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ABSTRACT

We study the problem of approximating a subgradient of
a convex (or concave) discrete function that is evaluated
via simulation. This problem arises, for instance, in opti-
mization problems such as finding the minimal cost staff
schedule in a call center subject to a service level constrain
There, subgradient information can be used to significantly
reduce the search space. The problem of approximatin
subgradients is closely related to the one of approximating
gradients and we suggest and compare how three exis
ing methods for computing gradients via simulation, i.e.,
finite differences, the likelihood ratio method and infinites-
imal perturbation analysis, can be applied to approximate
subgradients when the variables are discrete. We provid
a computational study to highlight the properties of each
approach.

1 INTRODUCTION

Simulation is becoming an increasingly popular tool for
optimization of complex systems. There are several dif-
ferent approaches to simulation optimization available (Fu
2002). Some of these are developed from classical gradien
based optimization techniques. For problems with non
differentiable functions one cannot use gradients. An alter
native for convex non-differentiable functions is to compute
subgradients and use them in place of gradients.

A subgradient of a convex function at a particular point
is a normal vector to a hyperplane that passes through th
corresponding point on the graph on the function and lies
below the function graph everywhere else. The set of al
subgradients at a point is called the subdifferential at the
point. For convex functions the subdifferential is non-empty
at all points. If the function is differentiable at a point then
the gradient is the unique subgradient at that point. Although
convexity and subgradients are only defined for functions
with a continuous domain, we can still use the subgradie
in the above sense for discrete functions.

Discrete functions arise naturally in many optimizatio
problems. One such problem, and the one that motivates
discussion, is the problem of scheduling agents (employe
in an inbound call center over a specific planning horizo
(e.g., a week) at the lowest cost possible while at the sa
time maintaining a minimum level of service. We conside
a somewhat simplified version of the real world problem
for the purpose of developing the theory. We assume,
instance, that there is an unlimited number of trunk lines, o
customer class, one type of agent and no abandonments.
call load typically varies throughout the planning horizo
and therefore it is desirable to vary the number of agen
accordingly. To do that we divide the planning horizon int
smaller periods (e.g., 30 minutes in duration) and fix th
number of agents in each period.

There is an extensive literature on staffing problem
in call centers (Mandelbaum 2003). In many cases it
reasonable to model the call center using a queuing model
which an analytic expression for the service level functio
exists. For call centers that cannot be adequately analy
in this way, simulation is a useful and popular tool. If th
staffing level (number of agents) in one period does n
affect the service level in other periods then it is relative
easy (given a mathematical model of the call center)
determine (or estimate) the number of agents required
each period to maintain a minimum level of service. It i
possible, however, that the “best” staffing level based
this simplification of the call center is either suboptimal, o
results in an unsatisfactory service level. This can occ
in particular, if the service times are relatively long with
respect to the length of a period, or if there is great variabili
in the call load (Green, Kolesar, and Soares 2001). Th
makes an analytic approach using queuing models even
adequate, whereas a simulation model can encompass s
interdependency between periods.
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The difficulty with using simulation to solve this prob-
lem is that the number of alternatives can be very larg
A cutting plane optimization algorithm (Atlason, Epelman
and Henderson 2003) counters this problem in an attem
to explore only a few alternatives en route to finding th
optimal number of agents in each period. We start b
formulating a linear integer program (IP) that excludes th
service level constraints. The decision variables in the IP a
the numbers of agents on each shift. The shift patterns
predetermined including constraints such as meal brea
and a linear function is given that maps the number of age
assigned to each shift to the number of agents in each peri
We solve the IP to obtain the lowest cost staffing level. W
use a simulation model to evaluate the service level in a
periods. If the service level is satisfactory we conclude th
the current staffing level is optimal. Otherwise, we compu
a (sub)gradient of the service level function and use it
create a new constraint (cut) in the IP. We re-solve the
and repeat the process until we find an optimal solutio
or conclude that no solution is feasible. We use commo
random numbers for each simulation, so in fact the servi
level function is a sample average approximation (SAA
(see Kleywegt, Shapiro, and Homem-de-Mello (2001) fo
more detail on the SAA method).

The algorithm is guaranteed to converge to an optim
solution if one exists and if the service level constraints for
a convex set. A common measure for level of service, a
the one we use, is the percentage of calls that do not have
wait longer than a certain amount of time. It is reasonab
to assume, at least for a range of staffing levels, that t
service level increases with diminishing marginal return
as the number of agents increases, which suggests that
service level function is concave. Then the minimum servic
level constraint forms a convex set in the number of agents
each period. See Atlason, Epelman, and Henderson (20
for additional discussion and references.

In this paper we discuss what is perhaps the most ch
lenging part of the algorithm described above: Computatio
of the (sub)gradients of the SAA of the service level func
tion. The service level function is a discrete function of th
number of agents, so a gradient does not exist. In additio
we do not have a closed form expression of the function

The problem of estimating gradients via simulation ha
received considerable attention over the past fifteen yea
Among the most prominent approaches are the method
finite differences (FD), the likelihood ratio method (LR)
(also called the score function method) and infinitesim
perturbation analysis (IPA). We study each of the FD, L
and IPA in an attempt to obtain a subgradient of the SA
service level function. We explore the advantages a
disadvantages of each method for this particular problem

The remainder of the paper is organized as follow
We formulate the subgradient approximation problem
Section 2, the FD method is discussed in Section 3, the L
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method in Section 4 and IPA in Section 5. We include a
computational study to further enhance the comparison in
Section 6 and provide concluding remarks in Section 7.

2 SUBGRADIENT APPROXIMATION PROBLEM

In this section we study the service level function in more
detail. Let p be the number of periods in the planning
horizon and lety ∈ Zp be the vector whoseith component
denotes the number of agents in periodi. Let ξ , a random
vector, denote all the random quantities in the problem, i.e.
the interarrival and service times in one planning horizon,
and let ξ1, . . . , ξn denote independent realizations ofξ .
The service level in each periodi is the fraction of calls
received in that period answered within a certain amount
of time τ . Therefore, there is one service level function for
each period and the problem is to approximate a subgradien
for each service level function. Fortunately, the value of
the service level functions for particular staffing levels can
be estimated for all periods simultaneously from a single
simulation.

For an arbitrary period letN(ξ) be the number of calls
received in that period and letS(y, ξ) be the number of
those calls answered on time. The fraction of customers
receiving adequate service in this period in the long run is
then

lim
n→∞

∑n
d=1 S(y, ξ

d)∑n
d=1N(ξ

d)
= limn→∞ n−1∑n

d=1 S(y, ξ
d)

limn→∞ n−1
∑n
d=1N(ξ

d)
.

If E[N(ξ)] <∞ then the strong law of large numbers can
be applied separately to both the numerator and denominato
of this expression, and then the desired long-run ratio is
E[S(y, ξ)]/E[N(ξ)]. Thus,

E[S(y, ξ)]
E[N(ξ)] (1)

is a natural representation of the service level function
(excluding the pathological caseE[N(ξ)] = 0).

Note that the denominator in (1) does not depend
on y, so the service level function has the same prop-
erties asE[S(y, ξ)], the expected number of calls re-
ceived in the period that are answered within timeτ .
The SAA of s(y) ≡ E[S(y, ξ)] with sample sizen
is s̄(y; n) ≡ n−1∑n

d=1 S(y, ξ
d). Given the realizations

ξ1, . . . , ξn, s̄(y; n) is a deterministic function ofy. In the
cutting plane algorithm we computēs(y; n) via simulation
and also need a subgradient ofs̄(y; n).

Under the assumption thats(y) is a concave function of
y it is also reasonable to assume thats̄(y; n) is concave in
y, at least when the sample size,n, is large. Thus, at every
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point y∗ there exists a subgradientq(y∗) (some may prefer
the term “supergradient” for a concave function) such th

s̄(y; n) ≤ s̄(y∗; n)+ q(y∗)T (y − y∗)

holds for anyy andy∗ in the range that̄s(y; n) is concave.
The problem is therefore to compute such a vectorq(y∗)
for a giveny∗.

The finite difference method works directly with the
discrete function̄s(y; n). For IPA and LR to work we must
first approximates̄(y; n) with a function of a continuous
variable rather than the discrete variabley. For this problem,
and queuing problems in general, a natural candidate i
function of the service rates in each period. When w
use the service rates as the variables instead of the staf
levels we get a new function. The good news is that the
are numerous studies that compare performance meas
of queuing systems having the same total service rate
different number of servers. The most relevant results c
be found in Chao and Scott (2000).

Let the service rate in periodi be equal toµi and let
µ = (µ1, . . . , µp). In the original problemµ1 = . . . = µp.
Let r(µ; y) be the service level function as a function o
the ratesµ at staffing levely and lets(y;µ) be the original
service level function with the service ratesµ.

The functionsr and s are indeed the same function
We choose to represent it as two functions to make cle
the distinction that in the original problem we are intereste
in the service level as a function of the number of agentsy

for a fixed service rate vectorµ, but to estimate a gradient
we work with the service level as a function of the servic
rateµ for a fixed staffing levely. When we estimate the
gradient at different staffing levels we are in fact workin
with a new functionr(µ; y) parameterized by the staffing
levely. By definitionr(µ; y) = s(y;µ) but, as an example,
r(2µ; y) 6= s(2y;µ) in general, so even if the functions
agree for identical service rates and staffing levels then
effect of increasing the total service rate (µiyi) in each
period by changing the service rates is not the same
when the same change is accomplished by changing
staffing levels.

Suppose that we add one agent in periodi. The effect
of that is to increase the total service rate in periodi by µi .
If on the other hand we increase the service rate in per
i by 1 then the total service rate in that period increases
yi . This suggests that

s(y + ei;µ)− s(y;µ) ≈ µi

yi

∂r(µ; y)
∂µi

, (2)

whereei is the ith unit vector inRp. We can use this ap-
proximation and simulation gradient estimation techniqu
to approximate the subgradient ofs̄(y; n).
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In Section 4 we study how to estimate∂r(µ; y)/∂µi
with the LR method and in Section 5 we use IPA. In the
next section we compute

s̄(y + 1; n,µ)− s̄(y + ei; n,µ) for i = 1, . . . , p (3)

and discuss the properties of (3) as a potential subgradie
for s̄(y; n,µ) at y.

3 FINITE DIFFERENCES

The simplest and perhaps the most intuitive method fo
estimating a gradient (or subgradient) when an expressi
for the function is unknown is by the method of finite
differences. The FD method can easily be extended
discrete functions. There is a price to pay, however, for th
ease of implementation. The number of simulations to g
one gradient estimate is rather large and this method c
fail to produce a subgradient even under rather stringe
conditions on the service level function.

To estimate the partial derivative with respect to a
continuous variable the function is evaluated at two differen
points. Then an estimate of the derivative at a value
or between these two values can be estimated by line
interpolation. When the variable is integer, as in the staffin
problem, then the smallest difference between the two poin
is one.

Let q̄(y∗) be an estimate of a subgradientq(y∗) of
s̄(y; n) at y∗. The finite forward difference estimator ofq
at y∗ is given by

q̄i (y
∗) = s̄(y + ei; n)− s̄(y; n)

for i = 1, . . . , p. As we can see this estimator is easy
to implement. To estimate the subgradient at the staffin
level y, given s̄(y; n), simply runp simulations with the
number of agents in periodi increased by one in theith
simulation. This of course requiresp + 1 simulations to
get a subgradient estimate at a single point, but we also g
the subgradients of the service level functions in the oth
periods from thesep + 1 simulations.

When the FD method is used to estimate a gradient of
strictly convex or concave function of continuous variable
at a single point, and if the function is indeed differentiable
at that point, then for any givenε > 0 there is aδ > 0 such
that the resulting estimator is a subgradient with respe
to all points outside of a ball with radiusε centered at
the point, so long as the difference is less thanδ for each
coordinate direction. One might think that this would also
work at a point where the function is not differentiable
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That is not true in general. We demonstrate this with
simple example. Consider the function

f (y1, y2) =
{
y1, 0 ≤ y1 ≤ y2,

y2, 0 ≤ y2 ≤ y1.

The functionf is concave. If we try to estimate a subgradien
at any pointy∗ on the diagonal by the FD method we ge
(0,0)T as our estimate. Clearly this is not a valid subgradien
since the hyperplaneh(y) = f (y∗) < f (y∗1 + a, y∗1 + b)
for any positive numbersa andb.

What does this mean in the context of the staffin
problem? If we look for the reason why the FD method
failed for the functionf above we see that the functionf
increases slower if we only change one variable at a tim
than if we change both variables. This would happen i
the call center if there would be greater marginal benefit o
adding one agent to two periods than the combined margin
benefit of adding one agent to the two periods separate
It seems reasonable to assume that this would not occ
in a typical call center. Then, the marginal return on th
service level of adding an agent in any period decreas
every time we add an agentregardless ofwhat period the
previous agent was added to, i.e., assumef is submodular
(Topkis 1998).

This is a stronger assumption than the concavity assum
tion we previously worked with, so do we get a subgradien
by the FD method if the service level function is submodu
lar? Again, the short answer to that question is no. We al
demonstrate this via a simple example. Consider the poin
and their corresponding function values (numbers by th
dots) depicted in Figure 1. That function has a subgradie
at every point and is submodular. Nevertheless, the F
estimator fails to produce a subgradient at the point (0,1)
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Figure 1: Submodular Function

We have shown by two examples that the FD metho
does not necessarily produce a subgradient of the serv
l
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level function. There are still many other examples where
the FD method will produce a subgradient. Consider, for
instance, any point other than (0,1) of the function in Figure
1. For that point the FD method will indeed produce a
subgradient. Therefore, and because of how easy the F
method is to implement, the FD method for obtaining a
subgradient is a plausible approach when the number o
periodsp, i.e., input variables, is not too large.

The implication of having an invalid subgradient is
adding an invalid cut which may “cut off” an optimal
solution. Thus, we might terminate the algorithm with a
suboptimal solution (or none at all). That is obviously a
concern when the goal of the cutting plane algorithm is to
find the best staffing levels. In other cases the underlying
problem might be so complicated that obtaining a “good”
solution is an appropriate goal that can be reached eve
though the “subgradients” are invalid.

4 LIKELIHOOD RATIO METHOD

Previously we saw that the FD method for approximating
a subgradient of a convex or concave function can fail to
produce a subgradient. Furthermore, if the number of inpu
variables,p, is large then the computational requirements to
obtain a single subgradient estimate are rather formidable
That motivates us to explore other options such as the
likelihood ratio method. The LR method is an entirely
different method. It is intended to estimate a gradient from
a single simulation run of an expected value function by
differentiating the elements of the expected value, i.e., the
densities and the integrand.

The input variables in our setting are the number of
agents in each period. We cannot differentiate with respec
to these variables since they are discrete. We can, howeve
approximate a subgradient of the service level function by
estimating a gradient of the service level as a function of
the service rates as in Section 2. There we definedr(µ; y)
as the expected service level function as a function of the
service ratesµ given the staffing levelsy. If we let Pµ be
the distribution ofξ as a function of the service ratesµ
then the expected service level can be written as

r(µ; y) =
∫
ρ(µ, ξ ; y)dPµ(ξ) (4)

whereρ(µ, ξ ; y) is the service level in a particular period
as a function of the random elements inξ and the service
ratesµ given the staffing levely. There are a few different
ways to represent the service rates in the model. We ca
either let the sample pathρ(µ, ξ ; y), or the distributionPµ,
or both depend onµ. In the next section, when we discuss
IPA, we let only the sample path depend onµ. Here we let
only the distributionPµ depend onµ. The central idea of
the likelihood ratio method is to rewrite (4) such that the
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distribution that is being integrated over does not depend
on µ. To do that there must exist a distributionQ such
thatPµ is absolutely continuous with respect toQ. In that
case we can write

r(µ; y) =
∫
ρ(ξ ; y)dPµ(ξ)

dQ(ξ)
dQ(ξ) (5)

and then under certain conditions onPµ, Q andρ

∇µr(µ; y) =
∫
ρ(ξ ; y)∇µ

(
dPµ(ξ)

dQ(ξ)

)
dQ(ξ). (6)

To estimate the gradient at a single value ofµ, sayµ∗, Q
can often be taken asPµ∗ (L’Ecuyer 1990, L’Ecuyer 1995).

Recall thatξ contains all the interarrival and service
times of all calls in the planning horizon. Suppose that
there areC calls in the planning horizon and leta =
(a1, . . . , aC) be the arrival times of calls 1, . . . , C. Also let
x = (x1, . . . , xC) denote the service times of theC calls.
In this model we assume that the service time of each cal
is determined by the service rate in the period in which
the call begins service, i.e., once a call enters service i
is served at the same rate until it is completed. Thus, the
period in which a call enters service depends on its arriva
time, and arrival times and service times of all the previous
calls.

This dependence potentially makes the distributions
Pµ andQ difficult to compute. On the other hand, once
a1, . . . , aj andx1, . . . , xj−1 are known (as they would be
in a simulation study) then it is relatively easy to determine
xj (andaj+1, of course).

Thus, we first generate the interarrival times and then
generate the service times, depending on which period the
occur in. LetBj be the time at which callj enters service,bj
be a realization ofBj and letπ(bj ) be the period containing
bj . Let G(x;µπ(bj )) denote the distribution of the service
time of call j . Verifying that the differentiation can be
taken inside the integral in (6) is difficult in general. If,
however, the service rateµ is a scale parameter of a family
of distributions, i.e., there exist a random variableX̂ such
that X̂/µπ(Bj ) has the same distribution as the service time
of thej th call, then the problem simplifies somewhat. Thus,
if we letXj denote the random variable for the service time
of the j th call thenXj = X̂j /µπ(Bj ) whereX̂, X̂1, X̂2, . . .

are i.i.d. random variables and are independent of the
period in which the corresponding call enters service. The
gamma, Weibull and exponential distributions all have a
s
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f
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scale parameter. If in addition we assume thatG has a
densityg then the gradient ofr(µ; y) at µ∗ is

∇µr(µ; y)
∣∣
µ=µ∗ = (7)

∫
ρ(a, x; y)

∇µ∏C
j=1 g(xj ;µπ(bj ))

∣∣∣
µ=µ∗∏C

j=1 g(xj ;µ∗π(bj ))
dPµ∗(a, x)

under appropriate conditions on the arrival process and o
g. The left-hand side of (7) is fairly easy to estimate from
a single simulation when the derivative of the densityg can
be computed.

The final step is to translate (7) into an approximation
of the subgradient of the service level functions(y;µ). We
use (2) to get

qi(y
∗) ≈

(
µi

y∗i
∂r(µ; y∗)
∂µi

)
µ=µ∗

, (8)

where the partial derivative is estimated by (7) andµ∗ are
the actual service rates.

Equation (8) is an approximation of the subgradient o
the expectedservice level function. Our objective was to
compute a subgradient that can be used to create a va
cut for the SAA of the call center problem. For the cut to
be valid we require a subgradient of thesample averageof
the service level function.

For a fixedy∗ and atµ∗ the sample average ofr(µ; y)
as defined by (5) agrees with the sample average of th
service level functions(y;µ) since the likelihood ratio
dPµ(ξ)/dQ(ξ) atµ = µ∗ equals 1 whenQ = Pµ∗ . In (7)
we compute a gradient of the sample average ofr. Now,
if we change either the staffing levels toy′ or the service
rates in toµ′ (i.e., letQ = Pµ′ ) then we get a new sample
average function forr. Therefore we cannot guarantee that
a gradient estimated by (7) is a subgradient of the samp
average ofr.

5 INFINITESIMAL PERTURBATION ANALYSIS

In the previous two sections we studied very different meth
ods to approximate a subgradient for the service level func
tion. The FD method suffers from being computationally
expensive and can fail to produce a subgradient. The L
method is computationally efficient but the resulting sub
gradient approximation may not have the desired propertie
as a subgradient of the sample path function. In this sectio
we study a third method, infinitesimal perturbation analysi
(see e.g. Glasserman 1991).

IPA is related to the LR method and can be thought o
as a special case of the LR method where only the samp
path and not the distribution depends on the variable o
interest (L’Ecuyer 1990, L’Ecuyer 1995). An IPA estimator
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of a gradient is a gradient of the sample path function wit
respect to the variable of interest. In this case the variable
of interest are the number of servers in each period. The
variables are integer so we approximate the service lev
function with a function of the service rate in each period
as described in Section 2.

The service level in any period as a function of the
service rates on each sample path is a finite sum of indicat
functions where thej th indicator function equals 1 if the
j th call arrives in the period and begins service on time
The derivative of this function with respect to any of the
service rates equals zero where it exists and is undefin
at the points where there is a jump in any of the indicato
functions. It is reasonable to assume, however, that th
expectedservice level function is differentiable everywhere
and that the gradient is nonzero in general. Applying IPA
directly to the service level function in that case does no
yield useful gradient information. Instead, before applying
IPA wesmooththe sample path of the service level function
(Glasserman 1991, Fu and Hu 1997).

Smoothing is done by conditioning on some of the
random elements in the problem in order to obtain a functio
that is continuous on every (or almost every) sample pat
At the same time, the conditioning argument ensures th
this new function has the same expected value as the origin
function. In this case, for each call we condition on the
value of the interarrival and service times of the previou
calls so the information that we condition on increases wit
time as in filtered Monte Carlo (Glasserman 1993). If we
let C be the number of calls in the planning horizon,Aj
be the arrival time of callj andLj (µ; y) equal 1 if callj
arrives in the period and begins service on time when th
rates and number of servers are as inµ andy then

r(µ; y) = E
 C∑
j=1

Lj (µ; y)
 = E

C+1∑
j=1

Jj (µ; y)
 . (9)

Here,

Jj (µ; y) = 1{βj (µ; y) ≤ Ve + τ }(F (Ve − Aj−1;Aj−1)

− F(max{Vs, βj (µ; y)− τ } − Aj−1;Aj−1))

whereVs andVe are the start and end points of the period
βj is the (random) time when a server becomes available
serve thej th call,Aj is the time of thej th call andF(·; a)
is the distribution of the interarrival time given that the las
call arrived at timea. In words,Jj is the probability, given
the arrival time of the previous call, that callj will arrive in
the period and no sooner thanτ time units before a server
will become available to serve callj . The functionJj is
continuous and piecewise differentiable wheneverF and
βj are. If, for instance, the arrival process can be modele
as a nonhomogeneous Poisson process with an absolut
s
e
l

r
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.
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ly

continuous cumulative rate function then this assumption is
satisfied forF .

The next step is to show thatβj (µ; y) is continuous
and piecewise differentiable inµ. For a generaly this is not
the case. Suppose that there is a reduction in the number o
servers between periods and thatβj (µ; y) occurs just before
the end of the period. Then there can be a jump inβj (µ; y)
if the service rate is slightly reduced so that the server tha
previously became available for that call is now working
into the next period and is off once that server finishes
service. If, however, the number of servers in all periods
is constant and if the service rates changes instantaneous
then it can be shown for bounded and positive service rate
(similarly to Corollary 3.7 in Glasserman (1991)) thatβj
is indeed continuous and piecewise differentiable. (By an
instantaneous change in service rates we mean that whe
a new period starts then all calls in service are served a
the service rate of the new period rather than at the service
rate of the period when the call entered service. Thus a
service time of a call will depend on what periods it is being
serviced in, as opposed to only the service rate that is in
effect when it starts service as in the model in the previous
section.)

When all these assumptions are satisfied then

∇µr(µ; y) = E
C+1∑
j=1

∇µJj (µ; y)
 .

This estimator is generally not as easy to compute as the LR
estimator (7) since we must keep track of how changes in the
service ratepropagateon the sample path. To approximate
the subgradient as in (2) we must be careful about how
to choose the fixed number of agents. One choice isŷ ≡
maxi∈{1,...,p} y∗i and thenµ∗i = µ̃

y∗i
ŷ

where µ̃ is the true
service rate in all periods. Then

qi(y
∗) ≈ µ̃

ŷ

(
∂r(µ; ŷe)
∂µi

)
µ=µ∗

(10)

wheree is the vector of all ones inRp.
Here we have estimated the subgradient ofs(y;µ) at

y∗. If we change the staffing levels then we get a new
sample average function for (9) just as when we computed
the subgradients for the LR method (see the end of Sectio
4). Alternatively, fix the staffing levels at an upper bound,
ŷ ∈ R for the staffing level in any period, and let the service
rate beµi = µ0yi/ŷ whereµ0 is the true service rate (same
in all periods) andyi is the staffing level in periodi. Then, if
the service times are exponential, we can use the bounds o
the queue length process as in Theorem 1 of Chao and Sco
(2000) to conclude that the sample average ofr(µ; ŷe) is
an upper bound on the sample average of the service leve
function s(y;µ0e). Therefore a subgradient obtained by



Atlason, Epelman, and Henderson

e

th-
ce
e
e

ed
r-
d,
ity
ce

so

he
ns
fte

le,
is

sy
n
n

od
did
e
r
a

R
ot
he
e
1

2
ls
e
n

ce
ws
e
re
he
al

d
he
(10) can be used to generate a valid (but possibly loos
cut.

6 NUMERICAL RESULTS

In the previous sections we developed three different me
ods for approximating subgradients of a discrete servi
level function via simulation. We mentioned some of th
advantages and disadvantages of each method. In this s
tion we present a small numerical example in order to sh
light on the practical performance of each method. In pa
ticular we discuss the computational effort of each metho
the variance of the subgradient estimators and the valid
of the estimators as a subgradient of the SAA of the servi
level function.

We consider anM(t)/M/s(t) queue withp = 2 periods
of equal length of 30 minutes. The service rate isµ = 4
calls/hour. The arrival process is a nonhomogeneous Pois
process with the arrival rate a function of the timet in minutes
equal toλ(t) = λ(1 − |t/60− .65|). We setλ = 120
calls/hour, which makes the average arrival rate over t
2 periods equal 87.3 calls/hour. We say that a call begi
service on time if it enters service less than 90 seconds a
it arrives.

Our reasoning for presenting such a simple examp
rather than a more realistic model of a call center, is that th
example captures every complexity of the problem, it is ea
to verify the properties of the subgradient approximatio
and a complete visualization of the service level functio
is possible.

We computed the average number of calls in each peri
answered in less than 90 seconds after they arrive. We
this for servers in period 1 ranging from 10 to 30 and th
number of servers in period 2 ranging from 22 to 40. Ou
sample size was 999. We also computed at each point
approximation of a subgradient from each of the FD, L
and IPA methods. The staffing level in period 2 does n
have a great effect on the service level in period 1 so in t
remainder of the discussion we focus on the service lev
in period 2 as a function of the staffing levels in periods
and 2.

Figure 2 shows the number of calls received in period
that are answered on time as a function of the staffing leve
in periods 1 and 2. Figures 3-5 show a contour plot of th
same function (curved lines going across), the subgradie
approximation at each point (arrows) and 95% confiden
regions for selected points (ellipses). The subgradient arro
originate at their corresponding point and show both th
magnitude and direction of the gradient. The ellipses a
centered at the endpoint of the corresponding arrow. T
confidence regions for the FD and IPA methods are so sm
that the ellipses are barely visible in the plots.

From Figure 3 we see that the finite difference metho
gives a good approximation of the subgradients over t
)
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Figure 2: SampleAverageApproximation (Sample Size 999)
of the Number of Calls that are Answered on Time
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Figure 3: Subgradient Estimates and Confidence Regions
via the Finite Difference Method

whole domain, so if the computational work of running
p + 1 simulations to get a subgradient at a single point is
not overwhelming then the FD method would certainly be
a good candidate.

For exponential service times the likelihood ratio esti-
mator (7) for the partial derivative of the number of period
answered on time in periodi w.r.t. the staffing level in
periodk simplifies to

∂ri(µ; y)
∂µk

∣∣∣∣
µ=µ∗

(11)

= E

Si(y;µ∗) C∑
j=1

1{π(Bj ) = k}
(

1

µ∗k
−Xj

) ,
whereXj is the service time of thej th call. For this example
µ∗1 = µ∗2 = 15 minutes. We can see from (11) that the LR
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Figure 4: Subgradient Estimates and Selected Confidenc
Regions via the Likelihood Ratio Method

method requires only the additional work of summing up
the terms in (11) and multiplying by the respective service
level function. On the other hand, we see that the confidenc
regions are much larger for the LR method than the othe
two methods. High variance of the LR method has also
been observed by several others in the literature (see e.
Fu (2002)).

A second observation from Figure 4 is that in the lower
right corner the LR gradients suggest that the service leve
in period 2 will improve significantly if servers are added
in period 1, even when there are plenty of servers in period
1. This is because the LR estimator interprets the increas
as an increase in the service rate. Therefore, even if onl
a fraction of the servers are busy at the end of period 1
increasing the service rate will reduce their residual service
times (recall that with the LR estimator the service time
distribution depends only on when the call begins service)
As a result, the state of the servers in period 2 is quite
strongly impacted by an increase in service rate in period
1. A possible remedy would be to modify the LR method
to take into account how much time a call actually spends
in each period when computing service times.

Our last comment on the LR method is that some of
the subgradient estimates have a negative component whic
contradicts a nondecreasing service level function. This i
due to the large variance of the LR method and we can se
that many of the confidence regions cover the origin of the
corresponding arrow which means that the subgradient i
not statistically different from zero.

The variance of the IPA estimator (Figure 5) is much
lower than the variance of the LR estimator. The compu-
tational effort is only slightly greater for IPA than LR. It
can be seen, however, that the estimates differ from the FD
estimates, especially for low staffing levels in period 1. This
e

.

l

h

10 15 20 25 30

22

24

26

28

30

32

34

36

38

40

y
2

y
1

Figure 5: Subgradient Estimates and Confidence Region
via Infinitesimal Perturbation Analysis

occurs partly because, in computing the IPA estimator, w
fix the number of servers at the maximum of the numbe
of servers in periods 1 and 2 and adjust the service rate
accordingly. This approach overestimates the performanc
as can be seen by a coupling argument.

7 CONCLUSIONS

We have proposed three different approaches to a difficu
problem. The FD approach seems to be the most consiste
while at the same time being the most computationally
expensive. Our future agenda related to this problem i
to study in more detail the properties of using a change
in service rates as a proxy for a change in staffing levels
Also, we would like to improve the quality of the IPA and
LR estimators as subgradients, for instance by considerin
different approaches to account for the appropriate servic
rates as mentioned in the previous section.
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