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ABSTRACT puter product help desks, government offices, and other

organizations to provide their customers with efficient and
We model a call center as a preemptive-resume priority queue convenient service. Their managers and planners have a
with time-varying arrival rates and two priority classes of much more difficult job today than in the past. With far
customers. The low priority customers have a dynamic more products and services being sold and supported, call
priority where they become high priority if their waiting-  center managers struggle to deliver different service levels
time exceeds a given service-level time. The performance of to different types of callers with different needs and issues.
the call center is measured by the mean number in system for Today’s call center technologies provide greater flexibility in
the two customer classes. A fluid approximation is proposed routing and queueing calls. As a result, call center designers
to estimate the mean number in system for each class. Theand managers can prioritize certain types of incoming calls
quality of the approximation is tested by comparing it with and allow customers to access call agents with different
a stochastic simulation model of the system. Finally, using skill sets. However, this makes planning and managing call
the fluid approximations, we discuss how to compute the centers more complex. Therefore, call centers have become
mean number in system for each class and estimate thean important part of today’s business transactions.

overall staffing level, or number of agents. A traditional call center has several main components
typical of a telephone, or circuit-switched, network. These
1 INTRODUCTION are namely, an automatic call distributor (ACD), an inter-

active voice response unit (IVR), desktop computers, and
Telecommunication call centers have become the primary telephones. The ACD receives incoming customer calls,
channel of customer interaction, sales, and service for many and distributes these calls to the call agents (Fischer et al.
businesses. Traditionally, customers contacted the call cen- 1998). There are a finite number of trunks (i.e., telephone
ter by talking to customer service representatives over the lines) connecting a set of customer service representatives
telephone. Now, customers can also contact an agent over(CSRs), or call agents, to the ACD. As customer calls ar-
the Internet (e.g., a Web chat session), by e-mail, or by rive, the ACD receives them and routes them to an idle
fax. The growth of call centers has been substantial over customer service representative (CSR), who provides the
the last two decades. According to some industry esti- necessary service. If no CSR is available, the calls are
mates, 46 million people worked in North American call  routed to the IVR where customer transactions are handled
centers in 1995, and over 10 million will have worked in  automatically. Afterwards, if the customer chooses to speak
call centers by 2004. In 1997, there were approximately with a call agent, they are either immediately routed to an
60, 000 to 99000 call centers in the United States, rep- available agent, or placed in a queue (i.e., on hold) if no
resenting explosive growth above estimates from the late agents are available. The call agents responds to calls routed
1970’s (Kim 1997). Currently, more than 50 percent of to them using their telephone and desktop computer. For
all business transactions are done over the telephone. Callexample, if the agent is answering a telephone call, he or
centers are used by banks and financial institutions, com- she can access the customer information database through
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the desktop computer. The heart of a traditional call center >

is this dynamic routing of a new or pending call by the AL(D) o @ | w@iwmm

ACD to the most appropriate and available CSR. This call QO o s
G

routing or assignment process must take into consideration . |
such factors as the call priority, call arrival time, and CSR B>Q:(0
skills and availability. Thus, this call assignment process A2 (1)

— QO

can become quite complex. It requires a dynamic, real- Ha(Q (O - Ql(m?

time management of all CSR skill levels and availability,
the call/caller identity and status, and customer information
databases. Consequently, there are several call center com-
ponents that complete call routing and handling tasks, the
heart of a call center.

Figure 1: The Two-Customer Clagd;/M/n
Queue with Abandonment

a reasonable time, and thus have a dynamic priority. Our
goal is to show that the fluid approximations of the call
center performance are close to the actual performance, as
measured by a discrete-event simulation model. Figure 1
shows the diagram of our model.

Our model extends the model of Mandelbaum et al.

2 PROBLEM SETTING

The basic structure of the call center can be described as a
finite capacity, multi-server system. Customer calls arrive at
the call center at varying rates on a finite humber of trunks.
These calls are terminated at the ACD/PBX switch and are (2001), which incorporates multiple-customer classes and

routed to a group of call agents. In a multimedia call center, dynamic priorities. We determine the fluid approximations

these (?alls cadn Ibe \'/In)ce, en;an, fax,l or (iventufally) V|deo.f for the mean number of high and low priority customers
Queueing models will be used to analyze the performance o in the system. The low priority customers will have a

the call center. Current analytical models applied in practice dynamic priority, varying over time. Thus, at some point

are based on classical Erlang quegeing theory. Through his these customers could be upgraded to the high priority class.
research on the telephone network in the early 1900’s, Erlang

showed thgt th.e arrival process of calls over.the network 3 FLUID APPROXIMATIONS
to any destination could be modelled as a Poisson process

(Ha(ljl 1991)('1 A.‘Ilthouﬁ’r; these modeclis are pnmalr(lly uhse(;i 1;or Service systems models, such as call center models, belong
producing daily call forecasts and agent work schedules, to the class of stochastic service network models. These

they do attempt to explain the randomness that exists in network models form a special family of non-stationary

call cente.rs. This randomness is ca'used by the variability Markov processes where parameters such as inter-arrival and

of call arrival patterns and call durations. , service rates are time-dependent. More importantly, these
Generally, our goal is to develop better estimates (.)f 2 models have functional strong laws of large numbers and

call center performance than the standard Erlang approxima- ¢, «tiona central limit theorem results for the mean number

t'onds' lSpecmcaII_y, we dﬁvelop fluid mc;)dels aﬂd a3|mulat|8n of customers in the system (Mandelbaum et al. 1998). The
model to approximate the mean number in the system. OUr ¢ 15 are developed using an asymptotic limiting process,

call cente:' is a help de;k ,\;‘”th two c;stqn:.er cla:ses and where the number of servers are scaled up in response to a
a preemptive-resume priority queue discipline. Here, we scaling up of the arrival rates. The individual service and

assume that there are enough telephone lines to prevent aMYapbandonment rates are not scaled. Note that the resulting

call plockiqg._ Also, We assume that the service level for limit theorems are diffusion, and not really heavy-traffic,
the high priority class is high enough that no calls abandon limit results

the system. Note that in a general call center environment, These limit theorems lead to a tractable set of fluid

these assumptions are not a_lways valid. i . approximations represented as a system of ordinary dif-
In our model, upon e”te_”ng the system, a h_|gh prionty  ¢erential equations (ODEs). By numerically solving these
call can preempt a low priority call from service, When e rentia) equations using the fourth-order Runge-Kutta
all thg agents, or servers, are pusy. Once prempt_ed_, the method, we compute values for performance measures such
low priority call re-enters thg beginning of the low priority < 1o mean number of customers in the system. More
queue. and waits for service. In geperal, once the 'caII importantly, we can use this method to approximate the
Fetrns (o a server, It resumes its service from_ Its previous performance of our call center model, which is otherwise
preemptlon point, €. .'t does not lose its previous Service analytically intractable using Erlang analytical approxima-
time. If the low priority call does not complete service tions (Mandelbaum et al. 1998). Therefore, we apply an

W'tg'n a gverrll amoduntfothmrt]a_, ';W'” abandon” its quJeu(ra]z alternative, possibly more robust, method to the performance
and enter the end of the higher priority queue. In this analysis of service systems, such as call centers.

regard, the low priority calls are guarenteed service within
1818
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3.1 Two Customer Classes where the convergence is uniform on compact sets of t. More-
over, QO = (QO() | 1 = 0 = { "), 0 1) | 1 = 0}

is uniquely determined b9 (0) and the differential equa-
tion:

Our fluid approximations for the mean number in the sys-
tem will be derived for the two customer class, preemptive-
resume priority,M,/M/n queue. Since the high priority
customers can preempt the lower priority ones, these cus- 4 ©
tomers will essentially receive service as if no other type of 7 01 ()
customer is present in the system. Thus, the high priority ©) ©) N
customer class results will be almost the same as the results —BLO () — (=0, @) 175 ()
for the single customer class. The only difference isthe dy- d (o . (0) (0) ++
namic priority process for the low priority customers, where EQZ @ = 220 = plQ2 (D A (n = 0 (1)7]
these customers can abandon their queue and enter the high ﬂ[Q(O)(t) n Q(O) ) ]+, @)
priority queue as a high priority customer. This process
adds an extra term to the differential equations describing
the process for the high priority customers.

Now, the M,/M,/n number in system, or queue length, [Q(0>(,) (n Q(0> (t))+]+
processQ = {Q() | t > 0}, as defined in Mandelbaum
et al. (2001) for the single customer class case, must be is the number of customers in the low priority queue.

r@t) — w0 @) An)

where:

defined for two customer classes. This theorem states rigorously th@’ ~ nQ© for
large n, whereQ© is called thefluid approximationfor

3.2 Asymptotic Queue Length Results Q". The proof of the theorem is given in Mandelbaum et al.
(1998).

The results and theorems presented in this section are adapted

from those stated by Mandelbaum et al. (2001) and Mandel- 4 SIMULATION

baum et al. (1998). However, customers are now grouped

into two classes: high priority and low priority. High pri- 4.1 Simulation Model

ority customers are labelled as class-1 customers while low

priority customers are labelled as class-2 customers. Thus, The final method used to compute the mean number in the
all of the random variables of the stochastic processes, dis- system for high and low priority customers is a discrete-event
cussed in Mandelbaum et al., are now random vectors. For simulation model. Our model approximatesia /M /n

example, the random variabl@(¢) is now defined as: gueue where the arrival process is a non-stationary Poisson
process, as described earlier. The inter-arrival times are in-

Q) ={01(1), Q2(1)}, dependent and identically distributed (iid) random variables.

They have an exponential distribution with a time-varying

for all positive real numberst. Her@,(z) andQ2(¢) are the arrival rate,A.(z). The model has two queues: one for high

corresponding quantities for class-1 and class-2 customers, priority customers and one for low priority customers. The
respectively. service times of the servers are iid random variables that

Now, the limit theorem for the functional strong law are independent of the inter-arrival times. They have an
of large numbers can be restated for our model. The initial exponential distribution with service rate. Since the cus-
conditions for the queue length process satisfy the following tomer priority does not depend on the service time value,

asymptotic assumption: the service time is generated once the customer reaches a
server. Thus, each server can have a different associated
lim =Q"(0) = Q(O) 0) as, 1) service tl_me d|§tr|but|on. The detr_;uls of the algorithms used
—oon for the simulation model are outlined below.

whereQ©@(0) = [Q(O)(O) Q(O)(O)} is constant. Thus, the 4.2 Simulation Components

functional strong law of large numbers theorem for our . . )
model is: The C-program used to implement the simulation model

Theorem 3.1 consists of several components. The simulation starts in the
empty-and-idle state, where no customers are present and
i ) 5 all of the servers are idle. The basic inputs of the simulation
n|—>moo ,,Q =Q7, as, @) are the arrival, service and abandonment rates for each cus-
tomer class, the number of servers, the stopping time, and
the target service levels for each customer class. One run
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of the simulation is repeated until a given stopping criteria an abandonment time is computed depending on the priority
is reached. Here, one run of the simulation is stopped after class. If the arriving customer preempts a lower priority

a finite horizon time is reached (20 hours). However, it customer in service, then the preempted customer is placed
can also be stopped after a certain number of customer at the head of the appropriate queue. The arriving customer
completions. Independent replications of the simulation are is then sent to the vacant server. Finally, the departure time

performed until a certain precision of the performance mea-
sures is attained. In our case, replications of the simulation
are performed until the standard error of the mean number in
system reaches a precision a0001. Finally, the random

numbers, which model the stochastic nature, are generated

using a pseudo-random number generator.
4.2.1 Arrival Process

One of the main components of the stochastic simulation
is the arrival process. We choose to approximate the true
arrival rate function as a piecewise linear function over a
set of disjoint 30-minute time subintervalg,, ,1] which
partition the overall finite-time horizon intenid, 7', where
a=12,...,m—1 andm represents the number of 30-
minute subintervals. Thus, the arrival time of the k-th
customer, A, is used to advance the overall simulation
time, S, whereS < T, into the next time subinterval. We
compute the arrival time4y, by generating a random inter-
arrival time, Xy, between customér— 1 andk, and adding
X to the current simulation timeS. Since we have a
Poisson arrival procesX x has an exponential distribution
with arrival ratex(z). Therefore, it can be generated using
the inverse transform method.

Since our model supports two types of customg(s)
is the overall arrival rate and is define as:

At) =A1+ A2 (5)

where the arrival rates for the high priority customersy),
and the low priority customers,»(¢), also vary with time.
Now, we randomly determine the call type of each customer
upon their arrival. Here, based on Poisson thinning, a
customer will have call type with probability A; (z) /1(¢).

Now, an arriving customer who finds at least one server
idle enters service immediately at some servgt, i
1,2,...,n, wheren is the total number of servers. Server
n; is chosen from all the other idle server using an ordered
search algorithm. In other words, if servers 1 and 2 are
both idle, then server 1 is chosen to provide service. In

for the arriving customer, as well as the arrival time of the
next customer, is generated.

4.2.2 Abandonment Process

There is the abandonment process from each of the two
queues. If a high priority customer abandons its queue
(queue 1), then it leaves the system completely. However,
if a low priority customer abandons queue 2, then it is
“upgraded"” to queue 1. Note that the upgraded customer is
placed atthe end of queue 1, and its priority changes from low
to high. Thus, this customer priority becomdynamic A
customer that abandons queue 2 for queue 1 receives service
as a high priority customer, but its performance is measured
as if it is still a low priority customer.

4.2.3 Departure Process

The other main component is the departure process. Here,
a customer leaves the system after completing service at
some server;. Thus, the serveti; is now available, and
the next customer to enter service at semglis chosen
based on its priority. If there are any customers in the high
priority queue (queue 1), then the customer at the head of
the queue will enter into service. If, however, there are
no customers in queue 1, then the customer at the head
of the low priority queue, queue 2, will enter into service.
Of course, if there are no customers in either queue, then
servern; remains available, or idle, until a new customer
enters the system.

4.3 Model Verification

We compare our simulation model results for the mean num-
ber in the system with known analytical and computational
results. This allows us to verify the basic operation of our
simulation, independent of our fluid approximations model.
Since analytical results for queues with a non-stationary
Poisson arrival process do not exist in closed analytical
form, we assume a stationary Poisson arrival process in all

practice, calls are switched to agents in this manner, although models. First, we compare our model with the&/M/n,

more efficient methods exist depending on the type of call

two-customer class, non-preemptive service priority queue

centers. Once the customer enters service, we generate arfor the mean number in system for each customer class.

exponentially distributed service tinig, with mean service
time 1/u (independent of time), for thieth customer using
the inverse transform method.

Second, we compare our model with tiM/M /1, two-
customer class, preemptive-resume service priority queue
for the same performance measure. Third, we compare

If all the servers are busy, the customer either enters the our model with a call center simulation model created by

appropriate queue, or preempts a lower priority customer

Rodney Wallace. Rodney is performing Ph.D research on

already in service. Now, if a customer enters the queue, then modelling call centers with skill-based routing of calls to
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agents (Wallace 2003). Rodney’s model can be adjusted to
match our model. Thus, our model results can be verified
by comparison with his computational results for the mean
number in system. Finally, we reduce the number of cus-
tomer classes from 2 to 1 by setting one of the inter-arrival
rates close to 0. Then, we compare our model results to
those from both theM/M/1 and M/M/n queues for a
the singel customer case. If our model is accurate, our
single-customer class results will match those from the two
gueues for the mean number in the system values. There-
fore, our stationary simulation model results can be verified
with known analytical queue results.

5 COMPARISON RESULTS OF TWO METHODS
5.1 Overview

Our goal is to compare two different estimates of the mean
number in system for both customer classes. Thus, we will
compare our results from the fluid model to the simula-
tion model for theM; /M /n, two-class, preemptive-resume,
dynamic priority queue.

5.2 Call Center Data
We begin our computation of numerical results by defining

taken from a real-world, helpdesk call center, in which
calls represent requests for information technology (IT)
support (e.g., network support, password resets, application
support, etc.). The helpdesk is simulated over a 12-hour day
in our fluid model and our simulation model. Thus, each
independent replications of our simulates the performance
of the helpdesk over the course of a day. All the rates
used in the methods are per minute rates. Note that in
the Laplace transform inversion method, the arrival rate,
A, is constant over time. However, in both the fluid and
simulation methods, a piecewise constant function is used
for the time-varying arrival rate functioni,. The duration

of each value of, is 30 minutes. Thus), varies every 30
minutes during the 12 hours, or 360 minutes of our time
horizon. Figure 2 contains a graph of our inter-arrival rate
parameter values.

We use a value ofi = 20 wheren is the number of
agents, or servers. Since we are using asymptotic limits for
the fluid approximations, we must scale the inter-arrival rates
and the number of agents towards infinity in order to compute
accurate estimates, as described in 3. The scale factor we us
is 25. Our service rates for the high and low priority calls,
w1 and uo are approximatelyr1 = 0.1151 customers per
minute andu2 = 0.1151 customers per minute respectively.
For the single server, stationary queues= 1, u1 = 5
customers per minute angd, = 5 customers per minute.
Note that no scale factor is used for the stationary queues.
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Figure 2: Graph of Time-Varying Inter-Arrival Rates for
Both Customer Classes

Finally, the initial conditions of the call center model are that
no high or low priority calls are present at the beginning
of the day. Thus, in our fluid approximations method,
01(0) = 05(0) = 0.

5.2.1 Service Levels and Abandonment Rates

eAdditionaIIy, the abandonment rate for the high priority

customers, or voice calls, is measured in practice as a
percentage of voice calls that enter the system. Usually,
about 5 percent of customers abandon from the system. The
abandonment rate for low priority customers is based on the
target service level for the class. Although industry service
levels vary greatly, we &sa a target service level between 8
and 24 hours for alow priority call, such as an email. Thus, if
a low priority customer has been in queue for about 8 hours,
then that customer abandons the low priority queue. It then
either enters the end of the high priority queue, or the end of
a separate queue for upgraded low priority customers only.
In both our fluid approximations and simulation methods,
we model this low priority abandonment rate in two ways.
First, we assume the abandonment r@teis deterministic
with a value of ¥8 customers per hour, oy480 customers

per minute. Note that here each low priority customer has
the same abandonment time. Second, we assume that the
abandonment rateg, is exponentially distributed with a
mean of ¥8, or 1/480 customers per minute. Thus, here
each low priority customer has a different abandonment

etime.

6 NUMERICAL RESULTS

The numerical results compare the mean number in the
system at time pointg;, spaced 30 minutes apart, for
each customer class from the fluid approximations and the
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discrete-event simulation. Below, we show the graphical
comparison of the results from our two models: the fluid

approximations and the simulation. Figures 3 and 4 show
the comparison of the mean number in the system for the
high and low priority customers. Note that for most of the

t;'s, the estimates are very close, especially for the high
priority calls.
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7 CONCLUSIONS AND FUTURE WORK
7.1 Conclusions

We obtain fairly accurate fluid approximations to the sim-
ulation results for the mean number in system for the high
and low priority customer classes. Note that in the fluid
approximations, the number of differential equations is in-
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Begin algorithm whent>=1

« Set arrival rate, A, =0

“Generate service time, S, as
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Generatetabandonment time, A = 1/8,
A exponentially distributed with rate B,

Low priority customer

not at head of fow priority

queue at time t >=1
Serveribecomes available
beforefcustomer abandons

P " ueue
Customer waits in queue until 9

server available Customer enters service

High priority customer preempts

low priority customer in service No preemption

Customertabandons occurs

queue at time t*

Customertcompletes
service from low
priority queue at time
t*; waiting time = t* - ©

Customer enters high priority queue, waits for service,
and completes service in high priority queue at time t*;
waiting time = wait in low priority queue +
wait in high priority queue = (t" - 1) +H(t" -t')

Figure 5: Outline of Low Priority Fluid Approximation
Algorithm

dependent of the number of servers in the call center model.
Thus, our approximations does not grow in complexity with
the call center model. However, it is more likely that the
simulation will increase in complexity with the call center
model. Therefore, our fluid apprximation is a much more
scalable solution than the simulation.

7.2 Future Work

We will use our fluid approximations and simulation to
determine the mean virtual waiting time of the high and
low priority customers by extending the waiting-time results
in Mandelbaum et al. (1998) to the two-customer class case.
The waiting time computation for the low priority customers
is more complex than for the high priority customers. If
these customers are preempted and abandon to the high
priority queue, their waiting time will be a combination of
their time in the low priority queue, their partial-service time
at a server before each preemption, and their waiting-time
in the high priority queue. Figure 5 outlines a suggested
algorithm for computing the low priority waiting time.

We will then use those approximations to predict an
actual staffing level for our call center model. Our criteria
for changing the staffing level, or number of servers, in our
model uses a comparison of the mean virtual waiting-time
for each customer class to the corresponding target service
level, or mean waiting-time. The simple staffing algorithm
is the following:

1. Choose an initial staffing level, or value for the
number of servers, and target service level for the
high and low priority customers. These values are
determined from our actual call center data.
Compute the mean virtual waiting-time using the
fluid approximations for each customer class.

If the percentage of mean virtual waiting-times is
greater than the target service level for either class,
then increment the number of servers by 1.
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4. Repeat the second step until the target service level MICHAEL C. FU

is satisfied for both classes of customers.

We can substitute this predicted staffing level into our
simulation. Finally, we will verify the accuracy of our
staffing prediction by comparing the mean virtual waiting
time for each class from the simulation with the target
service level.
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