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ABSTRACT

We study the problem of approximating a subgradient of
a convex (or concave) discrete function that is evaluated
via simulation. This problem arises, for instance, in opti-
mization problems such as finding the minimal cost staff
schedule in a call center subject to a service level constraint.
There, subgradient information can be used to significantly
reduce the search space. The problem of approximating
subgradients is closely related to the one of approximating
gradients and we suggest and compare how three exist-
ing methods for computing gradients via simulation, i.e.,
finite differences, the likelihood ratio method and infinites-
imal perturbation analysis, can be applied to approximate
subgradients when the variables are discrete. We provide
a computational study to highlight the properties of each
approach.

1 INTRODUCTION

Simulation is becoming an increasingly popular tool for
optimization of complex systems. There are several dif-
ferent approaches to simulation optimization available (Fu
2002). Some of these are developed from classical gradient-
based optimization techniques. For problems with non-
differentiable functions one cannot use gradients. An alter-
native for convex non-differentiable functions is to compute
subgradients and use them in place of gradients.

A subgradient of a convex function at a particular point
is a normal vector to a hyperplane that passes through the
corresponding point on the graph on the function and lies
below the function graph everywhere else. The set of all
subgradients at a point is called the subdifferential at the
point. For convex functions the subdifferential is non-empty
at all points. If the function is differentiable at a point then
the gradient is the unique subgradient at that point. Although
convexity and subgradients are only defined for functions
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with a continuous domain, we can still use the subgradients
in the above sense for discrete functions.

Discrete functions arise naturally in many optimization
problems. One such problem, and the one that motivates our
discussion, is the problem of scheduling agents (employees)
in an inbound call center over a specific planning horizon
(e.g., a week) at the lowest cost possible while at the same
time maintaining a minimum level of service. We consider
a somewhat simplified version of the real world problem
for the purpose of developing the theory. We assume, for
instance, that there is an unlimited number of trunk lines, one
customer class, one type of agent and no abandonments. The
call load typically varies throughout the planning horizon
and therefore it is desirable to vary the number of agents
accordingly. To do that we divide the planning horizon into
smaller periods (e.g., 30 minutes in duration) and fix the
number of agents in each period.

There is an extensive literature on staffing problems
in call centers (Mandelbaum 2003). In many cases it is
reasonable to model the call center using a queuing model for
which an analytic expression for the service level function
exists. For call centers that cannot be adequately analyzed
in this way, simulation is a useful and popular tool. If the
staffing level (number of agents) in one period does not
affect the service level in other periods then it is relatively
easy (given a mathematical model of the call center) to
determine (or estimate) the number of agents required in
each period to maintain a minimum level of service. It is
possible, however, that the “best” staffing level based on
this simplification of the call center is either suboptimal, or
results in an unsatisfactory service level. This can occur,
in particular, if the service times are relatively long with
respect to the length of a period, or if there is great variability
in the call load (Green, Kolesar, and Soares 2001). This
makes an analytic approach using queuing models even less
adequate, whereas a simulation model can encompass such
interdependency between periods.
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The difficulty with using simulation to solve this prob-
lem is that the number of alternatives can be very large.
A cutting plane optimization algorithm (Atlason, Epelman,

and Henderson 2003) counters this problem in an attempt

to explore only a few alternatives en route to finding the
optimal number of agents in each period. We start by
formulating a linear integer program (IP) that excludes the
service level constraints. The decision variables in the IP are
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method in Section 4 and IPA in Section 5. We include a
computational study to further enhance the comparison in
Section 6 and provide concluding remarks in Section 7.

2 SUBGRADIENT APPROXIMATION PROBLEM

In this section we study the service level function in more
detail. Let p be the number of periods in the planning

the numbers of agents on each shift. The shift patterns are horizon and lety € Z” be the vector whosgh component

predetermined including constraints such as meal breaks,

denotes the number of agents in period_et £, a random

and a linear function is given that maps the number of agents vector, denote all the random quantities in the problem, i.e.,

assigned to each shift to the number of agents in each period.

We solve the IP to obtain the lowest cost staffing level. We
use a simulation model to evaluate the service level in all
periods. If the service level is satisfactory we conclude that
the current staffing level is optimal. Otherwise, we compute
a (sub)gradient of the service level function and use it to
create a new constraint (cut) in the IP. We re-solve the IP
and repeat the process until we find an optimal solution
or conclude that no solution is feasible. We use common
random numbers for each simulation, so in fact the service
level function is a sample average approximation (SAA)
(see Kleywegt, Shapiro, and Homem-de-Mello (2001) for
more detail on the SAA method).

The algorithm is guaranteed to converge to an optimal
solution if one exists and if the service level constraints form
a convex set. A common measure for level of service, and

the one we use, is the percentage of calls that do not have to

wait longer than a certain amount of time. It is reasonable
to assume, at least for a range of staffing levels, that the
service level increases with diminishing marginal returns

the interarrival and service times in one planning horizon,
and letgl, ... £" denote independent realizations &f

The service level in each periadis the fraction of calls
received in that period answered within a certain amount
of time t. Therefore, there is one service level function for
each period and the problem is to approximate a subgradient
for each service level function. Fortunately, the value of
the service level functions for particular staffing levels can
be estimated for all periods simultaneously from a single
simulation.

For an arbitrary period le¥ (¢) be the number of calls
received in that period and let(y, &) be the number of
those calls answered on time. The fraction of customers
receiving adequate service in this period in the long run is
then

Y1 SO gD limaeonTt Y S(r 89
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If E[N(&)] < oo then the strong law of large numbers can

as the number of agents increases, which suggests that thebe applied separately to both the numerator and denominator
service level function is concave. Then the minimum service Of this expression, and then the desired long-run ratio is
level constraint forms a convex set in the number of agentsin E[S(y, &)]/E[N(§)]. Thus,

each period. See Atlason, Epelman, and Henderson (2003)

for additional discussion and references.

In this paper we discuss what is perhaps the most chal-
lenging part of the algorithm described above: Computation
of the (sub)gradients of the SAA of the service level func-
tion. The service level function is a discrete function of the
number of agents, so a gradient does not exist. In addition,
we do not have a closed form expression of the function.

The problem of estimating gradients via simulation has

received considerable attention over the past fifteen years.
Among the most prominent approaches are the method of The SAA of s(y)

finite differences (FD), the likelihood ratio method (LR)
(also called the score function method) and infinitesimal
perturbation analysis (IPA). We study each of the FD, LR
and IPA in an attempt to obtain a subgradient of the SAA
service level function. We explore the advantages and
disadvantages of each method for this particular problem.
The remainder of the paper is organized as follows.
We formulate the subgradient approximation problem in
Section 2, the FD method is discussed in Section 3, the LR
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is a natural representation of the service level function
(excluding the pathological cage[N (¢§)] = 0).

Note that the denominator in (1) does not depend
on y, so the service level function has the same prop-
erties asE[S(y, &)], the expected number of calls re-
ceived in the period that are answered within time
E[S(y, &)] with sample sizen
is 5(y;n) = n 1Y _, S(y,£9). Given the realizations
gl ..., &" 5(y;n) is a deterministic function of. In the
cutting plane algorithm we compui€y; n) via simulation
and also need a subgradients@l; n).

Under the assumption thaty) is a concave function of
y it is also reasonable to assume thét; n) is concave in
y, at least when the sample sizg,is large. Thus, at every
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point y* there exists a subgradieqty*) (some may prefer In Section 4 we study how to estimade (u; y)/du;
the term “supergradient” for a concave function) such that with the LR method and in Section 5 we use IPA. In the
next section we compute
§yin) <505+ (v =)

sy+Ln,u)—5s(y+e;n,n fori=21....,p (3)
holds for anyy andy* in the range thai(y; n) is concave.
The problem is therefore to compute such a vegtor®)
for a giveny*.

The finite difference method works directly with the
discrete functiors (y; n). For IPA and LR to work we must
first approximates(y; n) with a function of a continuous
variable rather than the discrete variableFor this problem, The simplest and perhaps the most intuitive method for
and queuing problems in general, a natural candidate is a estimating a gradient (or subgradient) when an expression
function of the service rates in each period. When we for the function is unknown is by the method of finite
use the service rates as the variables instead of the staffingdifferences. The FD method can easily be extended to
levels we get a new function. The good news is that there discrete functions. There is a price to pay, however, for this
are numerous studies that compare performance measuresase of implementation. The number of simulations to get
of queuing systems having the same total service rate but one gradient estimate is rather large and this method can
different number of servers. The most relevant results can fail to produce a subgradient even under rather stringent
be found in Chao and Scott (2000). conditions on the service level function.

Let the service rate in periodbe equal tou; and let To estimate the partial derivative with respect to a
n= (1, ..., up). Inthe original problemey = ... = 1. continuous variable the function is evaluated at two different
Let r(u; y) be the service level function as a function of points. Then an estimate of the derivative at a value at
the ratesu at staffing levely and lets(y; i) be the original or between these two values can be estimated by linear
service level function with the service ratgs interpolation. When the variable is integer, as in the staffing

The functionsr and s are indeed the same function.  problem, then the smallest difference between the two points
We choose to represent it as two functions to make clear is one.
the distinction that in the original problem we are interested Let g(y*) be an estimate of a subgradiepty*) of
in the service level as a function of the number of agents  5(y; n) at y*. The finite forward difference estimator gf
for a fixed service rate vectqr, but to estimate a gradient  at y* is given by
we work with the service level as a function of the service
rate u for a fixed staffing levely. When we estimate the
gradient at different staffing levels we are in fact working
with a new functionr(u; y) parameterized by the staffing
level y. By definitionr(u; y) = s(y; u) but, as an example,
r(2u; y) # s(2y; ) in general, so even if the functions
agree for identical service rates and staffing levels then the number of agents in periodincreased by one in thah
effect of increasing the total service ratg;{;) in each simulation. This of course requirgs+ 1 simulations to
period by changing the service rates is not the same as get a subgradient estimate at a single point, but we also get
when the same change is accomplished by changing the the subgradients of the service level functions in the other

and discuss the properties of (3) as a potential subgradient
for 5(y; n, u) aty.

3 FINITE DIFFERENCES

Ggi(y*) =35y +ei;n) —35(y; n)

fori =1,..., p. As we can see this estimator is easy
to implement. To estimate the subgradient at the staffing
level y, givens(y; n), simply run p simulations with the

staffing levels.

Suppose that we add one agent in petiodhe effect
of that is to increase the total service rate in pevidy ;.
If on the other hand we increase the service rate in period
i by 1 then the total service rate in that period increases by
y;. This suggests that

Wi O (5 y)

(2)
Vi O

s(y+eisu) —s(y, u) =

wheree; is theith unit vector inR”. We can use this ap-
proximation and simulation gradient estimation techniques
to approximate the subgradient ofy; n).
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periods from thesg + 1 simulations.

When the FD method is used to estimate a gradient of a
strictly convex or concave function of continuous variables
at a single point, and if the function is indeed differentiable
at that point, then for any given> 0 there is & > 0 such
that the resulting estimator is a subgradient with respect
to all points outside of a ball with radius centered at
the point, so long as the difference is less tliaior each
coordinate direction. One might think that this would also
work at a point where the function is not differentiable.
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That is not true in general. We demonstrate this with a
simple example. Consider the function

0<y1 =<y,
0<yr<y1

Y1,

f1,y2) = { Vo,

The functionf is concave. If we try to estimate a subgradient
at any pointy* on the diagonal by the FD method we get

(0, 0)T as our estimate. Clearly this is not a valid subgradient
since the hyperplané(y) = f(y*) < f(y; +a,y; +b)

for any positive numbers andb.

What does this mean in the context of the staffing
problem? If we look for the reason why the FD method
failed for the functionf above we see that the functigh
increases slower if we only change one variable at a time
than if we change both variables. This would happen in
the call center if there would be greater marginal benefit of
adding one agent to two periods than the combined marginal
benefit of adding one agent to the two periods separately.
It seems reasonable to assume that this would not occur
in a typical call center. Then, the marginal return on the
service level of adding an agent in any period decreases
every time we add an agerggardless ofwhat period the
previous agent was added to, i.e., assyfrie submodular
(Topkis 1998).

This is a stronger assumption than the concavity assump-
tion we previously worked with, so do we get a subgradient
by the FD method if the service level function is submodu-
lar? Again, the short answer to that question is no. We also
demonstrate this via a simple example. Consider the points
and their corresponding function values (numbers by the
dots) depicted in Figure 1. That function has a subgradient
at every point and is submodular. Nevertheless, the FD
estimator fails to produce a subgradient at the point (0,1).

3l .58 .58 .58 .58
ol .40 .58 .58 .58
N

>
1l .20 41 .58 .58
ol .0 L22 42 .58

0 1 2 3
yl

Figure 1: Submodular Function

We have shown by two examples that the FD method
does not necessarily produce a subgradient of the service
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level function. There are still many other examples where
the FD method will produce a subgradient. Consider, for
instance, any point other than (0,1) of the function in Figure
1. For that point the FD method will indeed produce a
subgradient. Therefore, and because of how easy the FD
method is to implement, the FD method for obtaining a
subgradient is a plausible approach when the number of
periodsp, i.e., input variables, is not too large.

The implication of having an invalid subgradient is
adding an invalid cut which may “cut off” an optimal
solution. Thus, we might terminate the algorithm with a
suboptimal solution (or none at all). That is obviously a
concern when the goal of the cutting plane algorithm is to
find the best staffing levels. In other cases the underlying
problem might be so complicated that obtaining a “good”
solution is an appropriate goal that can be reached even
though the “subgradients” are invalid.

4 LIKELIHOOD RATIO METHOD

Previously we saw that the FD method for approximating
a subgradient of a convex or concave function can fail to
produce a subgradient. Furthermore, if the number of input
variables p, is large then the computational requirements to
obtain a single subgradient estimate are rather formidable.
That motivates us to explore other options such as the
likelihood ratio method. The LR method is an entirely
different method. It is intended to estimate a gradient from
a single simulation run of an expected value function by
differentiating the elements of the expected value, i.e., the
densities and the integrand.

The input variables in our setting are the number of
agents in each period. We cannot differentiate with respect
to these variables since they are discrete. We can, however,
approximate a subgradient of the service level function by
estimating a gradient of the service level as a function of
the service rates as in Section 2. There we defirigd y)
as the expected service level function as a function of the
service rateg. given the staffing levels. If we let P, be
the distribution of¢ as a function of the service rates
then the expected service level can be written as

r(u; y) =/p(,u,$;y)d1’,4(€) 4

wherep(u, &; y) is the service level in a particular period
as a function of the random elementséirand the service
ratesy given the staffing leve). There are a few different
ways to represent the service rates in the model. We can
either let the sample paih(u, &; y), or the distributionp,,,

or both depend om. In the next section, when we discuss
IPA, we let only the sample path depend onHere we let

only the distributionP,, depend orn. The central idea of
the likelihood ratio method is to rewrite (4) such that the
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distribution that is being integrated over does not depend
on . To do that there must exist a distributighn such
that P, is absolutely continuous with respectn In that
case we can write

dP,(§)
;y) = ; d S
) = [ e NS 10® (5)
and then under certain conditions &), Q andp
R dP,(§)
Vur(u; y) —/p(é,y)Vu(dQ(é))dQ(S) (6)

To estimate the gradient at a single valueugfsay u*, Q
can often be taken aB,+ (LEcuyer 1990, L'Ecuyer 1995).

Recall thaté contains all the interarrival and service

times of all calls in the planning horizon. Suppose that
there areC calls in the planning horizon and let =
(ax, ..., ac) be the arrival times of calls,1. ., C. Also let
x = (x1, ..., xc) denote the service times of the calls.
In this model we assume that the service time of each call
is determined by the service rate in the period in which
the call begins service, i.e., once a call enters service it
is served at the same rate until it is completed. Thus, the
period in which a call enters service depends on its arrival
time, and arrival times and service times of all the previous
calls.

This dependence potentially makes the distributions
P, and Q difficult to compute. On the other hand, once
ai,...,a; andxy,...,x;_1 are known (as they would be
in a simulation study) then it is relatively easy to determine
xj (anda;1, of course).

Thus, we first generate the interarrival times and then
generate the service times, depending on which period they
occurin. LetB; be the time at which call enters services;
be a realization oB; and letw (b;) be the period containing
bj. Let G(x; tr(p;)) denote the distribution of the service
time of call j. Verifying that the differentiation can be
taken inside the integral in (6) is difficult in general. If,
however, the service raje is a scale parameter of a family
of distributions, i.e., there exist a random variatilesuch
thatf(/u,,(Bj) has the same distribution as the service time
of the jth call, then the problem simplifies somewhat. Thus,
if we let X ; denote the random variable for the service time
of the jth call thenX; = X /11 (5,) whereX, X1, X2, ...
are i.i.d. random variables and are independent of the
period in which the corresponding call enters service. The
gamma, Weibull and exponential distributions all have a

1828

and Henderson

scale parameter. If in addition we assume thahas a
densityg then the gradient of (u; y) at u* is

Viur (s )|,z )

/p(a,x; y)

under appropriate conditions on the arrival process and on
g. The left-hand side of (7) is fairly easy to estimate from
a single simulation when the derivative of the dengityan
be computed.

The final step is to translate (7) into an approximation
of the subgradient of the service level functigiy; u). We

use (2) to get
>M=M*

where the partial derivative is estimated by (7) arfdare
the actual service rates.

Equation (8) is an approximation of the subgradient of
the expectedservice level function. Our objective was to
compute a subgradient that can be used to create a valid
cut for the SAA of the call center problem. For the cut to
be valid we require a subgradient of tkemple averagef
the service level function.

For a fixedy* and atu* the sample average ofu; y)
as defined by (5) agrees with the sample average of the
service level functions(y; ) since the likelihood ratio
dP,(&)/dQ(§) atu = p* equals 1 wherQ = P,+. In (7)
we compute a gradient of the sample average.oNow,
if we change either the staffing levels 16 or the service
rates in toy’ (i.e., letQ = P,/) then we get a new sample
average function for. Therefore we cannot guarantee that
a gradient estimated by (7) is a subgradient of the sample
average of-.

c
Vi Tjz18(x: trv) .

=u*

dP,(a, x)
C KA
Hj:l g()Cj; /’L;kr(bj))

wi 9r(p; y*)
3k

8
Vi L ®)

qi(y") = (

5 INFINITESIMAL PERTURBATION ANALYSIS

In the previous two sections we studied very different meth-
ods to approximate a subgradient for the service level func-
tion. The FD method suffers from being computationally
expensive and can fail to produce a subgradient. The LR
method is computationally efficient but the resulting sub-
gradient approximation may not have the desired properties
as a subgradient of the sample path function. In this section
we study a third method, infinitesimal perturbation analysis
(see e.g. Glasserman 1991).

IPA is related to the LR method and can be thought of
as a special case of the LR method where only the sample
path and not the distribution depends on the variable of
interest (L'Ecuyer 1990, L'Ecuyer 1995). An IPA estimator
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of a gradient is a gradient of the sample path function with
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continuous cumulative rate function then this assumption is

respect to the variable of interest. In this case the variables satisfied forF.

of interest are the number of servers in each period. These

variables are integer so we approximate the service level
function with a function of the service rate in each period
as described in Section 2.

The service level in any period as a function of the

The next step is to show tha; (u; y) is continuous
and piecewise differentiable jn. For a generay this is not
the case. Suppose that there is a reduction in the number of
servers between periods and thatu.; y) occurs just before
the end of the period. Then there can be a jumg;ifu; y)

service rates on each sample path is a finite sum of indicator if the service rate is slightly reduced so that the server that

functions where theith indicator function equals 1 if the
jth call arrives in the period and begins service on time.
The derivative of this function with respect to any of the

previously became available for that call is now working
into the next period and is off once that server finishes
service. If, however, the number of servers in all periods

service rates equals zero where it exists and is undefined is constant and if the service rates changes instantaneously

at the points where there is a jump in any of the indicator
functions. It is reasonable to assume, however, that the
expectedservice level function is differentiable everywhere
and that the gradient is nonzero in general. Applying IPA
directly to the service level function in that case does not
yield useful gradient information. Instead, before applying
IPA we smooththe sample path of the service level function
(Glasserman 1991, Fu and Hu 1997).

Smoothing is done by conditioning on some of the
random elements in the problem in order to obtain a function
that is continuous on every (or almost every) sample path.
At the same time, the conditioning argument ensures that

this new function has the same expected value as the original

function. In this case, for each call we condition on the
value of the interarrival and service times of the previous
calls so the information that we condition on increases with
time as in filtered Monte Carlo (Glasserman 1993). If we
let C be the number of calls in the planning horizot;

be the arrival time of calj andL;(u; y) equal 1 if call j
arrives in the period and begins service on time when the
rates and number of servers are aguiand y then

C+1

C
ru)=E Y Liwy) | =E Y Jiwy | (9)
j=1 j=1

Here,

Ji(ws y) =LBj(usy) = Ve + T} (F(Ve —Aj_1:Aj_1)
— F(max{Vy, Bj(u;y) —t}—Aj_1;Aj 1))

whereV; andV, are the start and end points of the period,
B; is the (random) time when a server becomes available to
serve thejth call, A; is the time of thejth call andF (-; a)

is the distribution of the interarrival time given that the last
call arrived at timez. In words, J; is the probability, given
the arrival time of the previous call, that calwill arrive in

the period and no sooner thantime units before a server
will become available to serve cajl The functionJ; is
continuous and piecewise differentiable wheneveland

B; are. If, for instance, the arrival process can be modeled
as a nonhomogeneous Poisson process with an absolutel
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then it can be shown for bounded and positive service rates
(similarly to Corollary 3.7 in Glasserman (1991)) that
is indeed continuous and piecewise differentiable. (By an
instantaneous change in service rates we mean that when
a new period starts then all calls in service are served at
the service rate of the new period rather than at the service
rate of the period when the call entered service. Thus a
service time of a call will depend on what periods it is being
serviced in, as opposed to only the service rate that is in
effect when it starts service as in the model in the previous
section.)

When all these assumptions are satisfied then

Cc+1
Vur(w:y) = E | Y Vud (s y)
j=1

This estimator is generally not as easy to compute as the LR
estimator (7) since we must keep track of how changes in the
service rateropagateon the sample path. To approximate
the subgradient as in (2) we must be careful about how
to choose the fixed number of agents. One choicg is

MmaXe,...py ¥ and thenu? = ;ly; where [t is the true
service rate in all periods. Then

aon = 5 (M) (10
y i p=p*

wheree is the vector of all ones ifiR”.

Here we have estimated the subgradient ©f, 1) at
y*. If we change the staffing levels then we get a new
sample average function for (9) just as when we computed
the subgradients for the LR method (see the end of Section
4). Alternatively, fix the staffing levels at an upper bound,
y € R for the staffing level in any period, and let the service
rate beu; = poy;/y whereug is the true service rate (same
in all periods) and; is the staffing level in period Then, if
the service times are exponential, we can use the bounds on
the queue length process as in Theorem 1 of Chao and Scott
(2000) to conclude that the sample average @f; ye) is
an upper bound on the sample average of the service level
unction s(y; noe). Therefore a subgradient obtained by
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(10) can be used to generate a valid (but possibly loose)
cut.

6 NUMERICAL RESULTS

In the previous sections we developed three different meth-
ods for approximating subgradients of a discrete service
level function via simulation. We mentioned some of the
advantages and disadvantages of each method. In this sec-
tion we present a small numerical example in order to shed
light on the practical performance of each method. In par-
ticular we discuss the computational effort of each method,
the variance of the subgradient estimators and the validity
of the estimators as a subgradient of the SAA of the service Y, 2010 Yy

level function. ) L .
We consider at (1)/M /s (t) queue withy = 2 periods Figure 2: Sample Average Approximation (Sample Size 999)

s(y;500)

30

of equal length of 30 minutes. The service rateuis= 4 of the Number of Calls that are Answered on Time
calls/hour. The arrival process is a nonhomogeneous Poisson
process with the arrival rate a function of the timie minutes 40L » e e e e e e e i

equal tor(r) = A(1 — |7/60 — .65]). We setr = 120
calls/hour, which makes the average arrival rate over the
2 periods equal 87.3 calls/hour. We say that a call begins 36
service on time if it enters service less than 90 seconds after  5,|
it arrives.

Our reasoning for presenting such a simple example, %32
rather than a more realistic model of a call center, is that this 30 l,lllllll
example captures every complexity of the problem, it is easy ”8 l“”'/%%é%%'l”./

to verify the properties of the subgradient approximation "Illlll';',l”'llllzllll‘m’

38

and a complete visualization of the service level function 26 "’:/,,,:""",,,
i i LI 1]
is possible. ” ..",',:..', ':,:::,, i

We computed the average number of calls in each period
answered in less than 90 seconds after they arrive. We did 22 ‘ ‘ ‘
this for servers in period 1 ranging from 10 to 30 and the 10 15 y, 20 25 30
number of servers in period 2 ranging from 22 to 40. Our
sample size was 999. We also computed at each point an
approximation of a subgradient from each of the FD, LR
and IPA methods. The staffing level in period 2 does not
have a great effect on the service level in period 1 so in the
remainder of the discussion we focus on the service level
in period 2 as a function of the staffing levels in periods 1
and 2.

Figure 2 shows the number of calls received in period 2
that are answered on time as a function of the staffing levels
in periods 1 and 2. Figures 3-5 show a contour plot of the
same function (curved lines going across), the subgradient
approximation at each point (arrows) and 95% confidence

Figure 3: Subgradient Estimates and Confidence Regions
via the Finite Difference Method

whole domain, so if the computational work of running

p + 1 simulations to get a subgradient at a single point is
not overwhelming then the FD method would certainly be
a good candidate.

For exponential service times the likelihood ratio esti-
mator (7) for the partial derivative of the number of period
answered on time in periotl w.r.t. the staffing level in
periodk simplifies to

1 .
regions for selected points (ellipses). The subgradient arrows I y) (12)
originate at their corresponding point and show both the ke =y
magnitude and direction of the gradient. The ellipses are ' c 1
centered at the endpoint of the corresponding arrow. The = E|S®;u" Z Um(B)) = k} (—* - Xj) ,
confidence regions for the FD and IPA methods are so small j=1 P

that the ellipses are barely visible in the plots.
From Figure 3 we see that the finite difference method whereX is the service time of thgth call. For this example
gives a good approximation of the subgradients over the 1] = u5 = 15 minutes. We can see from (11) that the LR
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Figure 4: Subgradient Estimates and Selected Confidence Figure 5: Subgradient Estimates and Confidence Regions
Regions via the Likelihood Ratio Method via Infinitesimal Perturbation Analysis

method requires only the additional work of summing up occurs partly because, in computing the IPA estimator, we
the terms in (11) and multiplying by the respective service fix the number of servers at the maximum of the number
level function. On the other hand, we see that the confidence of servers in periods 1 and 2 and adjust the service rates
regions are much larger for the LR method than the other accordingly. This approach overestimates the performance,
two methods. High variance of the LR method has also as can be seen by a coupling argument.
been observed by several others in the literature (see e.g.
Fu (2002)). 7 CONCLUSIONS

A second observation from Figure 4 is that in the lower
right corner the LR gradients suggest that the service level We have proposed three different approaches to a difficult
in period 2 will improve significantly if servers are added problem. The FD approach seems to be the most consistent
in period 1, even when there are plenty of servers in period while at the same time being the most computationally
1. This is because the LR estimator interprets the increase expensive. Our future agenda related to this problem is
as an increase in the service rate. Therefore, even if only to study in more detail the properties of using a change
a fraction of the servers are busy at the end of period 1, in service rates as a proxy for a change in staffing levels.
increasing the service rate will reduce their residual service Also, we would like to improve the quality of the IPA and
times (recall that with the LR estimator the service time LR estimators as subgradients, for instance by considering
distribution depends only on when the call begins service). different approaches to account for the appropriate service
As a result, the state of the servers in period 2 is quite rates as mentioned in the previous section.
strongly impacted by an increase in service rate in period
1. A possible remedy would be to modify the LR method ACKNOWLEDGMENTS
to take into account how much time a call actually spends
in each period when computing service times. We thank Michael Beyer, Maria Ng and Shang Yen See,

Our last comment on the LR method is that some of students at Cornell University, for their contributions to the
the subgradient estimates have a negative component whichcomputational study. This work was supported by National
contradicts a nondecreasing service level function. This is Science Foundation grant DMI-9984717.
due to the large variance of the LR method and we can see
that many of the confidence regions cover the origin of the REFERENCES
corresponding arrow which means that the subgradient is
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