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ABSTRACT

We model a call center as a preemptive-resume priority que
with time-varying arrival rates and two priority classes of
customers. The low priority customers have a dynami
priority where they become high priority if their waiting-
time exceeds a given service-level time. The performance
the call center is measured by the mean number in system
the two customer classes. A fluid approximation is propose
to estimate the mean number in system for each class. T
quality of the approximation is tested by comparing it with
a stochastic simulation model of the system. Finally, usin
the fluid approximations, we discuss how to compute th
mean number in system for each class and estimate t
overall staffing level, or number of agents.

1 INTRODUCTION

Telecommunication call centers have become the prima
channel of customer interaction, sales, and service for ma
businesses. Traditionally, customers contacted the call ce
ter by talking to customer service representatives over th
telephone. Now, customers can also contact an agent ov
the Internet (e.g., a Web chat session), by e-mail, or b
fax. The growth of call centers has been substantial ove
the last two decades. According to some industry est
mates, 4.5 million people worked in North American call
centers in 1995, and over 10 million will have worked in
call centers by 2004. In 1997, there were approximatel
60,000 to 90,000 call centers in the United States, rep-
resenting explosive growth above estimates from the la
1970’s (Kim 1997). Currently, more than 50 percent o
all business transactions are done over the telephone. C
centers are used by banks and financial institutions, com
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puter product help desks, government offices, and oth
organizations to provide their customers with efficient and
convenient service. Their managers and planners have
much more difficult job today than in the past. With far
more products and services being sold and supported, c
center managers struggle to deliver different service leve
to different types of callers with different needs and issues
Today’s call center technologies provide greater flexibility in
routing and queueing calls. As a result, call center designe
and managers can prioritize certain types of incoming cal
and allow customers to access call agents with differen
skill sets. However, this makes planning and managing ca
centers more complex. Therefore, call centers have becom
an important part of today’s business transactions.

A traditional call center has several main component
typical of a telephone, or circuit-switched, network. These
are namely, an automatic call distributor (ACD), an inter-
active voice response unit (IVR), desktop computers, an
telephones. The ACD receives incoming customer calls
and distributes these calls to the call agents (Fischer et a
1998). There are a finite number of trunks (i.e., telephon
lines) connecting a set of customer service representativ
(CSRs), or call agents, to the ACD. As customer calls ar
rive, the ACD receives them and routes them to an idl
customer service representative (CSR), who provides th
necessary service. If no CSR is available, the calls ar
routed to the IVR where customer transactions are handle
automatically. Afterwards, if the customer chooses to spea
with a call agent, they are either immediately routed to a
available agent, or placed in a queue (i.e., on hold) if n
agents are available. The call agents responds to calls rout
to them using their telephone and desktop computer. Fo
example, if the agent is answering a telephone call, he o
she can access the customer information database throu
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the desktop computer. The heart of a traditional call cente
is this dynamic routing of a new or pending call by the
ACD to the most appropriate and available CSR. This ca
routing or assignment process must take into consideratio
such factors as the call priority, call arrival time, and CSR
skills and availability. Thus, this call assignment process
can become quite complex. It requires a dynamic, rea
time management of all CSR skill levels and availability,
the call/caller identity and status, and customer informatio
databases. Consequently, there are several call center co
ponents that complete call routing and handling tasks, th
heart of a call center.

2 PROBLEM SETTING

The basic structure of the call center can be described as
finite capacity, multi-server system. Customer calls arrive a
the call center at varying rates on a finite number of trunks
These calls are terminated at the ACD/PBX switch and ar
routed to a group of call agents. In a multimedia call center
these calls can be voice, email, fax, or (eventually) video
Queueing models will be used to analyze the performance o
the call center. Current analytical models applied in practic
are based on classical Erlang queueing theory. Through h
research on the telephone network in the early 1900’s, Erlan
showed that the arrival process of calls over the networ
to any destination could be modelled as a Poisson proce
(Hall 1991). Although these models are primarily used for
producing daily call forecasts and agent work schedules
they do attempt to explain the randomness that exists i
call centers. This randomness is caused by the variabilit
of call arrival patterns and call durations.

Generally, our goal is to develop better estimates of
call center performance than the standard Erlang approxim
tions. Specifically, we develop fluid models and a simulation
model to approximate the mean number in the system. Ou
call center is a help desk with two customer classes an
a preemptive-resume priority queue discipline. Here, we
assume that there are enough telephone lines to prevent a
call blocking. Also, we assume that the service level for
the high priority class is high enough that no calls abando
the system. Note that in a general call center environmen
these assumptions are not always valid.

In our model, upon entering the system, a high priority
call can preempt a low priority call from service, when
all the agents, or servers, are busy. Once prempted, th
low priority call re-enters the beginning of the low priority
queue. and waits for service. In general, once the ca
returns to a server, it resumes its service from its previou
preemption point, i.e. it does not lose its previous servic
time. If the low priority call does not complete service
within a gven amount of time, it will “abandon” its queue,
and enter the end of the higher priority queue. In this
regard, the low priority calls are guarenteed service within
-

y

Figure 1: The Two-Customer ClassMt/M/n

Queue with Abandonment

a reasonable time, and thus have a dynamic priority. Ou
goal is to show that the fluid approximations of the cal
center performance are close to the actual performance,
measured by a discrete-event simulation model. Figure
shows the diagram of our model.

Our model extends the model of Mandelbaum et al
(2001), which incorporates multiple-customer classes an
dynamic priorities. We determine the fluid approximations
for the mean number of high and low priority customers
in the system. The low priority customers will have a
dynamic priority, varying over time. Thus, at some point,
these customers could be upgraded to the high priority clas

3 FLUID APPROXIMATIONS

Service systems models, such as call center models, belo
to the class of stochastic service network models. Thes
network models form a special family of non-stationary
Markov processes where parameters such as inter-arrival a
service rates are time-dependent. More importantly, thes
models have functional strong laws of large numbers an
functional central limit theorem results for the mean numbe
of customers in the system (Mandelbaum et al. 1998). Th
results are developed using an asymptotic limiting proces
where the number of servers are scaled up in response to
scaling up of the arrival rates. The individual service and
abandonment rates are not scaled. Note that the resulti
limit theorems are diffusion, and not really heavy-traffic,
limit results.

These limit theorems lead to a tractable set of fluid
approximations represented as a system of ordinary di
ferential equations (ODEs). By numerically solving these
differential equations using the fourth-order Runge-Kutta
method, we compute values for performance measures su
as the mean number of customers in the system. Mo
importantly, we can use this method to approximate th
performance of our call center model, which is otherwise
analytically intractable using Erlang analytical approxima
tions (Mandelbaum et al. 1998). Therefore, we apply a
alternative, possibly more robust, method to the performanc
analysis of service systems, such as call centers.
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3.1 Two Customer Classes

Our fluid approximations for the mean number in the sys
tem will be derived for the two customer class, preemptive
resume priority,Mt/M/n queue. Since the high priority
customers can preempt the lower priority ones, these cu
tomers will essentially receive service as if no other type o
customer is present in the system. Thus, the high priorit
customer class results will be almost the same as the resu
for the single customer class. The only difference is the dy
namic priority process for the low priority customers, where
these customers can abandon their queue and enter the h
priority queue as a high priority customer. This proces
adds an extra term to the differential equations describin
the process for the high priority customers.

Now, theMt /Mt /n number in system, or queue length,
processQ ≡ {Q(t) | t ≥ 0}, as defined in Mandelbaum
et al. (2001) for the single customer class case, must b
defined for two customer classes.

3.2 Asymptotic Queue Length Results

The results and theorems presented in this section are adap
from those stated by Mandelbaum et al. (2001) and Mande
baum et al. (1998). However, customers are now groupe
into two classes: high priority and low priority. High pri-
ority customers are labelled as class-1 customers while lo
priority customers are labelled as class-2 customers. Thu
all of the random variables of the stochastic processes, d
cussed in Mandelbaum et al., are now random vectors. F
example, the random variableQ(t) is now defined as:

Q(t) = {Q1(t),Q2(t)} ,

for all positive real numbers t. Here,Q1(t) andQ2(t) are the
corresponding quantities for class-1 and class-2 custome
respectively.

Now, the limit theorem for the functional strong law
of large numbers can be restated for our model. The initia
conditions for the queue length process satisfy the followin
asymptotic assumption:

lim
η→∞

1

η
Qη(0) = Q(0)(0) a.s., (1)

whereQ(0)(0) =
{
Q
(0)
1 (0),Q(0)

2 (0)
}

is constant. Thus, the

functional strong law of large numbers theorem for ou
model is:

Theorem 3.1

lim
η→∞

1

η
Qη = Q(0), a.s., (2)
n
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where the convergence is uniform on compact sets of t. More

over, Q(0) = {Q(0)(t) | t ≥ 0} =
{
Q
(0)
1 (t),Q

(0)
2 (t) | t ≥ 0

}
is uniquely determined byQ(0)(0) and the differential equa-
tion:

d

dt
Q
(0)
1 (t) = λ1(t)− µ(Q(0)

1 (t) ∧ n)
−β[Q(0)

2 (t)− (n−Q(0)
1 (t))

+]+; (3)
d

dt
Q
(0)
2 (t) = λ2(t)− µ[Q(0)

2 (t) ∧ (n−Q(0)
1 (t))+]+

−β[Q(0)
2 (t)− (n−Q(0)

1 (t))
+]+, (4)

where:

[Q(0)
2 (t)− (n−Q(0)

1 (t))
+]+

is the number of customers in the low priority queue.
This theorem states rigorously thatQη ≈ ηQ(0) for

large η, whereQ(0) is called thefluid approximationfor
Qη. The proof of the theorem is given in Mandelbaum et al.
(1998).

4 SIMULATION

4.1 Simulation Model

The final method used to compute the mean number in th
system for high and low priority customers is a discrete-even
simulation model. Our model approximates aMt/M/n

queue where the arrival process is a non-stationary Poisso
process, as described earlier. The inter-arrival times are in
dependent and identically distributed (iid) random variables
They have an exponential distribution with a time-varying
arrival rate,λ(t). The model has two queues: one for high
priority customers and one for low priority customers. The
service times of the servers are iid random variables tha
are independent of the inter-arrival times. They have an
exponential distribution with service rateµi . Since the cus-
tomer priority does not depend on the service time value
the service time is generated once the customer reaches
server. Thus, each server can have a different associate
service time distribution. The details of the algorithms used
for the simulation model are outlined below.

4.2 Simulation Components

The C-program used to implement the simulation mode
consists of several components. The simulation starts in th
empty-and-idle state, where no customers are present an
all of the servers are idle. The basic inputs of the simulation
are the arrival, service and abandonment rates for each cu
tomer class, the number of servers, the stopping time, an
the target service levels for each customer class. One ru



Ridley, Fu, and Massey

ia
te
it

r
a
o

t

u
a

h
n

g

e

e

r
e
r
In
g

h
e
e

y

d
er
e

o
e
r,

is

ice
d

e,
at

f

d

n

-
l

.
y
l
ll

e
s.

e
e

n

of the simulation is repeated until a given stopping criter
is reached. Here, one run of the simulation is stopped af
a finite horizon time is reached (20 hours). However,
can also be stopped after a certain number of custom
completions. Independent replications of the simulation a
performed until a certain precision of the performance me
sures is attained. In our case, replications of the simulati
are performed until the standard error of the mean number
system reaches a precision of 0.0001. Finally, the random
numbers, which model the stochastic nature, are genera
using a pseudo-random number generator.

4.2.1 Arrival Process

One of the main components of the stochastic simulatio
is the arrival process. We choose to approximate the tr
arrival rate function as a piecewise linear function over
set of disjoint 30-minute time subintervals,(ta, ta+1] which
partition the overall finite-time horizon interval[0, T ], where
a = 1,2, . . . , m− 1 andm represents the number of 30-
minute subintervals. Thus, the arrival time of the k-t
customer,Ak, is used to advance the overall simulatio
time, S, whereS ≤ T , into the next time subinterval. We
compute the arrival time,Ak, by generating a random inter-
arrival time,Xk, between customerk−1 andk, and adding
Xk to the current simulation timeS. Since we have a
Poisson arrival process,XK has an exponential distribution
with arrival rateλ(t). Therefore, it can be generated usin
the inverse transform method.

Since our model supports two types of customers,λ(t)

is the overall arrival rate and is define as:

λ(t) = λ1+ λ2 (5)

where the arrival rates for the high priority customers,λ1(t),
and the low priority customers,λ2(t), also vary with time.
Now, we randomly determine the call type of each custom
upon their arrival. Here, based on Poisson thinning,
customer will have call typei with probability λi(t)/λ(t).

Now, an arriving customer who finds at least one serv
idle enters service immediately at some server,ni , i =
1,2, . . . , n, wheren is the total number of servers. Serve
ni is chosen from all the other idle server using an order
search algorithm. In other words, if servers 1 and 2 a
both idle, then server 1 is chosen to provide service.
practice, calls are switched to agents in this manner, althou
more efficient methods exist depending on the type of ca
centers. Once the customer enters service, we generate
exponentially distributed service time,Yk, with mean service
time 1/µ (independent of time), for thek-th customer using
the inverse transform method.

If all the servers are busy, the customer either enters t
appropriate queue, or preempts a lower priority custom
already in service. Now, if a customer enters the queue, th
r
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an abandonment time is computed depending on the priorit
class. If the arriving customer preempts a lower priority
customer in service, then the preempted customer is place
at the head of the appropriate queue. The arriving custom
is then sent to the vacant server. Finally, the departure tim
for the arriving customer, as well as the arrival time of the
next customer, is generated.

4.2.2 Abandonment Process

There is the abandonment process from each of the tw
queues. If a high priority customer abandons its queu
(queue 1), then it leaves the system completely. Howeve
if a low priority customer abandons queue 2, then it is
“upgraded" to queue 1. Note that the upgraded customer
placed at the end of queue 1, and its priority changes from low
to high. Thus, this customer priority becomesdynamic. A
customer that abandons queue 2 for queue 1 receives serv
as a high priority customer, but its performance is measure
as if it is still a low priority customer.

4.2.3 Departure Process

The other main component is the departure process. Her
a customer leaves the system after completing service
some server,ni . Thus, the serverni is now available, and
the next customer to enter service at servernl is chosen
based on its priority. If there are any customers in the high
priority queue (queue 1), then the customer at the head o
the queue will enter into service. If, however, there are
no customers in queue 1, then the customer at the hea
of the low priority queue, queue 2, will enter into service.
Of course, if there are no customers in either queue, the
serverni remains available, or idle, until a new customer
enters the system.

4.3 Model Verification

We compare our simulation model results for the mean num
ber in the system with known analytical and computationa
results. This allows us to verify the basic operation of our
simulation, independent of our fluid approximations model
Since analytical results for queues with a non-stationar
Poisson arrival process do not exist in closed analytica
form, we assume a stationary Poisson arrival process in a
models. First, we compare our model with theM/M/n,
two-customer class, non-preemptive service priority queu
for the mean number in system for each customer clas
Second, we compare our model with theM/M/1, two-
customer class, preemptive-resume service priority queu
for the same performance measure. Third, we compar
our model with a call center simulation model created by
Rodney Wallace. Rodney is performing Ph.D research o
modelling call centers with skill-based routing of calls to
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agents (Wallace 2003). Rodney’s model can be adjusted
match our model. Thus, our model results can be verifie
by comparison with his computational results for the mea
number in system. Finally, we reduce the number of cu
tomer classes from 2 to 1 by setting one of the inter-arriv
rates close to 0. Then, we compare our model results
those from both theM/M/1 andM/M/n queues for a
the singel customer case. If our model is accurate, o
single-customer class results will match those from the tw
queues for the mean number in the system values. The
fore, our stationary simulation model results can be verifie
with known analytical queue results.

5 COMPARISON RESULTS OF TWO METHODS

5.1 Overview

Our goal is to compare two different estimates of the mea
number in system for both customer classes. Thus, we w
compare our results from the fluid model to the simula
tion model for theMt/M/n, two-class, preemptive-resume
dynamic priority queue.

5.2 Call Center Data

We begin our computation of numerical results by definin
the queueing model parameters. The parameter values
taken from a real-world, helpdesk call center, in whic
calls represent requests for information technology (IT
support (e.g., network support, password resets, applicat
support, etc.). The helpdesk is simulated over a 12-hour d
in our fluid model and our simulation model. Thus, eac
independent replications of our simulates the performan
of the helpdesk over the course of a day. All the rate
used in the methods are per minute rates. Note that
the Laplace transform inversion method, the arrival rat
λ, is constant over time. However, in both the fluid an
simulation methods, a piecewise constant function is us
for the time-varying arrival rate function,λt . The duration
of each value ofλt is 30 minutes. Thus,λt varies every 30
minutes during the 12 hours, or 360 minutes of our tim
horizon. Figure 2 contains a graph of our inter-arrival ra
parameter values.

We use a value ofn = 20 wheren is the number of
agents, or servers. Since we are using asymptotic limits
the fluid approximations, we must scale the inter-arrival rat
and the number of agents towards infinity in order to compu
accurate estimates, as described in 3. The scale factor we
is 25. Our service rates for the high and low priority calls
µ1 andµ2 are approximatelyµ1 = 0.1151 customers per
minute andµ2 = 0.1151 customers per minute respectively
For the single server, stationary queues,n = 1, µ1 = 5
customers per minute andµ2 = 5 customers per minute.
Note that no scale factor is used for the stationary queu
to
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Figure 2: Graph of Time-Varying Inter-Arrival Rates for
Both Customer Classes

Finally, the initial conditions of the call center model are tha
no high or low priority calls are present at the beginning
of the day. Thus, in our fluid approximations method,
Q
η
1(0) = Qη

2(0) = 0.

5.2.1 Service Levels and Abandonment Rates

Additionally, the abandonment rate for the high priority
customers, or voice calls, is measured in practice as
percentage of voice calls that enter the system. Usuall
about 5 percent of customers abandon from the system. T
abandonment rate for low priority customers is based on th
target service level for the class. Although industry servic
levels vary greatly, we use a a target service level between 8
and 24 hours for a low priority call, such as an email. Thus, i
a low priority customer has been in queue for about 8 hour
then that customer abandons the low priority queue. It the
either enters the end of the high priority queue, or the end o
a separate queue for upgraded low priority customers onl
In both our fluid approximations and simulation methods
we model this low priority abandonment rate in two ways
First, we assume the abandonment rate,β, is deterministic
with a value of 1/8 customers per hour, or 1/480 customers
per minute. Note that here each low priority customer ha
the same abandonment time. Second, we assume that
abandonment rate,β, is exponentially distributed with a
mean of 1/8, or 1/480 customers per minute. Thus, here
each low priority customer has a different abandonmen
time.

6 NUMERICAL RESULTS

The numerical results compare the mean number in th
system at time pointsti , spaced 30 minutes apart, for
each customer class from the fluid approximations and th
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discrete-event simulation. Below, we show the graphical
comparison of the results from our two models: the fluid
approximations and the simulation. Figures 3 and 4 show
the comparison of the mean number in the system for the
high and low priority customers. Note that for most of the
ti ’s, the estimates are very close, especially for the high
priority calls.

Figure 3: Fluid and Simulation Comparison of Number in
System atτi - High Priority

Figure 4: Fluid and Simulation Comparison of Number in
System atτi - Low Priority

7 CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

We obtain fairly accurate fluid approximations to the sim-
ulation results for the mean number in system for the high
and low priority customer classes. Note that in the fluid
approximations, the number of differential equations is in-
Figure 5: Outline of Low Priority FluidApproximation
Algorithm

dependent of the number of servers in the call center mode
Thus, our approximations does not grow in complexity with
the call center model. However, it is more likely that the
simulation will increase in complexity with the call center
model. Therefore, our fluid apprximation is a much more
scalable solution than the simulation.

7.2 Future Work

We will use our fluid approximations and simulation to
determine the mean virtual waiting time of the high and
low priority customers by extending the waiting-time results
in Mandelbaum et al. (1998) to the two-customer class case
The waiting time computation for the low priority customers
is more complex than for the high priority customers. If
these customers are preempted and abandon to the hig
priority queue, their waiting time will be a combination of
their time in the low priority queue, their partial-service time
at a server before each preemption, and their waiting-time
in the high priority queue. Figure 5 outlines a suggested
algorithm for computing the low priority waiting time.

We will then use those approximations to predict an
actual staffing level for our call center model. Our criteria
for changing the staffing level, or number of servers, in our
model uses a comparison of the mean virtual waiting-time
for each customer class to the corresponding target servic
level, or mean waiting-time. The simple staffing algorithm
is the following:

1. Choose an initial staffing level, or value for the
number of servers, and target service level for the
high and low priority customers. These values are
determined from our actual call center data.

2. Compute the mean virtual waiting-time using the
fluid approximations for each customer class.

3. If the percentage of mean virtual waiting-times is
greater than the target service level for either class
then increment the number of servers by 1.
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4. Repeat the second step until the target service lev
is satisfied for both classes of customers.

We can substitute this predicted staffing level into our
simulation. Finally, we will verify the accuracy of our
staffing prediction by comparing the mean virtual waiting
time for each class from the simulation with the target
service level.
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