb 
... 
[conveyor_B] 
components:  sb@SensorController   eng@Engine 
... 

Figure 10: CD++ Model: Scheduler in Hardware 
 

that the scheduler is running in an external device). Like-
wise, testing this model only requires reusing the previously 
defined experimental frames. As the scheduler model was 
built using the hardware specifications for the actual system, 
and the interfaces of the submodels do not change, the tran-
sition is transparent. Figure 11 shows the output of a sample 
execution of this model. The results obtained are the same as 
before, regardless of the use of a hardware surrogate. 

 
Time           Out-port           Value 
00:08:170    status_conv_A     2 
00:19:540    status_conv_A      3 
00:30:130    status_conv_B      2 
00:35:140    status_conv_B     3 
00:40:150    status_conv_B      4 
... 

Figure 11: Outputs for Example Shown in Figure 10 
 
In this case, events generated by the scheduler running 

on the experimental board are sent to CD++. These events 
trigger the same activities in the model as in the simulated 
environment (e.g., activating the conveyor engines, 
displaying the direction of the conveyor belt). In the previous 
figure, status_conv_A and status_conv_B show that the 
products in both belts are transported to the corresponding 
stations, similarly to what was shown in Figure 10. 

After conducting extensive tests, we also moved the 
display controller to the microcontroller. The value dis-
played on the digital display (which is informed by the 
model running in CD++), represents the current station for 
each product. The display controller and the scheduler 
were combined in a single application following the previ-
ous model specifications. The resulting configuration is 
shown in Figure 12. 

 
Scheduler 

RT-CD++ 

Microcontroller 
sta_1A, sta_2A, 
sta_3A, sta_4A,
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Controller 
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Conveyor_B

Engine

Sensor 
Controller 

 
Figure 12: Scheduler and Display Controller in Hardware 
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By simply activating the simulation engine specifying 

that the display controller is running in a hardware 
surrogate, we are able to execute the new application 
without any modifications. 

Every time the models activates the output ports 
status_conv_A and status_conv_B in Figure 10, the display 
controller on the board is activated, showing on the LCD 
the current location of each product. The following event 
log was obtained as a result of scheduling jobs in stations 
(3, 1, 2) for product A and stations (2, 4, 3) for product B, 
with both pieces located initially on the first station. 

The first two lines of the following figure show the 
product in conveyor A moving from the first to the third sta-
tion. The third line shows the product in conveyor B moving 
to station 2 at time 00:34:390. After station 3 finished its 
work on product A, the product reaches to station 1 at time 
01:15:170. Product B reaches station 4 at 01:26:170, which 
corresponds to the second job scheduled for it. 

 
Time           Out-port           Value 
00:27:410    status_conv_A          2 
00:33:180    status_conv_A          3 
00:34:390    status_conv_B          2 
01:10:690    status_conv_A           2 
01:15:170    status_conv_A          1 
01:21:110    status_conv_B          3 
01:26:170    status_conv_B          4 
... 

Figure 13: Outputs for Example Shown in Figure 12 
 
When the external display controller receives new 

data, it displays the value (i.e., the current position of the 
product in that belt) on the LCD display, and then waits for 
more data. 

The final step was to implement the complete AMS on 
the microcontroller. Figure 14 shows the scheme for this 
experimental frame, in which only the engines are still 
simulated in CD++. 

The model does not require any modification, and the 
model executing in the microcontroller feeds the input 
ports activate_in and direction_in in Figure 10. 

Figure 15 shows the events generated by the model 
running in the microcontroller, which represents setting the 
direction, activation and deactivation of the conveyor belt 
engines A and B. 

Figure 16 shows the activation and deactivation of the 
belts when the requests are received, which is the result of 
the activity in the microcontroller. The values issued by the 
port result_A and result_B represent that the belt is acti-
vated to move forward (1), reverse (2), or deactivated (0). 

4 CONCLUSION 

The development of M&S applications with hardware-in-
the-loop can be significantly beneficiated by using a formal 
technique like DEVS. In this work, we showed how to use 
CD++ to develop a sample application in which we incorpo- 
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Figure 14: Controller Unit Implemented in Hardware 
 

Time           Port          Value 
00:06:120  direction_A      1 
00:06:130  activate_A      1 
00:15:930  activate_A      0 
00:56:800  direction_B      2 
00:56:810  activate_B      1 
01:01:130  activate_B      0 
01:22:710  direction_B      2 
01:22:720  activate_B      1 
... 

Figure 15: Event Log Generated by the Engines Model 
 

Time           Out-port          Value 
00:06:130    result_A            1 
00:15:930    result_A           0 
00:56:810    result_B          2 
01:01:130    result_B           0 
01:22:720    result_B           2 
... 

Figure 16: Outputs for the Model in Figure 14 
 

rated hardware components gradually as the components be 
came available. Our technique enables a flexible approach to 
develop embedded applications, which is particularly useful 
when some of the components are being developed simulta-
neously and therefore are not available yet. 

Experimental frameworks allowed us to analyze the 
model execution in a simulated environment, checking the 
model’s behaviour and timing constraints within a risk-free 
environment. The simulation results were then used in the 
development of the actual application, permitting develop-
ers to validate their systems and subsystems at every stage 
of the process. 

The time required to develop models in RT-CD++ is a 
major concern, given that time-to-market is generally a 
crucial factor. The development of an atomic component 
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with medium complexity like the EthernetNetwork 
required approximately 30 minutes for an experienced 
CD++ developer (or 2.5 hours to a developer who is new 
to CD++ but familiar with C++). Developing a coupled 
component like the conveyor presented in Figure 5 
required approximately 2 hours for an advanced CD++ 
developer (or 5 hours to a new developer). Additionally, 
the integration of hardware components into the system 
was straightforward. The transition from simulated models 
to the actual hardware counterparts can be incremental, 
incorporating deployed models into the framework when 
they are ready. Testing and maintenance phases are highly 
improved due to the use of a formal approach like DEVS 
for modeling. DEVS provides a sound methodology for 
developing discrete-event applications, which can be easily 
applied to improve the development of real-time embedded 
applications. These advantages include secure, reliable 
testing, model reuse, and the possibility of analyzing 
different levels of abstraction in the system. Model 
execution is automatically verifiable, as the execution 
processors are built following the formal specifications of 
DEVS. DEVS bibliography shows how to build execution 
engines that enable mimicking the model’s behaviour in a 
homomorphic formalism. Hence, the developer only needs 
to focus on the model under development.  

Relying on experimental frameworks facilitates testing 
in a cost-effective manner, allowing users to build and re-
use test frames for each submodel of the system. Since the 
DEVS formalism is closed under coupling, models can be 
decomposed in simpler versions, always obtaining equiva-
lent behaviour. Finally, the semantics of models are not 
tied to particular interpretations, thus existing models can 
be reused. Likewise, model’s functions can be reused by 
just associating them with new models as needed. For in-
stance, we are now building an extension to the examples 
presented here that will handle 10 conveyors and 20 sta-
tions. Extending the model here presented requires modify-
ing only the external transition function in the CU, and de-
fining a new coupled model including the new stations, 
while keeping the remaining methods unchanged. 

REFERENCES 

Glinsky, E. and G. Wainer. 2002a. Definition of Real-Time 
simulation in the CD++ toolkit. In Proceedings of the 
2002 Summer Computer Simulation Conference. San 
Diego, USA.  

Glinsky, E. and G. Wainer. 2002b. Performance Analysis 
of Real-Time DEVS Models. In Proceedings of the 
2002 Winter Simulation Conference. Eds. E. Yücesan, 
C. –H. Chen, J. L. Snowdon, and J. M. Charnes. San 
Diego, USA. 588-594. 

Li, L., T. Pearce, and G. Wainer. 2003. Interfacing Real-
Time DEVS models with a DSP platform. In Pro-
ceedings of the Industrial Simulation Symposium. 
Valencia, Spain. 

Wainer, G. 2002. CD++: a toolkit to develop DEVS models. 
Software - Practice and Experience. 32: 1261-1306. 

Zeigler, B., T. Kim, and H. Praehofer. 2000. Theory of 
Modeling and Simulation: Integrating Discrete Event 
and Continuous Complex Dynamic Systems. (2nd Edi-
tion.) Academic Press. 

AUTHOR BIOGRAPHIES 

EZEQUIEL GLINSKY has received a B. Sc. (2000) and 
M. Sc. in Computer Sciences (2002) from the Universidad 
de Buenos Aires, Argentina. He is currently a second year 
Masters student in Electrical Engineering at the Depart-
ment of Systems and Computer Engineering in Carleton 
University, Ottawa, ON, Canada. His e-mail address is 
<eglinsky@sce.carleton.ca>. 

GABRIEL WAINER received the M.Sc. (1993) and 
Ph.D. degrees (1998, with highest honors) of the Universi-
dad de Buenos Aires, Argentina, and Université d’Aix-
Marseille III, France. He is Assistant Professor in the Dept. 
of Systems and Computer Engineering, Carleton Univer-
sity. He was a visiting research scholar at the University of 
Arizona and LSIS, CNRS, France. He is author of a book 
on real-time systems and another on Discrete-Event simu-
lation and more than 90 research articles. He is Associate 
Editor of the Transactions of the SCS. He has been the PI 
of several research projects, and participated in different 
international research programs. Prof. Wainer is a member 
of the Board of Directors and the chair of the SISO DEVS 
standardization study group. His e-mail and we addresses 
are <gwainer@sce.carleton.ca> and <www.sce. 
carleton.ca/faculty/wainer>. 


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	01: 198
	02: 199
	03: 200
	04: 201
	05: 202
	06: 203
	07: 204
	08: 205


